International Planetary Probes Workshop (IPPW) June 2018 Surface and Subsurface Sampling Drills for Life Detection on Ocean Worlds

Size: px
Start display at page:

Download "International Planetary Probes Workshop (IPPW) June 2018 Surface and Subsurface Sampling Drills for Life Detection on Ocean Worlds"

Transcription

1 International Planetary Probes Workshop (IPPW) June 218 Surface and Subsurface Sampling Drills for Life Detection on Ocean Worlds Fredrik Rehnmark Senior Systems Engineer Honeybee Robotics Exploration Technology Group (ETG) Image courtesy NASA

2 Contributors Honeybee Robotics JHU/APL Kris Zacny (PI) 1,2 Ralph Lorenz (Co-I) 1 Fredrik Rehnmark (Systems, Drilling) 1,2 Tighe Costa (Pneumatics, Drilling) 1,2 Zach Mank (Sample Manipulation) 1 Jameil Bailey (Avionics) 1 Joey Sparta (Pneumatics, Testing) 1 Paul Chow (Thermal Analysis) 2 Nick Traeden (Mechanical Support) 1 1. COLD (Concepts for Oceanworlds Life Detection) Technologies 2. SLUSH (Search for Life Using Submersible Heated) Drill SBIR 2

3 The Challenge The search for life beyond Earth is a search for similar or analogous environmental conditions, including abundant liquid water. Recent discoveries of water on ocean worlds including Titan and Europa have piqued interest in these destinations but liquid water is buried kilometers deep beneath an icy crust. State-of-the-art in ultra-deep drilling on Earth Kola Superdeep Borehole: 23 cm diameter, 12 km deep, 19 years ( ) Vostok Hole: cm diameter, 4 km deep, 22 years ( ) State-of-the-art in deep drilling on the Moon. Apollo Lunar Surface Drill: 2 cm diameter, 3 m deep, 1 cm/sec New planetary drilling methods are needed to reach subsurface water on ocean worlds. Drilling will take time and plenty of power. In the meantime, surface sampling at sites of scientific interest could take advantage of natural transport and preservation processes to collect early data more quickly and easily. 3

4 Planetary Excavation Methods Method Material Strength Sample Alteration Ease of Delivery Scooping Rasping, Abrading Sawing Coring Drilling Melting Loose, unconsolidated surface material Hard rock and ice Hard rock and ice Soft surface material Hard rock and ice Hard ice No heating Minimal heating, generates small particles Minimal heating, generates small particles Minimal heating, preserves stratigraphy Minimal heating, generates small particles Release of volatiles, possible chemical alteration Can be problematic with sticky material (e.g., Phoenix) and highly variegated particle size Max. Depth Power* ~1 cm W Cuttings scattered ~1 cm ~3 W Cuttings scattered ~1 cm ~1 W Removing core can be difficult Cuttings deposited around bit Liquid water or slush can be easily pumped ~1 cm ~1 W >1 m ~1 W - 1 kw >1 m ~1 kw Drilling is suitable for both surface and deep cryogenic sample acquisition with minimal risk of sample alteration. * note: estimates do not include power consumed by deployment system (e.g., robotic arm, etc.) 4

5 Extrapolation Based on Field Tests Arctic: water-ice and permafrost at 265K 13 Watt, 6 inch (15.2 cm), rotary-only ROP: 5 cm in 4 min = 7.5 m/hr Energy: 173 Whr/m Specific Energy: 1 kwhr/m^3 Extrapolate to 9K (ROP drop by 5%) 13 Watt, 6 inch (15.2 cm), rotary-only ROP: 5 cm in 2 min = 3.6 m/hr Energy: 32 Whr/m Specific Energy: 2 kwhr/m^3 Greenland: water-ice at 26K 14 Watt, 4 inch (1 cm), rotary-percussive ROP: 1 ft in 1 min = 18 m/hr Energy: 78 Whr/m Specific Energy: 1 kwhr/m^3 Extrapolate to 9K (ROP drop by 5%) 14 Watt, 4 inch (1 cm), rotary-percussive ROP: 6 inch in 1 min = 9 m/hr Energy: 156 Whr/m Specific Energy: 2 kwhr/m^3 116 days to reach 1 km depth! 46 days to reach 1 km depth! 5

6 Instrumented Drilling Testbed Drill Feed Stage Rotary Percussive Drill Freezer Feed-Thru Heated Probe Body (Non-Rotating) Go-Pro Camera Heated Bit (Rotating) Water Ice Sample 6

7 Heated Bits (6.2cm Dia) Full-face Peripheral Heating Central Heating Auger 7

8 Drilling Modes Comparison (24K) Drilling, Melting and Slushing (WOB controlled to 1N) Baselined with full-face bit in 24K water ice to compare power consumption. 18 AMNH Bit (Unheated Drilling), 24K Ice, AMNH Bit (Slush Drill), 24K Ice, AMNH Bit (Melt Probe), 24K Ice, Depth (mm) ROP: 2.4 mm/s Power: 82.7 W SE:.37 Whr/cc Time (sec) Speed (rpm) HBA_HOLE_DRILL_DEPTH HBA_MOTOR_VEL_AUG HBA_MOTOR_VEL_PERCUS Depth (mm) 12 1 AMNH Bit (SLUSH), 24K Ice, Depth (mm) ROP:.46 mm/s 6 HBA_HOLE_DRILL_DEPTH 4 HBA_MOTOR_VEL_PERCUS SE:.93 Whr/cc Time (sec) Time (sec) Speed (rpm) Power: 465 W HBA_MOTOR_VEL_AUG Power (W), Temp (K) HBA_HOLE_DRILL_DEPTH BIT POWER BIT TEMP PROBE POWER PROBE TEMP Depth (mm) ROP:.5 mm/s Power: 6 W SE: 1.2 Whr/cc Time (sec) Power (W), Temp (K) Drill Depth Bit Power Bit Temp Probe Power Probe Temp Drilling Slushing Melting 8

9 Test Results (log scale Y-axis) Goal: Repeat test with each prototype bit and cryogenic simulants. Does not include chips transport and compaction 9

10 Theoretical Melting Speed* Minimum Power Required (kw) Minimum Power Required vs. Melting Speed 6.2 cm Diameter, 1 m Long Melt Probe * Solution adapted from: 1) Aamot, H.W.C. (1967). Heat transfer and performance analysis of a thermal probe for glaciers. U.S. Army Cold Regions Research and Engineering Laboratory (IJ SA CRREL) Technical Report 194 and 2) Ulamec et al., (27), Access to glacial and subglacial environments in the Solar System by melting probe technology, Rev Environ Sci Biotechnol (27) 6: Melt Probe 24K Ice AMNH Bit Slush Melting Speed (m/hr) Heated Drilling Unheated Drilling 7 K Ice Without Conductive Losses 12 K Ice Without Conductive Losses 18 K Ice Without Conductive Losses 24 K Ice Without Conductive Losses 7 K Ice With Conductive Losses 12 K Ice With Conductive Losses 18 K Ice With Conductive Losses 24 K Ice With Conductive Losses 24K Ice AMNH Bit Unheated K Ice AMNH Bit Melt Probe

11 Drilling in Cryogenic Simulants (77K) DRACO Bit in Water Ice at 77K Depth [mm] ROP: 1.89 mm/s Power: 59.6 W SE:.52 Whr/cc Rate [RPM, BPM] Drill Depth Auger Vel Percussor Vel Time [s] DRACO Bit in Ammonia Ice at 77K LN2 bath Depth [mm] ROP: 1.99 mm/s Power: 56.3 W SE:.47 Whr/cc Rate [RPM, BPM] Drill Depth Auger Vel Percussor Vel Time [s] DRACO Bit in Paraffin Wax at 77K cm diameter bit Depth [mm] ROP: 1.12 mm/s Power: 65.1 W SE:.96 Whr/cc Time [s] Rate [RPM, BPM] Drill Depth Auger Vel Percussor Vel 11

12 Conclusions Deep Drilling (Melting vs. Slushing vs. Unheated Drilling): Melt probe is at a disadvantage in cryogenic water ice due to enhanced thermal conductivity Energy required for unheated drilling is least but depth is limited by risk of ice melting and re-freezing around bit, causing it to get stuck For deep drilling, slushing avoids sticking and facilitates transport of cuttings away from drill bit however tether management is still a complication Surface Drilling (Cryogenic Material): Minimizing temperature rise of sample preserves volatiles and makes fines easier to transport Depending on the hardness and brittleness of the sample, rotaryonly mode may avoid cracking sample into large chunks that cannot be further reduced in size for easy transport 12

13 Future Work Combine drill with pneumatic transport and sample delivery subsystems for end-to-end testing of the entire sampling chain at 1K 13

14 Acknowledgements This work was funded by NASA s Concepts for Ocean worlds Life Detection Technology (COLDTech) program and by NASA s Small Business Innovative Research (SBIR) program. We owe our sincere thanks and appreciation to the COLDTech program director Ryan Stephan (NASA HQ) and the SBIR COTR Juergen Mueller (JPL/Caltech). 14

15 Questions Thank You!

Drilling: How do we access subsurface on Mars

Drilling: How do we access subsurface on Mars Drilling: How do we access subsurface on Mars Dr. Kris Zacny Keck Institute for Space Studies (KISS) MarsX January 12, 2018 Director of Exploration Technology Group Honeybee Robotics zacny@honeybeerobotics.com

More information

Resource Prospector Drill

Resource Prospector Drill Resource Prospector Drill Kris Zacny, Honeybee Robotics zacny@honeybeerobotics.com Gale Paulsen, Honeybee Robotics Jackie Quinn, NASA KSC Jim Smith, NASA KSC Julie Kleinhenz, NASA GRC LEAG, 20-22 October

More information

Drilling Into Mars PLD

Drilling Into Mars PLD Drilling Into Mars PLD Keck Institute for Space Studies: Unlocking the Climate Record Stored within Mars' Polar Layered Deposits August 10, 2017 Dr. Kris Zacny VP, Honeybee Robotics zacny@honeybeerobotics.com

More information

Ice on Land! Who: Dr. Waleed Abdalati University of Colorado. Where: Greenland Ice Sheet and glaciers around the world.

Ice on Land! Who: Dr. Waleed Abdalati University of Colorado. Where: Greenland Ice Sheet and glaciers around the world. Ice on Land! Who: Dr. Waleed Abdalati University of Colorado What: Studies how, why, and how fast ice sheets and glaciers are changing to understand how they will affect global ocean levels. Where: Greenland

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

Ocean World sampling and data communication through significant ice depths

Ocean World sampling and data communication through significant ice depths Ocean World sampling and data communication through significant ice depths Yoseph Bar-Cohen, Mircea Badescu, Xiaoqi Bao, Hyeong Jae Lee, and Stewart Sherrit JPL/California Institute of Technology/NASA,

More information

High Speed Penetrator deployable mass spectrometers. Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium

High Speed Penetrator deployable mass spectrometers. Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium High Speed Penetrator deployable mass spectrometers Presented by Simon Sheridan The Open University on behalf of the UK Penetrator Consortium 11 th Workshop on Harsh Environment Mass Spectrometry Oxnard,

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 29. Search for life on jovian moons. Habitability.

More information

Science and Exploration: Moon to Mars. Dr. Jim Garvin NASA Chief Scientist Exploration Conference Orlando, Florida Feb. 1, 2005

Science and Exploration: Moon to Mars. Dr. Jim Garvin NASA Chief Scientist Exploration Conference Orlando, Florida Feb. 1, 2005 Science and Exploration: Moon to Mars Dr. Jim Garvin NASA Chief Scientist Exploration Conference Orlando, Florida Feb. 1, 2005 Enabling Exploration! Science supports Exploration Basic inventorying 0 th

More information

Terrestrial Atmospheres

Terrestrial Atmospheres Terrestrial Atmospheres Why Is There Air? An atmosphere is a layer of gas trapped by the gravity of a planet or moon. Here s Earth s atmosphere viewed from orbit: Why Is There Air? If atoms move faster

More information

Life and habitability in the Solar System and beyond: the Roadmap

Life and habitability in the Solar System and beyond: the Roadmap "There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy." Hamlet (I, v, 166-167) Life and habitability in the Solar System and beyond: the Roadmap Lucia Marinangeli and

More information

Teachersʼ Guide. Creating Craters. Down to Earth KS3

Teachersʼ Guide. Creating Craters. Down to Earth KS3 Teachersʼ Guide Creating Craters Creating Craters! Creating Craters - Teachersʼ Guide - 2 Overview This lesson allows pupils to create impact craters in layered dry materials. Pupils can perform controlled

More information

The Galilean Satellites. Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars.

The Galilean Satellites. Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars. 1 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo and easily visible in binoculars. 2 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo

More information

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally

The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally The process of determining the layers of natural soil deposits that will underlie a proposed structure and their physical properties is generally referred to as sub surface investigation 2 1 For proper

More information

Beginning the Search for Life on the Outer Planets

Beginning the Search for Life on the Outer Planets # 57 Beginning the Search for Life on the Outer Planets Dr. Donald Blankenship November 14, 2008 Produced by and for Hot Science - Cool Talks by the Environmental Science Institute. We request that the

More information

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth

Outline 9: Origin of the Earth: solids, liquids, and gases. The Early Archean Earth Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life Life in the outer Solar System AST 309 part 2: Extraterrestrial Life Prospects for life on: Overview: 1. Europa (Jupiter moon) 2. Titan (Saturn s moon) 3. Enceladus (Saturn s moon) Life on Europa? Europa

More information

Lecture 25: The Requirements for Life

Lecture 25: The Requirements for Life Lecture 25: The Requirements for Life Astronomy 141 Winter 2012 This lecture explores the requirements for life, and the factors affecting planetary habitability. The basic requirements are a source of

More information

Rotary Drilling Rotary Drilling Bits

Rotary Drilling Rotary Drilling Bits GE 343 SUBSURFACE EXPLORATION CH 8 Rock Drilling, Testing, and Sampling Text Ch. 7. Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives

More information

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence

DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence Space Missions DARPA Lunar Study: Reducing the technical risk associated with lunar resource utilization and lunar surface presence International Lunar Conference 2005 Toronto, Canada Paul Fulford 1, Karen

More information

Life in the Solar System

Life in the Solar System Life in the Solar System Basic Requirements for Life 1. Chemical elements to make biological molecules. On Earth these are mostly C, H, O and N 2. Source of energy for metabolism. This can come from a

More information

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System.

The Jovian Planets. Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 1 The Jovian Planets Huge worlds, heavily mantled in gas at the time of the formation of the Solar System. 2 The Galilean Satellites Jupiter has four planetary-sized moons first seen by Galileo and easily

More information

Instructional Objectives

Instructional Objectives GE 343 SUBSURFACE EXPLORATION CH 8 Rock Drilling, Testing, and Sampling Text Ch. 7. Dr. Norbert H. Maerz Missouri University of Science and Technology (573) 341-6714 norbert@mst.edu Instructional Objectives

More information

Early History of the Earth

Early History of the Earth OCN 201 Earth Structure Early History of the Earth Rapid accretion of Earth and attendant dissipation of kinetic energy caused tremendous heating Earth possibly melted completely In molten state, differentiation

More information

MUDLOGGING, CORING, AND CASED HOLE LOGGING BASICS COPYRIGHT. Coring Operations Basics. By the end of this lesson, you will be able to:

MUDLOGGING, CORING, AND CASED HOLE LOGGING BASICS COPYRIGHT. Coring Operations Basics. By the end of this lesson, you will be able to: LEARNING OBJECTIVES MUDLOGGING, CORING, AND CASED HOLE LOGGING BASICS Coring Operations Basics By the end of this lesson, you will be able to: Understand why cores are justified and who needs core data

More information

Geotechnical Geotechnical Assessment

Geotechnical Geotechnical Assessment Site Investigation Site Investigation Pile Probing Pile Probing Geotechnical Logging Geotechnical and Sampling Logging and Sampling Streetworks and Utilities Streetworks Avoidance and Utilities Avoidance

More information

Produce arrays of semi-permanent deep access holes for a variety of investigations (climatological, geological, glaciological, biological)

Produce arrays of semi-permanent deep access holes for a variety of investigations (climatological, geological, glaciological, biological) CTDI Coiled Tubing Drill for Ice An Exploration Tool for Polar Sciences The CTDI drilling system uses a high-pressure pump and coiled tubing to deliver fluid to a steerable downhole hydraulic motor that

More information

Chapter 7 Our Planetary System

Chapter 7 Our Planetary System Chapter 7 Our Planetary System What does the solar system look like? Earth, as viewed by the Voyager spacecraft Eight major planets with nearly circular orbits Pluto is smaller than the major planets and

More information

Last Class. Today s Class 11/28/2017

Last Class. Today s Class 11/28/2017 Today s Class: The Jovian Planets & Their Water Worlds 1. Exam #3 on Thursday, Nov. 30 th! a) Covers all the reading Nov. 2-28. b) Covers Homework #6 and #7. c) Review Space in the News articles/discussions.

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Laboratory drilling under Martian conditions yields unexpected results

Laboratory drilling under Martian conditions yields unexpected results JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109,, doi:10.1029/2003je002203, 2004 Laboratory drilling under Martian conditions yields unexpected results K. A. Zacny Department of Civil and Environmental Engineering,

More information

Water - most influential force in erosion

Water - most influential force in erosion Erosion and Deposition Agents, Forces, and Results What Caused This? What is Erosion? Erosion - moving of rock material from one place to a new location For erosion to occur three processes must take place:

More information

Petrophysical Data Acquisition Basics. Coring Operations Basics

Petrophysical Data Acquisition Basics. Coring Operations Basics Petrophysical Data Acquisition Basics Coring Operations Basics Learning Objectives By the end of this lesson, you will be able to: Understand why cores are justified and who needs core data Identify which

More information

Seismology on tidally-activated worlds

Seismology on tidally-activated worlds Seismology on tidally-activated worlds Mark Panning1, Simon Stähler2, Steven D. Vance1, and Sharon Kedar1 1. Jet Propulsion Laboratory, California Institute of Technology 2. ETH Zürich KISS workshop, October

More information

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET?

NSCI SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? NSCI 314 LIFE IN THE COSMOS 11 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: MOONS OF THE OUTER PLANETS PLUS: WHY IS PLUTO NO LONGER CNSIDERED A PLANET? Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/

More information

Module 1 : Site Exploration and Geotechnical Investigation

Module 1 : Site Exploration and Geotechnical Investigation Objectives In this section you will learn the following Displacement borings Wash boring Auger boring Rotary drilling Percussion drilling Continuous sampling Boring methods of exploration The boring methods

More information

Planet 2. Planet 1 Gas Giant. Planet 3. Earth

Planet 2. Planet 1 Gas Giant. Planet 3. Earth Planet 1 Gas Giant Planet 2 The temperature at the cloud tops is 200 C while the interior temperatures reach tens of thousands of degrees. The churning of the atmosphere causes temperatures of the circulating

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0.

Object Type Moons Rings Planet Terrestrial none none. Max Distance from Sun. Min Distance from Sun. Avg. Distance from Sun 57,910,000 km 0. Mercury Mercury is the closest planet to the sun. It is extremely hot on the side of the planet facing the sun and very cold on the other. There is no water on the surface. There is practically no atmosphere.

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 10 - SEARCHING FOR LIFE IN OUR SOLAR SYSTEM: THE OUTER PLANETS AND THEIR MOONS Dr. Karen Kolehmainen Department of Physics CSUSB http://physics.csusb.edu/~karen/ JUPITER DIAMETER:

More information

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons

Jupiter & Saturn. Moons of the Planets. Jupiter s Galilean satellites are easily seen with Earth-based telescopes. The Moons The Moons Jupiter & Saturn Earth 1 Mars 2 Jupiter 63 Saturn 47 Uranus 27 Neptune 13 Pluto 3 Moons of the Planets Galileo (1610) found the first four moons of Jupiter. Total 156 (as of Nov. 8, 2005) Shortened

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 5 The Gas Giant Planets. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition.

More information

DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS. *V. Rasouli, B.

DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS. *V. Rasouli, B. DESIGN OF AN ULTRA-SPEED LAB-SCALE DRILLING RIG FOR SIMULATION OF HIGH SPEED DRILLING OPERATIONS IN HARD ROCKS *V. Rasouli, B. Evans Department of Petroleum Engineering, Curtin University ARRC Building,

More information

SPQ Module 20 Ice Flows

SPQ Module 20 Ice Flows SPQ Module 20 Ice Flows When Ray, Richard & Kevin received their sleds in Southern Chili they opened them with excitement, and Kevin remarked they look like little canoes. It is perhaps appropriate that

More information

Unit 1 Habitable Worlds

Unit 1 Habitable Worlds Unit 1 Habitable Worlds Learning objectives: 3 things needed for life 2 Types of organisms (producers and consumers) Most important elements for life Habitable World Video Notes Essential question: What

More information

Geology 101 Lab 7: Isostasy Laboratory

Geology 101 Lab 7: Isostasy Laboratory Name TA Name Geology 101 Lab 7: Isostasy Laboratory To what thickness can sediments accumulate on the earth s surface, and what controls this thickness? How deeply can the continents be eroded? These are

More information

A View of Earth. Luc Ikelle 2012

A View of Earth. Luc Ikelle 2012 A View of Earth Luc Ikelle 2012 A View of Earth (Apollo 17) Dry lands (deserts) oceans Wetter climate Ocean and atmosphere Antarctica: Glacial ice Earth s spheres (1) The most dynamic portion of Earth

More information

The Surprising Lunar Maria

The Surprising Lunar Maria 1 of 5 posted June 23, 2000 The Surprising Lunar Maria Written by G. Jeffrey Taylor Hawai'i Institute of Geophysics and Planetology The lunar maria, the dark, smooth areas on the Moon, formed when lava

More information

Which process is represented by letter F? A) capillarity B) infiltration C) condensation D) vaporization

Which process is represented by letter F? A) capillarity B) infiltration C) condensation D) vaporization 1. Water's covalent bond is due to A) water's ability to stick to stick to other materials B) a slight negative charge of O and positive charge of H C) an uneven sharing of electrons D) both B and C 2.

More information

SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS. Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez.

SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS. Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez. SATELLITES: ACTIVE WORLDS AND EXTREME ENVIRONMENTS Jessica Bolda Chris Gonzalez Crystal Painter Natalie Innocenzi Tyler Vasquez. Areas of interest! How did the Satellites of the outer solar system form

More information

Adapted by Karla Panchuk from Physical Geology by Steven Earle

Adapted by Karla Panchuk from Physical Geology by Steven Earle Physical Geology, 3 rd Adapted Edition is used under a CC BY 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 6. The Rock Cycle Adapted by Karla Panchuk

More information

Life in the Outer Solar System

Life in the Outer Solar System Life in the Outer Solar System Jupiter Big Massive R = 11R M = 300 M = 2.5 x all the rest Day about 10 Earth hours Year about 12 Earth years Thick Atmosphere, mostly H 2, He But also more complex molecules

More information

A thermal model for analysis and control of drilling in icy formations on Mars

A thermal model for analysis and control of drilling in icy formations on Mars A thermal model for analysis and control of drilling in icy formations on Mars Akul Aggarwal The presence of ice poses a threat to drilling systems acquiring rock or soil samples on Mars. Testing has shown

More information

The Galilean Moons. ENV235Y1 Yin Chen (Judy)

The Galilean Moons. ENV235Y1 Yin Chen (Judy) The Galilean Moons ENV235Y1 Yin Chen (Judy) Jupiter The Galilean Moons Discovered by Italian Astronomer Galileo Galilei in 1609 using a new invention called telescope. http://astronomyonline.org/solarsystem/galileanmoons.asp

More information

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way!

The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! LIVE INTERACTIVE LEARNING @ YOUR DESKTOP The Search for Earth-like Worlds - How a Little Bit of Math Goes a Long Way! Presented by: Dr. Sten Odenwald March 31, 2011 Exoplanet Exploration Dr. Sten Odenwald

More information

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen

Jupiter and Saturn s Satellites of Fire and Ice. Chapter Fifteen Jupiter and Saturn s Satellites of Fire and Ice Chapter Fifteen ASTR 111 003 Fall 2006 Lecture 12 Nov. 20, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap.

More information

Design and Application of a Rock Breaking Experimental Device With Rotary Percussion

Design and Application of a Rock Breaking Experimental Device With Rotary Percussion Advances in Petroleum Exploration and Development Vol. 11, No., 016, pp. 16-0 DOI:10.3968/893 ISSN 195-54X [Print] ISSN 195-5438 [Online] www.cscanada.net www.cscanada.org Design and Application of a Rock

More information

Solar Thermal Power System for Oxygen Production from Lunar Regolith

Solar Thermal Power System for Oxygen Production from Lunar Regolith VG08-036 Solar Thermal Power System for Oxygen Production from Lunar Regolith Takashi Nakamura 1, Aaron D. Van Pelt 1, Robert J. Gustafson 2, and Larry Clark 3 1 Physical Sciences Inc. 2 Orbital Technologies

More information

Lunar Discovery and Exploration program

Lunar Discovery and Exploration program Lunar Discovery and Exploration program Space Policy Directive-1 (December 11, 2017) amends the National Space Policy to include the following paragraph: Lead an innovative and sustainable program of exploration

More information

How do glaciers form?

How do glaciers form? Glaciers What is a Glacier? A large mass of moving ice that exists year round is called a glacier. Glaciers are formed when snowfall exceeds snow melt year after year Snow and ice remain on the ground

More information

Plumes on Enceladus: The Ocean Debate Nick Schneider, LASP, U. Colorado

Plumes on Enceladus: The Ocean Debate Nick Schneider, LASP, U. Colorado Plumes on Enceladus: The Ocean Debate Nick Schneider, LASP, U. Colorado Based on No sodium in the vapour plumes of Enceladus, by Schneider, Burger, Schaller, Brown, Johnson, Kargel, Dougherty & Achilleos,

More information

DET CRC January 2013 Slide Pack Contents

DET CRC January 2013 Slide Pack Contents DET CRC January 2013 Slide Pack Contents Slide #1 Slide #2 Slide #3 Slide #4 Slide #5 Slides #6-12 Slides #13-24 Cover Slide This Slide Contents & Information DET CRC Participants DET CRC Affiliates Background

More information

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons

ESCI 110: Planetary Surfaces Page 3-1. Exercise 3. Surfaces of the Planets and Moons ESCI 110: Planetary Surfaces Page 3-1 Introduction Exercise 3 Surfaces of the Planets and Moons Our knowledge of the solar system has exploded with the space exploration programs of the last 40 years.

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

Moons of Sol Lecture 13 3/5/2018

Moons of Sol Lecture 13 3/5/2018 Moons of Sol Lecture 13 3/5/2018 Tidal locking We always see the same face of the Moon. This means: period of orbit = period of spin Top view of Moon orbiting Earth Earth Why? The tidal bulge in the solid

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

MICRO-G NEXT 2015 DESIGN CHALLENGES

MICRO-G NEXT 2015 DESIGN CHALLENGES MICRO-G NEXT 2015 DESIGN CHALLENGES List of Micro-g NExT 2015 Design Challenges Challenge: Float Sample Grabber... 2 Challenge: Surface Sampling Device... 3 Challenge: Characteristic Asteroid Simulant

More information

Amazing Ice: Glaciers and Ice Ages

Amazing Ice: Glaciers and Ice Ages Amazing Ice: Glaciers and Ice Ages Updated by: Rick Oches, Professor of Geology & Environmental Sciences Bentley University Waltham, Massachusetts Based on slides prepared by: Ronald L. Parker, Senior

More information

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life

Life in the outer Solar System. AST 309 part 2: Extraterrestrial Life Life in the outer Solar System AST 309 part 2: Extraterrestrial Life Prospects for life on: Overview: 1. Europa (Jupiter moon) 2. Titan (Saturn s moon) 3. Enceladus (Saturn s moon) Life on Europa? NASA

More information

Antarctica & Greenland, Theory & Observations

Antarctica & Greenland, Theory & Observations Ocean-Ice Interactions: Antarctica & Greenland, Theory & Observations Keck Institute for Space Studies September 9, 2013 David HOLLAND New York University + Abu Dhabi 0 Overview: Ocean-Ice Interface Delivery

More information

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures CHAPTER 2 2 Igneous Rock SECTION Rocks: Mineral Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: How do igneous rocks form? What factors affect the texture

More information

KEY TERMS. Crevasse Glaciers Gravity Ground Water Iceberg

KEY TERMS. Crevasse Glaciers Gravity Ground Water Iceberg 10.3 SOURCES OF FRESH WATER P G. 3 7 6 OBJECTIVES Describe why run-off is important for rivers Describe how a small stream becomes a large river What is a drainage basin Describe the important and generation

More information

NASA s Solar System Exploration Research Virtual Institute (SSERVI)

NASA s Solar System Exploration Research Virtual Institute (SSERVI) NASA s Solar System Exploration Research Virtual Institute (SSERVI) Greg Schmidt Deputy Director, Director of International Partnerships NASA Ames Research Center Moffett Field, CA NASA s Intent for SSERVI

More information

The Search of Life In The Solar System

The Search of Life In The Solar System The Search of Life In The Solar System 1 BY: Yasir M. O. ABBAS October 2017 Exploring New Worlds In Space 2 3 Evidences Is there an evidence for life out of the Earth??? Is there evidence that there isn

More information

Ice Cap Glaciers in the Arctic Region. John Evans Glacier, Ellesmere Island (Robert Bingham, U. Aberdeen)

Ice Cap Glaciers in the Arctic Region. John Evans Glacier, Ellesmere Island (Robert Bingham, U. Aberdeen) Ice Cap Glaciers in the Arctic Region John Evans Glacier, Ellesmere Island (Robert Bingham, U. Aberdeen) Iceland Svalbard Ellesmere and Baffin Islands Severny and Anzhu Islands Topics: Temperate vs non-temperate

More information

Jupiter Icy Moons Orbiter

Jupiter Icy Moons Orbiter Jupiter Icy Moons Orbiter Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter Science Capabilities & Workshop Goals Dr. Colleen Hartman Director of Solar System Exploration June 12, 2003 the

More information

Gotechnical Investigations and Sampling

Gotechnical Investigations and Sampling Gotechnical Investigations and Sampling Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Geotechnical Investigations for Structural Engineering 12 14 October, 2017 1 Purpose of

More information

Extraterrestrial Volcanism

Extraterrestrial Volcanism Extraterrestrial Volcanism What does it take to create volcanic activity? How do different planetary conditions influence volcanism? Venus Volcanism in our solar system. Io Europa Mercury Venus Earth/Moon

More information

Terrestrial Bodies of the Solar System. Valerie Rapson

Terrestrial Bodies of the Solar System. Valerie Rapson Terrestrial Bodies of the Solar System Valerie Rapson March 22, 2012 Terrestrial Bodies Many different bodies in the Solar System Gaspra Terrestrial bodies are those with solid surfaces on which one could

More information

Exploring the Moon & Asteroids: A Synergistic Approach

Exploring the Moon & Asteroids: A Synergistic Approach Exploring the Moon & Asteroids: A Synergistic Approach Clive R. Neal Dept. Civil Eng. & Geological Sci. University of Notre Dame Notre Dame, IN 46556, USA neal.1@nd.edu Perspective Perspective SCIENCE

More information

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions.

Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Overview of Lunar Science Objectives. Opportunities and guidelines for future missions. Chip Shearer Institute of Meteoritics University of New Mexico Albuquerque, New Mexico 87131 A rich scientific target

More information

Overview of Solar System

Overview of Solar System Overview of Solar System The solar system is a disk Rotation of sun, orbits of planets all in same direction. Most planets rotate in this same sense. (Venus, Uranus, Pluto are exceptions). Angular momentum

More information

16. Thermal Histories of Icy Bodies

16. Thermal Histories of Icy Bodies 181 Large Icy Satellites 16. Thermal Histories of Icy Bodies The bodies of interest are Ganymede, Callisto, and Titan, perhaps Triton and Pluto, and with Europa as special case (because it is mostly rock).

More information

10/6/16. Observing the Universe with Gravitational Waves

10/6/16. Observing the Universe with Gravitational Waves Lecture Outline Observing the Universe with Gravitational Waves Thursday, October 13 7:00 PM Bell Museum Auditorium This event is free and open to the public, and will be followed by telescope observing.

More information

Solar Thermal Power System for Oxygen Production from Lunar Regolith: Engineering System Development

Solar Thermal Power System for Oxygen Production from Lunar Regolith: Engineering System Development VG08-206 Solar Thermal Power System for Oxygen Production from Lunar Regolith: Engineering System Development Takashi Nakamura 1, Benjamin K. Smith 1, and Robert J. Gustafson 2 1 Physical Sciences Inc.

More information

Chapter Seven: Heat Inside the Earth

Chapter Seven: Heat Inside the Earth Chapter Seven: Heat Inside the Earth 7.1 Sensing the Interior of the Earth 7.2 Earth s Interior 7.3 Density and Buoyancy Inside the Earth Investigation 7A All Cracked up What is a good way to model Earth?

More information

Igneous. Sedimentary Transformation by heat and pressure

Igneous. Sedimentary Transformation by heat and pressure Melting, cooling and hardening Turns you into an Igneous Rock! Limestone A Sedimentary Rock Erosion, deposition and cementation Turns you into a Sedimentary Rock! Transformation by heat and pressure Turns

More information

Technology Goals for Small Bodies

Technology Goals for Small Bodies Technology Goals for Small Bodies Carolyn Mercer Julie Castillo-Rogez Members of the Steering Committee 19 th Meeting of the NASA Small Bodies Assessment Group June 14, 2018 College Park, MD 1 Technology

More information

EART193 Planetary Capstone. Francis Nimmo

EART193 Planetary Capstone. Francis Nimmo EART193 Planetary Capstone Francis Nimmo Last Time silicate melting How and why are melts generated? Increase in mantle potential temperature; or Reduction in solidus temperature (e.g. water); or Thinning

More information

UNIT 4 SEDIMENTARY ROCKS

UNIT 4 SEDIMENTARY ROCKS UNIT 4 SEDIMENTARY ROCKS WHAT ARE SEDIMENTS Sediments are loose Earth materials (unconsolidated materials) such as sand which are transported by the action of water, wind, glacial ice and gravity. These

More information

Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop

Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover Never Stop Conducting Subsurface Surveys for Water Ice using Ground Penetrating Radar and a Neutron Spectrometer on the Lunar Electric Rover LPI/Kring Never Stop Exploring David A. Kring Lunar and Planetary Institute

More information

A NOVEL METHOD FOR CUTTINGS REMOVAL FROM HOLES DURING PERCUSSIVE DRILLING ON MARS

A NOVEL METHOD FOR CUTTINGS REMOVAL FROM HOLES DURING PERCUSSIVE DRILLING ON MARS Revolutionary Aerospace Systems Concepts Academic Linkage (RASC AL) Cocoa Beach, Florida, USA. November 6-8, 2002 A NOVEL METHOD FOR CUTTINGS REMOVAL FROM HOLES DURING PERCUSSIVE DRILLING ON MARS Kris

More information

Week 3 : (3HL) Coverage : Typical geotechnical problems and usual application of SI methods

Week 3 : (3HL) Coverage : Typical geotechnical problems and usual application of SI methods LEARNING OUTCOMES Week 3 : (3HL) Coverage : Typical geotechnical problems and usual application of SI methods Learning Outcomes : At the end of this lecture/week, the students will be able to : 1. Discuss

More information

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the

NASA's Discovery Program gives scientists the opportunity to dig deep into their imaginations and find innovative ways to unlock the mysteries of the The Discovery Program's prime objective is to enhance our understanding of the Solar System by exploring the planets, their moons and small bodies such as comets and asteroids. Another important objective

More information

Classroom Space Regolith Formation Teacher s Guide

Classroom Space Regolith Formation Teacher s Guide Regolith Formation on the Earth and the Moon. Background The loose fragments of material on the Moon s surface are called regolith. This regolith, a product of bombardment by meteorites, is the debris

More information

National Science Olympiad 2014 Division B: Solar System May 17th 2014

National Science Olympiad 2014 Division B: Solar System May 17th 2014 National Science Olympiad 2014 Division B: Solar System May 17th 2014 Sponsored by the University of Texas Institute for Geophysics Team Number: Team Name: Questions 1-24 refer to the images in Image Set

More information