Jae-Bong Lee 1 and Bernard A. Megrey 2. International Symposium on Climate Change Effects on Fish and Fisheries

Size: px
Start display at page:

Download "Jae-Bong Lee 1 and Bernard A. Megrey 2. International Symposium on Climate Change Effects on Fish and Fisheries"

Transcription

1 International Symposium on Climate Change Effects on Fish and Fisheries On the utility of self-organizing maps (SOM) and k-means clustering to characterize and compare low frequency spatial and temporal climate impacts on marine ecosystem productivity Jae-Bong Lee 1 and Bernard A Megrey 2 1 National Fisheries Research and Development Institute, Busan, Korea 2 Alaska Fisheries Science Center, Seattle, USA

2 Outline Motivation and rational: temporal and spatial of R and S variability compared Describe Self organizing maps (SOM) Apply to time series trends in the ln(r/s) response variable Discuss the utility of SOM May 7, 21 2

3 Russia Alaska Greenland Eastern Bering Sea (EBS) (BNS) Barents Sea Gulf of Alaska (GOA) Norwegian Sea Norway 4 Major Canada Ecosystems USA GOM GB Gulf of Maine / Georges Bank (GOM/GB)

4 Trends in Recruitment Time Series Anomalies Temporal and spatial patterns of R and S variability from 17 stocks were compared among functionally analogous species and similar feeding guilds from four marine ecosystems Calculate the anomaly in ln(r/s), Pool by feeding guild (benthic vs pelagic) or ecosystem (EBS, GOA, GB/GOM, BNS) by calculating the average anomaly per year Look for within and cross ecosystem trends

5 1 ln(r/s) Response Variable EBS and GOA follow same trend (r=64, p<1) GB and BNS follow same trend (r=89, p<1) ln(r /S) 8 EBS GOA 6 GB 4 BNS EBS/GOA out of phase with GB/BNS (r=-67, p<1) Declining survival since mid-9 s for all but EBS Declining pelagic survival for GB and BNS ln(r/s) EBSpelagic GOApelagic GBpelagic BNSpelagic Improving benthic survival for GB and BNS since late 197 s Declining benthic survival for EBS and GOA over same period Recent upturn in benthic survival in EBS since late 199 s and in pelagic survival since mid 199 s log(r/s) EBSbenthic 5 GOAbenthic GBbenthic BNSbenthic Year

6 Dynamic Factor Analysis ln(r/s) Pelagic Species Benthic Species

7 Survival Changes all Four Ecosystems: Benthic Regime Shift ~ 1989? EBSBenthic, Probability = 1, cutoff length = 1, Huber parameter = 1 BNSBenthic Probability = 1, cutoff length = 1, Huber parameter = ln(r/s) Year Year GBBenthic, Probability = 1, cutoff length = 1, Huber parameter = 1 GOABenthic, Probability = 1, cutoff length = 1, Huber parameter = Year Year ln(r/s) ln(r/s) ln(r/s)

8 Climate forcing of the Barents/Norwegian Sea? BNSBenthic Probability = 1, cutoff length = 1, Huber parameter = 1 ln(r/s) BNS Pelagic ln(r/s) Year BNS SST, Probability = 1, cutoff length = 1, Huber parameter = 1 SST Year BNS SST

9 Purpose Motivation and rational: temporal and spatial of R and S variability compared Describe Self organizing maps (SOM) Apply to time series trends in the ln(r/s) response variable Discuss the utility of SOM May 7, 21 9

10 Methods Artificial neural network (ANN) -- Self organizing mapping (SOM) May 7, 21 1

11 Wikipedia A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically twodimensional) map Self-organizing maps are different from other artificial neural networks in the sense that they use a neighborhood function to preserve the topological properties of the input space This makes SOM useful for visualizing low-dimensional views of high-dimensional data, akin to multidimensional scaling The model was first described as an artificial neural network by the Finnish professor Teuvo Kohonen, and is sometimes called a Kohonen map Therefore, SOM forms a semantic map where similar samples are mapped close together and dissimilar apart This may be visualized by a U-Matrix (Euclidean distance between weight vectors of neighboring cells) of the SOM SOM may be considered a nonlinear generalization of Principal components analysis (PCA) SOM has many advantages over the conventional feature extraction methods such as Empirical Orthogonal Functions (EOF) or PCA May 7, 21 11

12 Sample units SU 1 SU 2 SU 3 SU p species sp 1 sp 2 sp n Complex data set Ordination Polar Ordination (PO) Principal Component Analysis (PCA) Correspondence Analysis (CoA) Nonlinear Multidimensional Scaling (NMDS) Classification Artificial Neural Network (ANN) SOM BP Interpretation Studying Large Ordination Limitations: Self Organizing sample to ecological strong display of Maps, plant distortions statistical a community good animal tool with sample abundance to non-linear simplify units drawn high species dimensional from abundance an ecological dataset community relations, Bacpropagation horseshoe A huge neural matrix effect, network, arch often effect, difficult for prediction outliers, to analyse and missing discrimination and data, interpret disjointed data matrix,

13 sp 1 SU 1 SU 2 SU 3 Sample units SU i SU p Species sp 2 sp n Initialization Learning of the reference vectors (iterative) - random choice of a sample unit - Locating the best matching unit (BMU) - learning of the BMU and its neighbors Put the SUs on the map SU SU SU SU SU SU SU SU SU SU SU SU SU Reference vectors (virtual units) The In each dataset SOM hexagon, method is projected a virtual in a unit non-linear (VU) will way be considered onto a rectangular The virtual grid units laid out are on virtual a hexagonal sites with lattice: species the abundance Kohonen map to be computed The modifications of the VUs are made through an ANN

14 Clustering with Self-Organizing Maps Teaching the SOM: the species abundance is computed for each virtual units Computing the U-matrix Mapping the Sample Units onto the U-matrix Making the clustering structure apparent for the human expert of the dataset by selecting the brightness of the display

15 Clustering with Self-Organizing Maps With a large dataset, when dendrograms become very difficult to read, the SOM and the U-matrix are able to provide a very convenient visualisation U-matrix is not a "ready made" clustering algorithm but rather a tool for the inspection of high dimensional data The clusters have to be «seen» on the map by the human dataset expert The expert can define all types of clusters including the non-convex ones

16 K-means Clustering k-means clustering is a method of cluster analysis which aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean It is similar to the expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to find the centers of natural clusters in the data It has been shown that the relaxed solution of k-means clustering, specified by the cluster indicators, is given by the PCA (principal component analysis) principal components, and the PCA subspace spanned by the principal directions is identical to the cluster centroid subspace specified by the between-class scatter matrix May 7, 21 16

17 Apply model to four ecosystem data Ln(R/S) of pelagic Ln(R/S) of benthic Ln(R/S) of the pooled for ecosystems May 7, 21 17

18 Smoothed Anomalie EBSpelagic GOApelagic GBpelagic BNSpelagic Year GOAPelagic 4 2 BNSPelagic May 7, EBSPelagic GBPelagic

19 Smoothed Anomalie EBSpelagic GOApelagic GBpelagic BNSpelagic Year May 7, 21 19

20 May 7, 21 2 U-matrix d EBSPelagic d GOAPelagic d GBPelagic d BNSPelagic ic-ca Labels

21 logr/s Pelagic EBSpelagic GOApelagic GBpelagic BNSpelagic Linkage Distance May 7, 21 21

22 1 5 Smoothed Anomalie -5 EBSbenthic -1 GOAbenthic GBbenthic -15 BNSbenthic Year GOABenthic EBSBenthic May 7, BNSBenthic GBBenthic

23 1 5 Smoothed Anomalie -5 EBSbenthic -1 GOAbenthic GBbenthic -15 BNSbenthic Year May 7, 21 23

24 U-matrix d EBSBenthic d GOABenthic d GBBenthic d BNSBenthic ic-ca Labels May 7, 21 24

25 lnr/s Benthic EBSbenthic GBbenthic GOAbenthic BNSbenthic Linkage Distance May 7, 21 25

26 Smoothed Anomalie EBS GOA GB BNS Year GOA 2 BNS EBS GB

27 Smoothed Anomalie EBS GOA GB BNS Year

28

29 lnr/s Ecosystem EBS GOA GB BNS Linkage Distance May 7, 21 29

30 Conclusions SOMS and k-means clustering provide a highly visual tool to easily identify patterns in the timing of high or low productivity years across both species and ecosystems Many of the peaks in the time series were synchronous within an ocean basin and opposing alternations in patterns of productivity were observed in ecosystems in between the Atlantic and Pacific Ocean basins Basin-scale results (similar within but different between) suggest that productivity in the two geographically broad areas are connected by unknown climatic mechanisms that, depending on the year, generate low frequency opposing alternations after 1976 and 1988 in the two basins May 7, 21 3

31 Thank you for paying attention Presented by Jae Bong Lee 1 and Bernard A Megrey 2 1 NFRDI, (Leejb@nfrdigokr) 2 Alaska Fishery Science Center NOAA Fisheries (BernMegrey@noaagov) at Sendai, Japan (28 April 21)

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Why Forecast Recruitment?

Why Forecast Recruitment? Predictability of Future Recruitment by Parametric and Non-parametric models : Case study of G. of Alaska walleye pollock. Yong-Woo Lee 1* Bernard A. Megrey 1 S. Allen Macklin 2 National Oceanic and Atmospheric

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Comparing walleye pollock dynamics across the Bering Sea and adjacent areas

Comparing walleye pollock dynamics across the Bering Sea and adjacent areas Comparing walleye pollock dynamics across the Bering Sea and adjacent areas Franz J. Mueter 1, Mikhail A. Stepanenko 2 Anatoly V. Smirnov 2, and Orio Yamamura 3 1 School of Fisheries and Ocean Sciences,

More information

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps

Analysis of Interest Rate Curves Clustering Using Self-Organising Maps Analysis of Interest Rate Curves Clustering Using Self-Organising Maps M. Kanevski (1), V. Timonin (1), A. Pozdnoukhov(1), M. Maignan (1,2) (1) Institute of Geomatics and Analysis of Risk (IGAR), University

More information

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017

Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017 Scuola di Calcolo Scientifico con MATLAB (SCSM) 2017 Palermo 31 Luglio - 4 Agosto 2017 www.u4learn.it Ing. Giuseppe La Tona Sommario Machine Learning definition Machine Learning Problems Artificial Neural

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

Multivariate Analysis of Ecological Data

Multivariate Analysis of Ecological Data Multivariate Analysis of Ecological Data MICHAEL GREENACRE Professor of Statistics at the Pompeu Fabra University in Barcelona, Spain RAUL PRIMICERIO Associate Professor of Ecology, Evolutionary Biology

More information

Jacqueline M. Grebmeier Chesapeake Biological Laboratory University of Maryland Center for Environmental Science, Solomons, MD, USA

Jacqueline M. Grebmeier Chesapeake Biological Laboratory University of Maryland Center for Environmental Science, Solomons, MD, USA Update on the Pacific Arctic Region Synthesis Activity as part of the ICES/PICES/PAME Working Group on Integrated Ecosystem Assessment of the Central Arctic Ocean (WGICA) Jacqueline M. Grebmeier Chesapeake

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Application of SOM neural network in clustering

Application of SOM neural network in clustering J. Biomedical Science and Engineering, 2009, 2, 637-643 doi: 10.4236/jbise.2009.28093 Published Online December 2009 (http://www.scirp.org/journal/jbise/). Application of SOM neural network in clustering

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Introduction to multivariate analysis Outline

Introduction to multivariate analysis Outline Introduction to multivariate analysis Outline Why do a multivariate analysis Ordination, classification, model fitting Principal component analysis Discriminant analysis, quickly Species presence/absence

More information

Spatial dynamics of small pelagic fish in the California Current system on the regime time-scale. Parallel processes in other species-ecosystems.

Spatial dynamics of small pelagic fish in the California Current system on the regime time-scale. Parallel processes in other species-ecosystems. PICES/GLOBEC Symposium Honolulu, Hawaii April 19-21, 2006 Spatial dynamics of small pelagic fish in the California Current system on the regime time-scale. Parallel processes in other species-ecosystems.

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

Climate Change and Arctic Ecosystems

Climate Change and Arctic Ecosystems itletitle Climate Change and Arctic Ecosystems Climate Change and Arctic Ecosystems Key Concepts: Greenhouse Gas Albedo Ecosystem Sea ice Vegetative zone WHAT YOU WILL LEARN 1. You will analyze Arctic

More information

by co-chairs Lisa Hendrickson, Hassan Moustahfid and Alexander Arkhipkin

by co-chairs Lisa Hendrickson, Hassan Moustahfid and Alexander Arkhipkin Summary of an FAO workshop regarding the effects of climate variability and change on short-lived species and their forecasting with a focus on squid stocks and Western Boundary Currents by co-chairs Lisa

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Matching the dimensionality of maps with that of the data

Matching the dimensionality of maps with that of the data Matching the dimensionality of maps with that of the data COLIN FYFE Applied Computational Intelligence Research Unit, The University of Paisley, Paisley, PA 2BE SCOTLAND. Abstract Topographic maps are

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Linear algebra methods for data mining with applications to materials Yousef Saad Department of Computer Science and Engineering University of Minnesota ICSC 2012, Hong Kong, Jan 4-7, 2012 HAPPY BIRTHDAY

More information

Climate Outlook for October 2017 March 2018

Climate Outlook for October 2017 March 2018 The APEC CLIMATE CENTER Climate Outlook for October 2017 March 2018 BUSAN, 25 September 2017 The synthesis of the latest model forecasts for October 2017 to March 2018 (ONDJFM) from the APEC Climate Center

More information

A Synthesis of Results from the Norwegian ESSAS (N-ESSAS) Project

A Synthesis of Results from the Norwegian ESSAS (N-ESSAS) Project A Synthesis of Results from the Norwegian ESSAS (N-ESSAS) Project Ken Drinkwater Institute of Marine Research Bergen, Norway ken.drinkwater@imr.no ESSAS has several formally recognized national research

More information

Unsupervised machine learning

Unsupervised machine learning Chapter 9 Unsupervised machine learning Unsupervised machine learning (a.k.a. cluster analysis) is a set of methods to assign objects into clusters under a predefined distance measure when class labels

More information

Application of Clustering to Earth Science Data: Progress and Challenges

Application of Clustering to Earth Science Data: Progress and Challenges Application of Clustering to Earth Science Data: Progress and Challenges Michael Steinbach Shyam Boriah Vipin Kumar University of Minnesota Pang-Ning Tan Michigan State University Christopher Potter NASA

More information

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, 2012 1 / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If

More information

University of Florida CISE department Gator Engineering. Clustering Part 1

University of Florida CISE department Gator Engineering. Clustering Part 1 Clustering Part 1 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville What is Cluster Analysis? Finding groups of objects such that the objects

More information

Lecture 7: Con3nuous Latent Variable Models

Lecture 7: Con3nuous Latent Variable Models CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 7: Con3nuous Latent Variable Models All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/

More information

Learning Vector Quantization

Learning Vector Quantization Learning Vector Quantization Neural Computation : Lecture 18 John A. Bullinaria, 2015 1. SOM Architecture and Algorithm 2. Vector Quantization 3. The Encoder-Decoder Model 4. Generalized Lloyd Algorithms

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Self Organizing Maps. We are drowning in information and starving for knowledge. A New Approach for Integrated Analysis of Geological Data.

Self Organizing Maps. We are drowning in information and starving for knowledge. A New Approach for Integrated Analysis of Geological Data. Radiometrics Processed Landsat TM Self Organizing Maps A New Approach for Integrated Analysis of Geological Data. We are drowning in information and starving for knowledge. Rutherford D. Roger Stephen.Fraser@csiro.au

More information

Kevin Friedland National Marine Fisheries Service Narragansett, Rhode Island

Kevin Friedland National Marine Fisheries Service Narragansett, Rhode Island How climate and post-smolt growth control marine mortality in Atlantic salmon; the potential effects of a changing climate on the marine survival of Atlantic salmon Kevin Friedland National Marine Fisheries

More information

How will climate change affect the Cold Water Prawn?

How will climate change affect the Cold Water Prawn? INTERNATIONAL COLD WATER PRAWN FORUM 2013 How will climate change affect the Cold Water Prawn? Paul Wassmann The Arctic Ocean: decisive facts in express speed Photo: R. Caeyers The worlds largest and broadest

More information

Entropy Manipulation of Arbitrary Non I inear Map pings

Entropy Manipulation of Arbitrary Non I inear Map pings Entropy Manipulation of Arbitrary Non I inear Map pings John W. Fisher I11 JosC C. Principe Computational NeuroEngineering Laboratory EB, #33, PO Box 116130 University of Floridaa Gainesville, FL 326 1

More information

DIMENSION REDUCTION AND CLUSTER ANALYSIS

DIMENSION REDUCTION AND CLUSTER ANALYSIS DIMENSION REDUCTION AND CLUSTER ANALYSIS EECS 833, 6 March 2006 Geoff Bohling Assistant Scientist Kansas Geological Survey geoff@kgs.ku.edu 864-2093 Overheads and resources available at http://people.ku.edu/~gbohling/eecs833

More information

Trites and Larkin, 1996). The dashed line shows the division between the declining

Trites and Larkin, 1996). The dashed line shows the division between the declining Fig. 1. Locations of major geographic features cited in the text. The inserted graph shows estimated numbers of Steller sea lions (all ages) in Alaska from 1956 to 2000 (based on Trites and Larkin, 1996).

More information

CLIMAR-III Third JCOMM Workshop on Advances in Marine Climatology 6-9 May Gdynia, Poland

CLIMAR-III Third JCOMM Workshop on Advances in Marine Climatology 6-9 May Gdynia, Poland CLIMAR-III Third JCOMM Workshop on Advances in Marine Climatology 6-9 May 2008. Gdynia, Poland Catherine Marzin Historical Ecology Program Manager National Marine Sanctuary Program Stefan Claesson Research

More information

Climate Outlook for March August 2018

Climate Outlook for March August 2018 The APEC CLIMATE CENTER Climate Outlook for March August 2018 BUSAN, 26 February 2018 The synthesis of the latest model forecasts for March to August 2018 (MAMJJA) from the APEC Climate Center (APCC),

More information

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis

December 20, MAA704, Multivariate analysis. Christopher Engström. Multivariate. analysis. Principal component analysis .. December 20, 2013 Todays lecture. (PCA) (PLS-R) (LDA) . (PCA) is a method often used to reduce the dimension of a large dataset to one of a more manageble size. The new dataset can then be used to make

More information

Reduction of complex models using data-mining and nonlinear projection techniques

Reduction of complex models using data-mining and nonlinear projection techniques Reduction of complex models using data-mining and nonlinear projection techniques Bernhardt, K. a, Wirtz, K.W. a Institute for Chemistry and Biology of the Marine Environment (ICBM) Carl-von-Ossietzky

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

An Introduction to Nonlinear Principal Component Analysis

An Introduction to Nonlinear Principal Component Analysis An Introduction tononlinearprincipal Component Analysis p. 1/33 An Introduction to Nonlinear Principal Component Analysis Adam Monahan monahana@uvic.ca School of Earth and Ocean Sciences University of

More information

Motivating the Covariance Matrix

Motivating the Covariance Matrix Motivating the Covariance Matrix Raúl Rojas Computer Science Department Freie Universität Berlin January 2009 Abstract This note reviews some interesting properties of the covariance matrix and its role

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Data Exploration and Unsupervised Learning with Clustering

Data Exploration and Unsupervised Learning with Clustering Data Exploration and Unsupervised Learning with Clustering Paul F Rodriguez,PhD San Diego Supercomputer Center Predictive Analytic Center of Excellence Clustering Idea Given a set of data can we find a

More information

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1

EEL 851: Biometrics. An Overview of Statistical Pattern Recognition EEL 851 1 EEL 851: Biometrics An Overview of Statistical Pattern Recognition EEL 851 1 Outline Introduction Pattern Feature Noise Example Problem Analysis Segmentation Feature Extraction Classification Design Cycle

More information

Applying Visual Analytics Methods to Spatial Time Series Data: Forest Fires, Phone Calls,

Applying Visual Analytics Methods to Spatial Time Series Data: Forest Fires, Phone Calls, Applying Visual Analytics Methods to Spatial Time Series Data: Forest Fires, Phone Calls, Dr. & Dr. Natalia Andrienko In collaboration with TU Darmstadt and Univ. Constance, DFG Priority Research Program

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Self-Organization by Optimizing Free-Energy

Self-Organization by Optimizing Free-Energy Self-Organization by Optimizing Free-Energy J.J. Verbeek, N. Vlassis, B.J.A. Kröse University of Amsterdam, Informatics Institute Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Abstract. We present

More information

Clustering VS Classification

Clustering VS Classification MCQ Clustering VS Classification 1. What is the relation between the distance between clusters and the corresponding class discriminability? a. proportional b. inversely-proportional c. no-relation Ans:

More information

Principal Component Analysis of Sea Surface Temperature via Singular Value Decomposition

Principal Component Analysis of Sea Surface Temperature via Singular Value Decomposition Principal Component Analysis of Sea Surface Temperature via Singular Value Decomposition SYDE 312 Final Project Ziyad Mir, 20333385 Jennifer Blight, 20347163 Faculty of Engineering Department of Systems

More information

Dimension Reduction (PCA, ICA, CCA, FLD,

Dimension Reduction (PCA, ICA, CCA, FLD, Dimension Reduction (PCA, ICA, CCA, FLD, Topic Models) Yi Zhang 10-701, Machine Learning, Spring 2011 April 6 th, 2011 Parts of the PCA slides are from previous 10-701 lectures 1 Outline Dimension reduction

More information

Q & A on Trade-off between intensity and frequency of global tropical cyclones

Q & A on Trade-off between intensity and frequency of global tropical cyclones SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2646 Q & A on Trade-off between intensity and frequency of global tropical cyclones Nam-Young Kang & James B. Elsner List of questions 1. What is new in this

More information

Machine Learning of Environmental Spatial Data Mikhail Kanevski 1, Alexei Pozdnoukhov 2, Vasily Demyanov 3

Machine Learning of Environmental Spatial Data Mikhail Kanevski 1, Alexei Pozdnoukhov 2, Vasily Demyanov 3 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 33 International Environmental Modelling and Software Society (iemss) 01 International Congress on Environmental Modelling and Software

More information

ECE662: Pattern Recognition and Decision Making Processes: HW TWO

ECE662: Pattern Recognition and Decision Making Processes: HW TWO ECE662: Pattern Recognition and Decision Making Processes: HW TWO Purdue University Department of Electrical and Computer Engineering West Lafayette, INDIANA, USA Abstract. In this report experiments are

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 12 Jan-Willem van de Meent (credit: Yijun Zhao, Percy Liang) DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Linear Dimensionality

More information

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction

Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction Global (ISOMAP) versus Local (LLE) Methods in Nonlinear Dimensionality Reduction A presentation by Evan Ettinger on a Paper by Vin de Silva and Joshua B. Tenenbaum May 12, 2005 Outline Introduction The

More information

Using GIS to locate hotspots for bluefin tuna

Using GIS to locate hotspots for bluefin tuna Using GIS to locate hotspots for bluefin tuna Rob Schick 1 & Molly Lutcavage 2 1 Southwest Fisheries Science Center/Santa Cruz Lab 2 UNH Department of Zoology Bluefin and SST fronts We looked at 3 years

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

Learning sets and subspaces: a spectral approach

Learning sets and subspaces: a spectral approach Learning sets and subspaces: a spectral approach Alessandro Rudi DIBRIS, Università di Genova Optimization and dynamical processes in Statistical learning and inverse problems Sept 8-12, 2014 A world of

More information

Covariance and Correlation Matrix

Covariance and Correlation Matrix Covariance and Correlation Matrix Given sample {x n } N 1, where x Rd, x n = x 1n x 2n. x dn sample mean x = 1 N N n=1 x n, and entries of sample mean are x i = 1 N N n=1 x in sample covariance matrix

More information

Applying Multi-Model Superensemble Methods to Global Ocean Operational Systems

Applying Multi-Model Superensemble Methods to Global Ocean Operational Systems Applying Multi-Model Superensemble Methods to Global Ocean Operational Systems Todd Spindler 1, Avichal Mehra 2, Deanna Spindler 1 1 IMSG at NWS/NCEP/EMC 2 NWS/NCEP/EMC We wish to acknowledge the data

More information

Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) Learning Vector Quantization (LVQ) Introduction to Neural Computation : Guest Lecture 2 John A. Bullinaria, 2007 1. The SOM Architecture and Algorithm 2. What is Vector Quantization? 3. The Encoder-Decoder

More information

Applying cluster analysis to 2011 Census local authority data

Applying cluster analysis to 2011 Census local authority data Applying cluster analysis to 2011 Census local authority data Kitty.Lymperopoulou@manchester.ac.uk SPSS User Group Conference November, 10 2017 Outline Basic ideas of cluster analysis How to choose variables

More information

CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution

CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution CMIP3/CMIP5 differences: Scenario (SRESA1B vs RCP4.5) Ensemble mean Tas responses: CMIP3 = 2.8 K CMIP5 = 1.9 K CMIP5 higher average resolution Several `high-top models in CMIP5 Key question What are

More information

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas

The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas The Impact of Changing Sea Ice and Hydrographic Conditions on Biological Communities in the Northern Bering and Chukchi Seas Jacqueline M. Grebmeier 1, Lee W. Cooper 1, and Karen E. Frey 2 1 University

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 218 Outlines Overview Introduction Linear Algebra Probability Linear Regression 1

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks Delivered by Mark Ebden With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable

More information

Feature Extraction with Weighted Samples Based on Independent Component Analysis

Feature Extraction with Weighted Samples Based on Independent Component Analysis Feature Extraction with Weighted Samples Based on Independent Component Analysis Nojun Kwak Samsung Electronics, Suwon P.O. Box 105, Suwon-Si, Gyeonggi-Do, KOREA 442-742, nojunk@ieee.org, WWW home page:

More information

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation

Clustering by Mixture Models. General background on clustering Example method: k-means Mixture model based clustering Model estimation Clustering by Mixture Models General bacground on clustering Example method: -means Mixture model based clustering Model estimation 1 Clustering A basic tool in data mining/pattern recognition: Divide

More information

AnuMS 2018 Atlantic Hurricane Season Forecast

AnuMS 2018 Atlantic Hurricane Season Forecast AnuMS 2018 Atlantic Hurricane Season Forecast : June 11, 2018 by Dale C. S. Destin (follow @anumetservice) Director (Ag), Antigua and Barbuda Meteorological Service (ABMS) The *AnuMS (Antigua Met Service)

More information

53 contributors for 35 individual reports in 2009 show 5% of figures today

53 contributors for 35 individual reports in 2009 show 5% of figures today A Group Approach to Understanding Ecosystem Dynamics in the Northeast Pacific Ocean William Crawford and James Irvine, Fisheries and Oceans Canada (DFO) * * * 53 contributors for 35 individual reports

More information

Dimensionality Reduction

Dimensionality Reduction Lecture 5 1 Outline 1. Overview a) What is? b) Why? 2. Principal Component Analysis (PCA) a) Objectives b) Explaining variability c) SVD 3. Related approaches a) ICA b) Autoencoders 2 Example 1: Sportsball

More information

CSC321 Lecture 20: Autoencoders

CSC321 Lecture 20: Autoencoders CSC321 Lecture 20: Autoencoders Roger Grosse Roger Grosse CSC321 Lecture 20: Autoencoders 1 / 16 Overview Latent variable models so far: mixture models Boltzmann machines Both of these involve discrete

More information

Efficient unsupervised clustering for spatial bird population analysis along the Loire river

Efficient unsupervised clustering for spatial bird population analysis along the Loire river Efficient unsupervised clustering for spatial bird population analysis along the Loire river Aurore Payen 1, Ludovic Journaux 1.2, Clément Delion 1, Lucile Sautot 1,3, Bruno Faivre 3 1- AgroSup Dijon 26

More information

Discriminant Uncorrelated Neighborhood Preserving Projections

Discriminant Uncorrelated Neighborhood Preserving Projections Journal of Information & Computational Science 8: 14 (2011) 3019 3026 Available at http://www.joics.com Discriminant Uncorrelated Neighborhood Preserving Projections Guoqiang WANG a,, Weijuan ZHANG a,

More information

Predictive analysis on Multivariate, Time Series datasets using Shapelets

Predictive analysis on Multivariate, Time Series datasets using Shapelets 1 Predictive analysis on Multivariate, Time Series datasets using Shapelets Hemal Thakkar Department of Computer Science, Stanford University hemal@stanford.edu hemal.tt@gmail.com Abstract Multivariate,

More information

Major human activities affecting Norwegian coastal marine ecosystems; present status and challenges

Major human activities affecting Norwegian coastal marine ecosystems; present status and challenges Major human activities affecting Norwegian coastal marine ecosystems; present status and challenges Erlend Moksness PICES Annual Meeting - Science Board Symposium 26. October 2009, Jeju, Korea FUTURE:

More information

Expectation-maximization analysis of spatial time series

Expectation-maximization analysis of spatial time series Nonlin. Processes Geophys., 1, 73 77, 7 www.nonlin-processes-geophys.net/1/73/7/ Author(s) 7. This work is licensed under a Creative Commons License. Nonlinear Processes in Geophysics Expectation-maximization

More information

Chap.11 Nonlinear principal component analysis [Book, Chap. 10]

Chap.11 Nonlinear principal component analysis [Book, Chap. 10] Chap.11 Nonlinear principal component analysis [Book, Chap. 1] We have seen machine learning methods nonlinearly generalizing the linear regression method. Now we will examine ways to nonlinearly generalize

More information

Critical Issues in Assessment of Offshore Wind Farm Development on Dispersion and Settling of Scallop Larvae in the Northeast U.S.

Critical Issues in Assessment of Offshore Wind Farm Development on Dispersion and Settling of Scallop Larvae in the Northeast U.S. Critical Issues in Assessment of Offshore Wind Farm Development on Dispersion and Settling of Scallop Larvae in the Northeast U.S. Coastal Ocean Changsheng Chen School for Marine Science and Technology

More information

7. Variable extraction and dimensionality reduction

7. Variable extraction and dimensionality reduction 7. Variable extraction and dimensionality reduction The goal of the variable selection in the preceding chapter was to find least useful variables so that it would be possible to reduce the dimensionality

More information

Algebraic and topological perspectives on semi-supervised learning

Algebraic and topological perspectives on semi-supervised learning Algebraic and topological perspectives on semi-supervised learning Mikael Vejdemo-Johansson and Primoz Skraba Jozef Stefan Institute 1 Learning First introduce the types of learning problems Unsupervised

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Unsupervised Learning

Unsupervised Learning 2018 EE448, Big Data Mining, Lecture 7 Unsupervised Learning Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/ee448/index.html ML Problem Setting First build and

More information

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees

Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Classification for High Dimensional Problems Using Bayesian Neural Networks and Dirichlet Diffusion Trees Rafdord M. Neal and Jianguo Zhang Presented by Jiwen Li Feb 2, 2006 Outline Bayesian view of feature

More information

The North Atlantic Oscillation: Climatic Significance and Environmental Impact

The North Atlantic Oscillation: Climatic Significance and Environmental Impact 1 The North Atlantic Oscillation: Climatic Significance and Environmental Impact James W. Hurrell National Center for Atmospheric Research Climate and Global Dynamics Division, Climate Analysis Section

More information

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

Last updated: Oct 22, 2012 LINEAR CLASSIFIERS. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition Last updated: Oct 22, 2012 LINEAR CLASSIFIERS Problems 2 Please do Problem 8.3 in the textbook. We will discuss this in class. Classification: Problem Statement 3 In regression, we are modeling the relationship

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Clusters. Unsupervised Learning. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Clusters. Unsupervised Learning. Luc Anselin.   Copyright 2017 by Luc Anselin, All Rights Reserved Clusters Unsupervised Learning Luc Anselin http://spatial.uchicago.edu 1 curse of dimensionality principal components multidimensional scaling classical clustering methods 2 Curse of Dimensionality 3 Curse

More information

Species specific geographical distribution patterns in a warm Barents Sea: haddock vs. cod

Species specific geographical distribution patterns in a warm Barents Sea: haddock vs. cod Species specific geographical distribution patterns in a warm Barents Sea: haddock vs. cod Nordic Climate-Fish 2nd Conference: Latitudinal changes in marine resources, exploitation and society within the

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

Nutrient fields reveal identity of ecosystems: A case study from the Bering Sea Kirill Kivva

Nutrient fields reveal identity of ecosystems: A case study from the Bering Sea Kirill Kivva Nutrient fields reveal identity of ecosystems: A case study from the Bering Sea Kirill Kivva Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), Moscow, Russia Outline Introduction

More information