University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document

Size: px
Start display at page:

Download "University of Bristol - Explore Bristol Research. Peer reviewed version. Link to publication record in Explore Bristol Research PDF-document"

Transcription

1 Buss, HL., White, AF., Dessert, C., Gaillardet, J., Blum, AE., & Sak, PB. (010). Depth profiles in a tropical, volcanic critical zone observatory: Basse-Terre, Guadeloupe. In IS. Torres-Alvarado, & P. Birkle (Eds.), Water- Rock Interaction XIII (pp. 5-8). CRC Press. Peer reviewed version Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:

2 Depth profiles in a tropical, volcanic critical zone observatory: Basse- Terre, Guadeloupe H.L. Buss & A.F. White U.S. Geological Survey, Water Resources Discipline, Menlo Park, CA, USA C. Dessert & J. Gaillardet Institut de Physique du Globe de Paris, Paris, France A.E. Blum U.S. Geological Survey, Water Resources Discipline, Boulder, CO, USA P.B. Sak Department of Geology, Dickinson College, Carlisle, PA, USA ABSTRACT: The Bras David watershed on the French island of Basse-Terre, Guadeloupe in the Lesser Antilles is located on a late Quaternary volcaniclastic debris flow of dominantly andesitic composition. The bedrock is mantled by more than 1 m of highly leached regolith. The regolith is depleted with respect to most primary minerals and weathering is dominated by the dissolution and precipitation of clays. Mineral nutrient cations such as Mg, K, and P are largely present as impurities or adsorbed to clays and iron oxides. Surface soils (< 0.3 m depth) are enriched in feldspar, quartz, cristobalite, and solid state Fe(II), Ca, K, and Mg relative to the underlying regolith, likely reflecting atmospheric deposition, possibly related to volcanic activity. 1 INTRODUCTION The Bras David watershed is located in a rugged, humid, tropical environment with a mean annual temperature of 5 C and a mean annual precipitation of 500 mm yr -1 (Météo-France, 008). Thin soils top very thick (1+ m) regolith, which is exposed at roadcuts and excavations. The regolith appears to be highly weathered volcanic debris flows, containing rocky clasts at various stages of weathering. Volcanic flows in the immediate vicinity were dated by Ar/Ar to be 900 ka (Samper et al., 007). variety of colors and textures that were visable during sample collection. Bulk densities of augered samples are extremely low, on average 0.9 g cm -3 (Fig. 1). A large clast, with a relatively unweathered core, collected from a nearby roadcut has a bulk density of. g cm -3 in the core and 1. g cm -3 in the rind (Sak et al., Subm.), indicating that mass is lost during weathering, with little or no loss of volume. Clays, dominantly halloysite, comprise about 75 wt of the mineralogy at all depths (Table 1). Nonclays are almost entirely Fe(III)-hydroxides and quartz/cristobalite. The only distinct depth trends in METHODS 0 Vadose zone pore waters were collected approximately monthly for years from 5 cm diameter nested porous-cup suction water samplers (Soil Moisture Inc., Santa Barbara, CA) that were installed in hand-augered holes at depths from 0.15 to 1.5 m. Pore waters were filtered to 0.5 μm and analyzed by ICP-MS and ion-chromatography. A 1.5 m solid core was collected and used for bulk density measurements, quantitative mineralogy by XRD using RockJock (Eberl, 003), and bulk chemical analysis by ICP-OES (SGS, Canada) Clast Rind Clast Core 3 RESULTS Augered core samples contained a number of weathered rocky clasts of varying hardness and color. Similarly, the regolith matrix material exhibited a Density (g cm 3 ) Figure 1. Bulk density of the augered profile ( ). A clast with a weathering rind from a nearby roadcut (Sak et al., Subm.) is shown here at an arbitrary depth.

3 Table 1. Mineralogy by Quantitative XRD, in weight percent. Quartz K-spar 1 Albite Magnetite Goethite Maghemite Cristobalite Kaolinite 3 Gibbsite Halloysite Intermediate microcline. Albite var. cleavelandite 3. Disordered kaolinite mineralogy are an inverse relationship between halloysite and gibbsite. Feldspars are almost totally absent except at the surface and bottom of the augered core. This is consistent with the observation of Sak et al. (subm.) of feldspar dissolving completely at the weathering interface of the clast sampled from a nearby roadcut. Clasts recovered during augering are weathered throughout and differ from the matrix mineralogy only in the proportion of specific clays (augered clast data not shown). More feldspar (mostly microcline) is present in the upper 0.3 m than anywhere else in the profile (Table 1). Similarly, quartz and cristobalite also increase at the surface. Solid state chemical composition of the bulk regolith is dominated by Si and Al with Na and Ca near or below detection limits at most depths (Table ). However, Fe(II), Ca, K, and Mg are enriched at the surface (< 0.3 m depth) relative to the underlying regolith. Roadcut clast rind compositions are comparable to regolith compositions with the exception that the rinds are slightly enriched in P. (Sak et al, Subm; Table ). Augered clasts (data not shown) are similar in composition to the surrounding regolith. Pore waters are dominated by sea salts, as is typical in tropical island watersheds (e.g., White et al., 1998). With the exception of Si, cations show little variation in concentration over time below 1- m depth (Fig. ). Solute Si, Mg, Ca, and K concentrations generally decrease from 0- m. Only Mg shows a clear trend in the deeper part of the profile, increasing below about m depth. DISCUSSION Low densities and a dearth of primary minerals reflect the high degree of weathering of the regolith. Visible bedrock textures in the regolith including relict clasts and the replacement of primary mineral grains by clays are consistent with iso-volumetric

4 Table. Elemental Composition of the Bulk Regolith Depth m Al O 3 CaO 1 Fe O 3 FeO 1 K O MgO MnO Na O P O 5 SiO TiO Sr Zn Zr < < < < nd < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < nd < Core nd nd nd nd Rind-A nd < nd nd nd Rind-B nd nd nd nd 1 Total iron expressed as Fe O 3 ; ferrous iron expressed as FeO nd = not determined 3 Core = un-weathered core of clast collected nearby (Sak et al., Subm.) Rind of clast (Sak et al., subm.). A and B indicate areas of high and low curvature, respectively. weathering and saprolite formation, although some volume change cannot yet be ruled out. If the core of the clast analyzed by Sak et al. (Subm., Fig. 1, Table ) is representative of the regolith parent rock, the difference in density between parent and weathered material points to a substantial loss of mass during weathering. Mass losses during weathering are often assessed by normalizing solid state concentrations to a relatively immobile element or mineral (e.g., Brimhall & Dietrich, 1987). If an element or mineral is immobile, volumetric strain can be calculated to estimate volume changes during weathering: ρ pci, p ε (1) i, w = 1 ρ wci, w where ρ p and ρ w are the dry bulk densities of the protolith and weathered material, respectively, and c is the concentration of the immobile component (i) in the protolith (p) or in the weathered material (w). An ε i,w = 0 indicates iso-volumetric weathering. In deep tropical weathering environments, Ti is often found to be relatively immobile (e.g., White et al., 1998; Sak et al., 00; Buss et al., 008). However, Equation 1 shows that in the Bras David profile, if the un-weathered clast core is representative of the parent material and if weathering is iso-volumetric, significant loss of Ti must have occurred. Alternatively, if Ti is immobile, an unrealistic expansion of volume would be required to satisfy the equation. Further research is needed to ascertain whether or not the clast is representative of the protolith. Despite easily observed heterogeneities in color and texture, the regolith profile reveals little variation in mineralogy or chemistry with depth. One exception is the inverse relationship between halloysite

5 Na Si Al Mg 1 Ca Concentration (μm) Figure. Elemental concentrations in pore waters with depth. Open symbols indicate individual samples collected over a year period. Closed symbols with lines indicate average values. Note the different concentration scale for Na and Si. K and gibbsite, which suggests that halloysite weathers to gibbsite. A lack of Mg-, K-, or P-containing minerals in the regolith suggests that these mineral nutrient cations are largely present as impurities or adsorbed to secondary clays and oxide minerals. Increasing solute Mg concentrations at depth may indicate a weathering-related input of Mg to the pore waters, likely the release of adsorbed or coprecipitated Mg from halloysite or kaolinite. Enrichment in feldspar, quartz, cristobalite, and solid state Fe(II), Ca, Mg, and K at the surface are consistent with dust deposition. These inputs may be related to recent volcanic activity on Basse-Terre and/or nearby Monserrat, providing an important source of mineral nutrients to the surface ecosystem. 5 CONCLUSIONS Despite visible heterogeneities in texture and color, the regolith displays little variation with depth in terms of mineralogy or chemistry. Mineral nutrient dynamics in the highly leached Bras David regolith are dominated by weathering of secondary minerals and dust deposition. The regolith may have lost well over 50 of the original mass, including elements often assumed to be immobile (i.e., Ti). REFERENCES Brimhall, G. & Dietrich, W.E., Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim. Cosmoch. Acta, 51: Buss, H.L., Sak, P.B., Webb, S.M. & Brantley, S.L., 008. Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. Geochim. Cosmoch. Acta, 7: Sak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K. & Brantley, S.L., 00. Rates of weathering rind formation on Costa Rican basalt. Geochim. Cosmoch. Acta, 8: Sak, P.B., Navarre-Sitchler, A.K., Miller, C.E., Daniel, C.C., Lebedeva, M.I. & Brantley, S.L. Rates of formation of weathering rinds vary with clast curvature. Submitted to Chem. Geol. Samper, A., Quidelleur, X., Lahitte, P. & Mollex, D., 007. Timing of effusive volcanism and collapse events within an oceanic arc island: Basse-Terre, Guadeloupe archipelago (Lesser Antilles Arc). EPSL, 58: White, A.F., Blum, A.E., Schulz, M.S., Vivit, D.V., Stonestrom, D.A., Larsen, M., Murphy, S.F. & Eberl, D., Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim. Cosmoch. Acta, : 09-.

Deep Weathering at the LCZO

Deep Weathering at the LCZO Deep Weathering at the LCZO Heather L. Buss USGS Water Energy and Biogeochemical Budgets Program (WEBB), Puerto Rico Qtz Chlorite Hornblende Plag Plag Projects Observation wells: The Drilling Project :

More information

Heather Buss Dec 12, 2008 WEBB Bibliography : Luquillo, PR

Heather Buss Dec 12, 2008 WEBB Bibliography : Luquillo, PR WEBB Bibliography 2005-2008: Luquillo, PR Articles Buss H.L., Bruns M.A., Schultz M.J., Moore J., Mathur C.F., and Brantley S.L. (2005) The coupling of biological iron cycling and mineral weathering during

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

Applied Geochemistry

Applied Geochemistry Applied Geochemistry 26 (2011) S89 S93 Contents lists available at ScienceDirect Applied Geochemistry journal homepage: www.elsevier.com/locate/apgeochem Geochemical behaviors of different element groups

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Moore, O., Buss, H., Sophie, G., Liu, M., & Song, Z. (2017). The importance of non-carbonate mineral weathering as a soil formation mechanism within a karst weathering profile in the SPECTRA Critical Zone

More information

University of Bristol - Explore Bristol Research

University of Bristol - Explore Bristol Research Buss, H. L., Sak, P. B., Webb, S. M., & Brantley, S. L. (2008). Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing. Geochimica

More information

WEATHERING. Weathering breakdown of rock materials Erosion transport of broken-down materials

WEATHERING. Weathering breakdown of rock materials Erosion transport of broken-down materials WEATHERING the interacting physical, chemical & biological processes that progressively alter the original lithologic character of rocks to produce secondary minerals (e.g. clays) & unconsolidated regolith

More information

Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing

Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling oxidation, dissolution, and fracturing Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 4488 4507 www.elsevier.com/locate/gca Weathering of the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling

More information

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS

TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS TABLE DR1. COMBINED EMPA AND LA-ICP-MS DATA FOR WATERSHED 2 AND 34 MINERALS USED IN THE MASS BALANCE CALCULATIONS Allanite Plagioclase C17-3 C17-3 C17-3 C17-3 Mean C17-3 C17-3 C17-3 C17-3 Mean E1C E1R

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /B

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /B White, A. F., & Buss, H. L. (2014). Natural Weathering Rates of Silicate Minerals. In J. I. Drever (Ed.), Treatise on Geochemistry: Surface and Ground Water, Weathering and Soils (2nd ed., pp. 115-155).

More information

Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes

Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes Pergamon PII S0016-7037(97)00335-9 Geochimica et Cosmochimica Acta, Vol. 62, No. 2, pp. 209 226, 1998 Copyright 1998 Elsevier Science Ltd Printed in the USA. All rights reserved 0016-7037/98 $19.00.00

More information

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten

Weathering and mineral equilibria. Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering and mineral equilibria Seminar at NGU 23 May 2016 Håkon Rueslåtten Weathering is the breakdown of rocks and minerals that are exposed to surface processes (climatically controlled). Water is

More information

Chemical Geology 290 (2011) Contents lists available at SciVerse ScienceDirect. Chemical Geology

Chemical Geology 290 (2011) Contents lists available at SciVerse ScienceDirect. Chemical Geology Chemical Geology 290 (2011) 89 100 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Research paper Soil profiles as indicators of mineral

More information

Rates of weathering rind formation on Costa Rican basalt

Rates of weathering rind formation on Costa Rican basalt Pergamon doi:10.1016/j.gca.2003.09.007 Geochimica et Cosmochimica Acta, Vol. 68, No. 7, pp. 1453 1472, 2004 Copyright 2004 Elsevier Ltd Printed in the USA. All rights reserved 0016-7037/04 $30.00.00 Rates

More information

The Production of Sediment. Contents. Weathering. Chapters 1, 3

The Production of Sediment. Contents. Weathering. Chapters 1, 3 The Production of Sediment Chapters 1, 3 Contents Weathering Physical, chemical, biogeochemical processes Rates Products Carbon cycle and global change Erosion/Soils Sediment Texture Weathering General

More information

Geogenic versus Anthropogenic Metals and Metalloids

Geogenic versus Anthropogenic Metals and Metalloids Geogenic versus Anthropogenic Metals and Metalloids Geochemical methods for evaluating whether metals and metalloids are from geogenic versus anthropogenic sources 1 Definitions Geogenic from natural geological

More information

Lecture 13 More Surface Reactions on Mineral Surfaces. & Intro to Soil Formation and Chemistry

Lecture 13 More Surface Reactions on Mineral Surfaces. & Intro to Soil Formation and Chemistry Lecture 13 More Surface Reactions on Mineral Surfaces & Intro to Soil Formation and Chemistry 3. charge transfer (e.g., ligand/donor sorption): Sorption involves a number of related processes that all

More information

Report on samples from the Great Basin Science Sample and Records Library

Report on samples from the Great Basin Science Sample and Records Library Jonathan G. Price, Ph.D. State Geologist and Director Nevada Bureau of Mines and Geology Office telephone: 775-784-6691 extension 5 1664 North Virginia Street Home telephone: 775-329-8011 University of

More information

Why study Weathering?

Why study Weathering? Why study Weathering? Weathering process of disintegrating solid rock & producing loose debris To understand geol process (like hydrologic systems) and how landscapes evolve (topo maps, landforms) Weathering

More information

Chemical Weathering and Soils

Chemical Weathering and Soils Chemical Weathering and Soils Fresh rocks and minerals that once occupied the outermost position reached their present condition of decay through a complex of interacting physical, chemical, and biological

More information

T6 soil base cation weathering rates

T6 soil base cation weathering rates T6 soil base cation weathering rates julian aherne :: trent university FORFLUX :: biogeochemistry of irish forests [RSF 07510] Advisory Group Meeting [5 6 December 2011] objective (a) to determine the

More information

(4) Give an example of important reactions that are responsible for the composition of river water.

(4) Give an example of important reactions that are responsible for the composition of river water. Lecture 12 Global Biogeochemical Cycles (1) If rivers are the chief source of the dissolved salts in seawater, why is seawater not simply a concentrated version of average composition of all rivers? The

More information

White Rose Research Online URL for this paper:

White Rose Research Online URL for this paper: This is an author produced version of Lithological influences on contemporary and long-term regolith weathering at the Luquillo Critical Zone Observatory. White Rose Research Online URL for this paper:

More information

Lecture 29: Soil Formation

Lecture 29: Soil Formation Lecture 29: Soil Formation Factors Controlling Soil Formation 1. Parent material: Soil precursor 2. Climate: Temperature and precipitation 3. Biota: Native vegetation, microbes, soil animals, humans 4.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. GLS100-01 Quiz#7 chapters 5 and 6 Fall 2009 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Clay minerals formed from gabbro or diorite bedrock

More information

Chapter 5: Weathering and Soils. Fig. 5.14

Chapter 5: Weathering and Soils. Fig. 5.14 Chapter 5: Weathering and Soils Fig. 5.14 OBJECTIVES Recognize that weathering breaks down minerals and rocks and occurs as a result of both mechanical and chemical processes. Explain the processes that

More information

Lecture 15: Adsorption; Soil Acidity

Lecture 15: Adsorption; Soil Acidity Lecture 15: Adsorption; Soil Acidity Surface Complexation (Your textbook calls this adsorption ) Surface Complexation Both cations and anions can bind to sites on the external surfaces of soil minerals

More information

Soils. Source: Schroeder and Blum, 1992

Soils. Source: Schroeder and Blum, 1992 Soils Source: Schroeder and Blum, 1992 Literature cited: Schroeder, D. and Blum, W.E.H. 1992. Bodenkunde in Stichworten. Gebrüder Borntraeger, D-1000 Berlin. Geology and Life Conceptual model Source: Knight,

More information

Chapter 6. Weathering, Erosion, and Soil

Chapter 6. Weathering, Erosion, and Soil Chapter 6 Weathering, Erosion, and Soil Introduction Rocks and minerals disintegrate and decompose by the processes of physical and chemical weathering. This breakdown occurs because the parent material

More information

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides

Sedimentology & Stratigraphy. Thanks to Rob Viens for slides Sedimentology & Stratigraphy Thanks to Rob Viens for slides Sedimentology The study of the processes that erode, transport and deposit sediments Sedimentary Petrology The study of the characteristics and

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

Happy Tuesday. Pull out a ½ sheet of paper

Happy Tuesday. Pull out a ½ sheet of paper Happy Tuesday Pull out a ½ sheet of paper 1. Physical properties of a mineral are predominantly related to 1. the external conditions of temperature, pressure, and amount of space available for growth.

More information

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 2: Rock classification: ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks

More information

Metcalf and Buck. GSA Data Repository

Metcalf and Buck. GSA Data Repository GSA Data Repository 2015035 Metcalf and Buck Figure DR1. Secondary ionization mass-spectrometry U-Pb zircon geochronology plots for data collected on two samples of Wilson Ridge plutonic rocks. Data presented

More information

WEATHERING-CONTROLLED FRACTIONATION OF ORE AND PATHFINDER ELEMENTS AT COBAR, NSW

WEATHERING-CONTROLLED FRACTIONATION OF ORE AND PATHFINDER ELEMENTS AT COBAR, NSW 296 WEATHERING-CONTROLLED FRACTIONATION OF ORE AND PATHFINDER ELEMENTS AT COBAR, NSW Kenneth G. McQueen 1,2 & Dougal C. Munro 1 1 CRC LEME, Department of Geology, Australian National University, ACT, 0200

More information

Sedimentary Rocks and Processes

Sedimentary Rocks and Processes Sedimentary Rocks and Processes Weathering Sedimentary Processes Breakdown of pre-existing rock by physical and chemical processes Transport Movement of sediments from environments of relatively high potential

More information

Mechanical Weathering

Mechanical Weathering Weathering is the disintegration and decomposition of material at or near the surface. Erosion is the incorporation and transportation of material by a mobile agent, usually water, wind, or ice. Geologists

More information

The Lithosphere. Definition

The Lithosphere. Definition 10/14/2014 www.komar.de The Lithosphere Ben Sullivan, Assistant Professor NRES 765, Biogeochemistry October 14th, 2014 Contact: bsullivan@cabnr.unr.edu Definition io9.com tedquarters.net Lithos = rocky;

More information

Supporting Information Appendix

Supporting Information Appendix Supporting Information Appendix 1. Supporting Text. Silica-rich terrestrial deposits without tridymite. 2. Table S1. Chemical compositions from Rietveld analysis and chemical composition of minerals used

More information

Supplementary File to Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes

Supplementary File to Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes Supplementary File to Effects of physical erosion on chemical denudation rates: a numerical modeling study of soil-mantled hillslopes Ken L. Ferrier Department of Earth and Planetary Science, University

More information

Chapter 6 9/25/2012. Weathering, Erosion and Soils. Introduction. How Are Earth Materials Altered? Introduction. How Are Earth Materials Altered?

Chapter 6 9/25/2012. Weathering, Erosion and Soils. Introduction. How Are Earth Materials Altered? Introduction. How Are Earth Materials Altered? Chapter 6 Introduction Rocks and minerals are disintegrated and decomposed by the processes of mechanical and chemical weathering. Weathering, Erosion and Soils This breakdown occurs because the parent

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

Weathering and Erosion

Weathering and Erosion Weathering and Erosion Weathering the disintegration and decomposition of material at the surface Erosion the transportation of weathered material by water, wind, or ice Weathering Two kinds of weathering

More information

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area Breeding, Ague, and Brocker 1 Figure DR1 21 o 24 Greece o A 38 o Athens Tinos 37 o Syros Attic-Cycladic Blueschist Belt Syros Kampos B Study Area Ermoupoli N Vari Unit Cycladic HP-LT Unit Marble horizons

More information

Mineralogical & Chemical Studies of Gel-e-sarshooy (shampoo clay) in Manian-Iran

Mineralogical & Chemical Studies of Gel-e-sarshooy (shampoo clay) in Manian-Iran Mineralogical & Chemical Studies of Gel-e-sarshooy (shampoo clay) in Manian-Iran Zohre Moosavinasab Dep.Of geology, Islamic azad university- Estahban Branch-Iran Phone No.:0973496 E mail: z_moosavinasab@yahoo.com.

More information

CERAMIC GLAZING as an IGNEOUS PROCESS

CERAMIC GLAZING as an IGNEOUS PROCESS GEOL 640: Geology through Global Arts and Artifacts CERAMIC GLAZING as an IGNEOUS PROCESS GLAZE COMPONENTS A glaze is a waterproof silica glass on the surface of a ceramic pot, and was first produced by

More information

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3

Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification VI. Additional sub-classes

More information

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock

Rocks Environmental Significance. Rocks Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3. Rocks Definition of a rock Reading this week: Ch. 2 and App. C Reading for next week: Ch. 3 Environmental Significance I. Environmental significance II. Definition III. 3 major classes IV. The Rock Cycle V. Secondary classification

More information

Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Mechanisms

Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Mechanisms Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Includes Physical, Chemical, Biological processes WEATHERING CHAPTER 7 Weathering

More information

Chapter 16 Weathering, Erosion, Mass Wasting. Chapter 16 Weathering, Erosion, Mass Wasting. Mechanical Weathering

Chapter 16 Weathering, Erosion, Mass Wasting. Chapter 16 Weathering, Erosion, Mass Wasting. Mechanical Weathering Weathering, Erosion and Mass Wasting Weathering is the the breakdown of solid rock at or near the Earth's surface. Chapter 16 Weathering, Erosion, Mass Wasting Does weathering of rock remove or add CO

More information

Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and. geochemical mass balance

Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and. geochemical mass balance Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance Clifford S. Riebe 1, *, James W. Kirchner 1, Robert C. Finkel 2, 3 1 Department of Earth

More information

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma) Table 1. Average U-Pb ages from this study in comparison with previous ages from Sherrod and Tosdal (1991, and references therein). Previous study ages are reported as ranges including uncertainty (i.e.

More information

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100 Ray Rector - Instructor Major Concepts 1) Igneous rocks form directly from the crystallization of a magma or lava 2)

More information

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None ENGINEERING GEOLOGY Chapter 1.0: Introduction to engineering geology Chapter 2.0: Rock classification Igneous rocks Sedimentary rocks Metamorphic rocks Chapter 3.0: Weathering & soils Chapter 4.0: Geological

More information

Copyright SOIL STRUCTURE and CLAY MINERALS

Copyright SOIL STRUCTURE and CLAY MINERALS SOIL STRUCTURE and CLAY MINERALS Soil Structure Structure of a soil may be defined as the mode of arrangement of soil grains relative to each other and the forces acting between them to hold them in their

More information

REGOLITH GEOCHEMISTRY OF THE NORTH KIMBERLEY, WESTERN AUSTRALIA: A STRONG PROXY FOR BEDROCK

REGOLITH GEOCHEMISTRY OF THE NORTH KIMBERLEY, WESTERN AUSTRALIA: A STRONG PROXY FOR BEDROCK REGOLITH GEOCHEMISTRY OF THE NORTH KIMBERLEY, WESTERN AUSTRALIA: A STRONG PROXY FOR BEDROCK Paul A. Morris 1 1 Geological Survey of Western Australia, 100 Plain Street, East Perth 6004, Western Australia;

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Weathering and Soil Physical Geology 15/e, Chapter 5 Weathering, Erosion and Transportation Rocks exposed at Earth s surface are constantly

More information

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS Learning outcomes The student is able to: 1. understand and identify rocks 2. understand and identify parent materials 3. recognize

More information

Sedimentary Rocks, Stratigraphy, and Geologic Time

Sedimentary Rocks, Stratigraphy, and Geologic Time Sedimentary Rocks, Stratigraphy, and Geologic Time A rock is any naturally formed, nonliving, coherent aggregate mass of solid matter that constitutes part of a planet, asteroid, moon, or other planetary

More information

Chapter 10 - Geology. Earth s Structure, Geologic Hazards, and Soils

Chapter 10 - Geology. Earth s Structure, Geologic Hazards, and Soils Chapter 10 - Geology Earth s Structure, Geologic Hazards, and Soils Plate Tectonics Earth crust (or lithosphere) is broken up into plates that shift and slide around Asthenosphere (semi molten layer of

More information

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Nicholas Meskhidze & Matthew Johnson First International Workshop on the Long Range Transport and Impacts

More information

GG 454 January 18, SOILS (06)

GG 454 January 18, SOILS (06) GG 454 January 18, 2002 1 SOILS (06) I Main Topics A Pedologic classification schemes B Engineering classification schemes C Behavior of soils and influence of geologic history II Pedologic classification

More information

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts

1/31/2013. Weathering Includes Physical, Chemical, Biological processes. Weathering Mechanisms. Wind abrasion forming Ventifacts Monument Valley, Utah. What weathering processes contributed to the development of these remarkable rock formations? Weathering Includes Physical, Chemical, Biological processes Weathering Mechanisms Physical

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

Engineering Geology. Igneous rocks. Hussien Al - deeky

Engineering Geology. Igneous rocks. Hussien Al - deeky Igneous rocks Hussien Al - deeky 1 The Geology Definition of Rocks In Geology Rock is defined as the solid material forming the outer rocky shell or crust of the earth. There are three major groups of

More information

Arsenic and Other Trace Elements in Groundwater in the Southern San Joaquin Valley of California

Arsenic and Other Trace Elements in Groundwater in the Southern San Joaquin Valley of California Arsenic and Other Trace Elements in Groundwater in the Southern San Joaquin Valley of California Dirk Baron Geological Sciences California State University, Bakersfield Trace Element Maximum Contaminant

More information

Trinitite the Atomic Rock

Trinitite the Atomic Rock Trinitite the Atomic Rock Nelson Eby, EEAS, University of Massachusetts, Lowell, MA Norman Charnley, Earth Sciences, University of Oxford, Oxford, UK John Smoliga, Roxbury, CT Special thanks to Robert

More information

Earth Science, 10e. Edward J. Tarbuck & Frederick K. Lutgens

Earth Science, 10e. Edward J. Tarbuck & Frederick K. Lutgens Earth Science, 10e Edward J. Tarbuck & Frederick K. Lutgens Weathering, Soil, and Mass Wasting Chapter 3 Earth Science, 10e Stan Hatfield and Ken Pinzke Southwestern Illinois College Earth's external processes

More information

Weathering & Soil. Chpt 6

Weathering & Soil. Chpt 6 Weathering & Soil Chpt 6 Some important processes that break-down and transport solid material at the Earth s surface Weathering the physical breakdown and chemical decomposition of rock Mass wasting the

More information

The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface.

The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface. The physical breakdown and chemical alteration of rocks and minerals at or near Earth s surface. The material that is chemically and mechanically weathered to yield sediment and soil. Regolith consisting

More information

CZ-TOP: The Critical Zone as a Non-Steady State Biogeochemical Reactor

CZ-TOP: The Critical Zone as a Non-Steady State Biogeochemical Reactor CZ-TOP: The Critical Zone as a Non-Steady State Biogeochemical Reactor Louis A. Derry The Critical Zone The Critical Zone is where much of the world s surface water is generated, and processes within the

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (3) Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth Igneous Rocks Chapter 3: Rocks: Materials of the Solid Earth

More information

APPENDIX 9. DESCRIPTIONS OF SELECTED SAMPLES FROM GHN. DESCRIPTION OF SAMPLE GHN-JRM-0001 LOCATION

APPENDIX 9. DESCRIPTIONS OF SELECTED SAMPLES FROM GHN. DESCRIPTION OF SAMPLE GHN-JRM-0001 LOCATION APPENDIX 9. DESCRIPTIONS OF SELECTED SAMPLES FROM GHN. DESCRIPTION OF SAMPLE GHN-JRM-0001 LOCATION Sample GHN-JRM-0001 was collected from Unit J, trench LFG-009, bench 22 (UTM 4062136.8, 453642.2E, elevation

More information

A bench-scale process to remove Pb from firing range soils

A bench-scale process to remove Pb from firing range soils A bench-scale process to remove Pb from firing range soils Dermatas D., Dadachov M., Dutko P., Menounou N., Cefaloni J., Arienti P., Tsaneva V. and Shen G. W. M. Keck Geoenvironmental Laboratory Center

More information

doi: /j.quageo

doi: /j.quageo doi:.1/j.quageo.00..00 * Manuscript 1 1 Potential of in situ-produced cosmogenic nuclides for quantifying strength reduction of bedrock in soil-mantled hillslopes Yuki Matsushi a, *, Hiroyuki Matsuzaki

More information

Practice Questions for Lecture 5 Geology 1200

Practice Questions for Lecture 5 Geology 1200 Practice Questions for Lecture 5 Geology 1200 Use these questions to test your knowledge of Lecture5. The exams will be similar in format, except that they will deal with more than one chapter, and will

More information

University of Wollongong. Research Online

University of Wollongong. Research Online University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 213 Regolith formation rate from U-series nuclides: Implications from the

More information

Climate-controlled multidecadal variability in North African dust transport to the Mediterranean: Supplementary Information

Climate-controlled multidecadal variability in North African dust transport to the Mediterranean: Supplementary Information GSA DATA REPOSITORY 2010004 Jilbert et al. Climate-controlled multidecadal variability in North African dust transport to the Mediterranean: Supplementary Information Construction of 210 Pb age models

More information

Priority Pollutants in Untreated and Treated Discharges from Coal Mines

Priority Pollutants in Untreated and Treated Discharges from Coal Mines Priority Pollutants in Untreated and Treated Discharges from Coal Mines Charles A. Cravotta III Research Hydrologist USGS Pennsylvania Water Science Center New Cumberland, PA Presented March, 28, 2012,

More information

Part 1 Soil Its Nature and Origin

Part 1 Soil Its Nature and Origin Part 1 Soil Its Nature and Origin Soil is essentially a natural body of mineral and organic constituents produced by solid material recycling during a myriad of complex processes of solid crust modifications,

More information

Weathering and Clast Production Geol 113

Weathering and Clast Production Geol 113 Weathering and Clast Production Geol 113 Goals: To understand the production of clasts from the weathering of rocks. Materials: rock and sediment samples from the two localities, sediment grain size chart,

More information

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8. EPMA IMAGES The attached images and mineral data can be used to supplement an instrument-based lab, or serve as the basis for lab that can be completed without an instrument. Please provide credit for

More information

STUDY OF LATERITES AROUND TALMOD, MAHARASHTRA STATE, INDIA

STUDY OF LATERITES AROUND TALMOD, MAHARASHTRA STATE, INDIA STUDY OF LATERITES AROUND TALMOD, MAHARASHTRA STATE, INDIA Vadagbalkar Shrinivas Krishnaji Department of Geology, D.B.F. Dayanand College of Arts and Science, Solapur-413002, Maharashtra State, INDIA (Email:

More information

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple How can you describe Earth? What are the composition and the structure of the atmosphere? How

More information

PROVENANCE OF A GARNET-RICH BEACH PLACER DEPOSIT, MONTAUK POINT, LONG ISLAND, NY

PROVENANCE OF A GARNET-RICH BEACH PLACER DEPOSIT, MONTAUK POINT, LONG ISLAND, NY City University of New York (CUNY) CUNY Academic Works Publications and Research York College Fall 10-23-2006 PROVENANCE OF A GARNET-RICH BEACH PLACER DEPOSIT, MONTAUK POINT, LONG ISLAND, NY Nazrul I.

More information

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo

Geology 252, Historical Geology, California State University, Los Angeles - professor: Dr. Alessandro Grippo LAB # 1 - CLASTIC ROCKS Background: - Mechanical and Chemical Weathering - Production of Clastic Sediment - Classification of Sediment according to size: Gravel, Sand, Silt, Clay - Erosion, Transportation

More information

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis Atypical Archaean gold deposits Groves et al., 2003 Regional

More information

Weathering and Soils

Weathering and Soils OCN 401-17 Aug. 29, 2016 KCR Weathering and Soils Biogeochemistry Chapter 4: The Lithosphere Introduction: the context Rock Weathering Soil Chemical Reactions Soil Development (see text) Weathering Rates

More information

CHEMICAL, PHYSICAL, AND MINERALOGICAL PROPERTIES OF CERTAIN SOIL PROFILES IN THE LOWER MISSISSIPPI DELTA B. N. DRISKELL ABSTRACT

CHEMICAL, PHYSICAL, AND MINERALOGICAL PROPERTIES OF CERTAIN SOIL PROFILES IN THE LOWER MISSISSIPPI DELTA B. N. DRISKELL ABSTRACT CHEMICAL, PHYSICAL, AND MINERALOGICAL PROPERTIES OF CERTAIN SOIL PROFILES IN THE LOWER MISSISSIPPI DELTA B. N. DRISKELL Louisiana State University ABSTRACT The soils of the lower Mississippi Delta are

More information

Lecture 6: Soil Profiles: Diagnostic Horizons

Lecture 6: Soil Profiles: Diagnostic Horizons Lecture 6: Soil Profiles: Diagnostic Horizons Complexity in Soil Profiles Soil Horizons Soils display distinct layering O Horizon: Partially decomposed organic matter (OM) A Horizon: Near surface, mineral

More information

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section)

GEOL Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) GEOL 333 - Lab 9 (Carbonate Sedimentary Rocks in Hand Sample and Thin Section) Sedimentary Rock Classification - As we learned last week, sedimentary rock, which forms by accumulation and lithification

More information

Sintering behavior of feldspar rocks

Sintering behavior of feldspar rocks Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 10 (October2014), PP 49-55 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Sintering behavior of feldspar

More information

Earth: An Introduction to Physical Geology Weathering and Soil

Earth: An Introduction to Physical Geology Weathering and Soil Chapter 6 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Weathering and Soil Tarbuck and Lutgens Weathering Weathering involves the physical breakdown and chemical alteration of rock

More information

Internet Interactive Rock Cycle

Internet Interactive Rock Cycle Internet Interactive Rock Cycle Directions: Go to the website http://www.uky.edu/as/geology/howell/goodies/elearning/module05swf.swf and answer the questions below. Part I: Igneous Rocks (click on Igneous

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

Acid Soil. Soil Acidity and ph

Acid Soil. Soil Acidity and ph Acid Soil Soil Acidity and ph ph ph = - log (H + ) H 2 O H + + OH - (H + ) x (OH - )= K w = 10-14 measures H + activity with an electrode (in the lab), solutions (in the field) reflects the acid intensity,

More information

Shuichi HATTORI Director, 1st Construction Division, Japan Railway Construction, Transport and Technology Agency

Shuichi HATTORI Director, 1st Construction Division, Japan Railway Construction, Transport and Technology Agency PAPER Evaluation of Rock Characteristics for Acid Water Drainage from Rock Muck Takehiro OHTA, Dr.. Sci. Senior Researcher, Geology Laboratory, Disaster Prevention Technology Division Hideo KIYA, Dr..

More information

Engineering Geology ECIV 2204

Engineering Geology ECIV 2204 Engineering Geology ECIV 2204 Instructor : Dr. Jehad Hamad 2017-2016 Chapter (6) : Sedimentary Rocks Chapter 6: Sedimentary Rocks Chapter 6: Sedimentary Rocks Origin and nature of sedimentary rocks: Sedimentary

More information

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m (b). Dashed lines represent the two successive ridge

More information

1 The Earth as a Planet

1 The Earth as a Planet General Astronomy (29:61) Fall 2012 Lecture 27 Notes, November 5, 2012 1 The Earth as a Planet As we start studying the planets, we begin with Earth. To begin with, it gives us a different perspective

More information