Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen

Size: px
Start display at page:

Download "Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen"

Transcription

1 Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen 1. Metapopulation processes and variables 2. Stochastic Patch Occupancy Models (SPOMs) 3. Connectivity in metapopulation studies

2 What is metapopulation modeling used for Developing fundamental theory; understanding spatial population dynamics Producing qualitative / quantitative predictions for the needs of conservation understanding effects of fragmentation and habitat loss reserve network design metapopulation viability analysis studies of feasibility of reintroduction

3 Metapopulation processes and variables species interactions migration (dispersal) emigration regional stochasticity immigration colonization local dynamics and local extinction

4 Some factors affecting local dynamics and local extinction population size (density) emigration immigration population growth rate type of population growth patch size quality (food, breeding ) species interactions Stochastic factors environmental stochasticity demographic stochasticity catastrophes genetics human persecution habitat loss

5 Factors affecting emigration Patch size quality shape edge quality Population density

6 Factors affecting movement The habitat matrix habitat types texture of habitat pattern (distances between patches) Behavior of the species habitat specific movement and mortality rates edge effects species perceptual ability dispersal cues (conspecific attraction etc.)

7 Factors affecting immigration Patch detection ability of the species Patch size shape boundary quality quality Population size / density

8 Factors affecting colonization Number of immigrants Patch quality Population density (possible Allee effect etc.)

9 Factors affecting all metapopulation processes; 1. Species interactions Predation, competition, mutualism etc. May affect any metapopulation process local dynamics and local extinction rates migration behavior

10 Factors affecting all metapopulation processes; 2. Regional stochasticity Spatially correlated environmental stochasticity Caused by weather, disease, etc. Causes correlation in local dynamics / migration Strong effect on metapopulation persistence Effect may depend on habitat type Example: M. cinxia , 250 populations 1994, 130 populations decline caused by larval mortality due to dry summer weather

11 Stochastic Patch Occupancy Models (SPOMs) Basic assumption: local dynamics are very complex to model => ignore local dynamics and only model species presence / absence in habitat patches Kareiva & Steinberg (1997): the presence/absence assumption is almost necessary in large scale ecological studies Relatively easy data collection 1st SPOM; the incidence function model (Hanski 1994)

12 SPOMs: general structure Extinction probability E i (t) of occupied patch All patch states updated each time unit Patch area A i Connectivity S i (t) Colonization probability C i (t) of empty patch - effect of distance on migration - current patch occupancy pattern

13 SPOMs: common simplifications Patches have sizes but no shape Patch quality is constant The habitat matrix is of uniform quality Regional stochasticity often ignored

14 local extinction: example Decreasing function of area etc A i = area of patch i and x are parameters E i E i A x i A i

15 SPOMs: effect of distance on migration Migration success decreasing function of distance the dispersal kernel A (negative exponential) Dd (, ) exp( d) ij B,C,D (fat tailed) 1 Dd ( ij,, ) 1 d d ij = distance from i to j ij ij D(d ij, 1.0 C 0.5 B A D d ij

16 SPOMs: colonization Colonization probability of patch i, C i (t)=f(connectivity) 1.0 A: independent colonizations C() t 1 exp( ys ( t)) i B: Allee effect i C i (t) 0.5 A B C() t i [ Si( t)] [ S ( t)] S i (t) = connectivity y = parameter i 2 y S i (t)

17 SPOMs: regional stochasticity Spatial correlation in extinctions and/or colonizations (weather etc.) One way of implementing: synchronous variation in patch areas Bad year, A i decreased - good year, A i increased Simple modeling alternatives synchronous over the entire metapopulation synchronous within patch clusters, but independent between clusters synchronous for different habitat patch classes Enormous effect on predicted metapopulation extinction probabilities

18 Connectivity in metapopulation studies Connectivity is a critical component of all spatial models Many different connectivity measures used in literature Almost all connectivity measures can be classified as nearest neighbor measures buffer measures IFM measures Great differences in performance

19 The view of a patch occupancy model

20 The view of a nearest neighbor (NN) connectivity measure nearest neighbor population

21 The view of a buffer measure Consider equally patches within a circle around the focal patch.

22 The view of an IFM-SPOM connectivity measure Consider all source populations Source population size has an effect Scale effect by distance Population dynamical connectivity: only consider occupied patches

23 The view of an IFM-SPOM population-dynamical connectivity measure original IFM empty focal patch

24 Comparing connectivity measures summary of results NN measures very, very bad Best performance of buffer and IFM measures approximately equal But buffer measures sensitive to estimation of buffer radius Inclusion of focal patch size always improved results

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability INTRODUCTION METHODS

Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability INTRODUCTION METHODS Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability. Carroll, C. 2005. Klamath Center for Conservation Research, Orleans, CA. Revised

More information

Ecology of spatially structured populations

Ecology of spatially structured populations Ecology of spatially structured populations Jean-François Le Galliard CNRS iees Paris CNRS/Ens CEREEP/Ecotron IleDeFrance Introduction Habitat fragmentation and spatial structure Habitat fragmentation

More information

The interplay between immigration and local population dynamics in metapopulations. Ovaskainen, Otso.

The interplay between immigration and local population dynamics in metapopulations. Ovaskainen, Otso. https://helda.helsinki.fi The interplay between immigration and local population dynamics in metapopulations Ovaskainen, Otso 27-4 Ovaskainen, O 27, ' The interplay between immigration and local population

More information

Merging Spatial and Temporal Structure within a Metapopulation Model

Merging Spatial and Temporal Structure within a Metapopulation Model Merging within a Metapopulation Model manuscript Yssa D. DeWoody Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907-2033; (765) 494-3604; (765) 496-2422 (fax);

More information

Modeling butterfly metapopulations: Does the logistic equation accurately model metapopulation dynamics? Ben Slager

Modeling butterfly metapopulations: Does the logistic equation accurately model metapopulation dynamics? Ben Slager Modeling butterfly metapopulations: Does the logistic equation accurately model metapopulation dynamics? Ben Slager Introduction In 1798 Thomas Malthus constructed the theoretical framework for the logistic

More information

Stability, dispersal and ecological networks. François Massol

Stability, dispersal and ecological networks. François Massol Stability, dispersal and ecological networks François Massol June 1 st 2015 General theme Evolutionary ecology of fluxes o Evolution & ecology of dispersal o Spatial structure, networks of populations

More information

The equilibrium assumption in estimating the parameters of metapopulation models

The equilibrium assumption in estimating the parameters of metapopulation models Ecology 2000, 69, The equilibrium assumption in estimating the parameters of metapopulation models ATTE MOILANEN Department of Ecology and Systematics, Division of Population Biology, University of Helsinki,

More information

Application of Cellular Automata in Conservation Biology and Environmental Management 1

Application of Cellular Automata in Conservation Biology and Environmental Management 1 Application of Cellular Automata in Conservation Biology and Environmental Management 1 Miklós Bulla, Éva V. P. Rácz Széchenyi István University, Department of Environmental Engineering, 9026 Győr Egyetem

More information

6 Metapopulations of Butterflies (sketch of the chapter)

6 Metapopulations of Butterflies (sketch of the chapter) 6 Metapopulations of Butterflies (sketch of the chapter) Butterflies inhabit an unpredictable world. Consider the checkerspot butterfly, Melitaea cinxia, also known as the Glanville Fritillary. They depend

More information

EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE

EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE Ecology, 84(4), 2003, pp. 882 889 2003 by the Ecological Society of America EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE STEPHEN P. ELLNER 1 AND GREGOR FUSSMANN 2 Department of Ecology

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions:

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions: Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already Discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

What is a population?

What is a population? What is a population? Combining demographic and genetic data to describe (meta)population functioning Case study: Common frog in humandominated landscape Claude Miaud Samuel Decout Tony Safner Stéphanie

More information

COURSE SCHEDULE. Other applications of genetics in conservation Resolving taxonomic uncertainty

COURSE SCHEDULE. Other applications of genetics in conservation Resolving taxonomic uncertainty Tutorials: Next week, Tues. 5 Oct. meet in from of Library Processing entre (path near Woodward) at 2pm. We re going on a walk in the woods, so dress appropriately! Following week, Tues. 2 Oct.: Global

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems

Current controversies in Marine Ecology with an emphasis on Coral reef systems Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Populations in lakes. Limnology Lecture 9

Populations in lakes. Limnology Lecture 9 Populations in lakes Limnology Lecture 9 Outline Adaptations in lake organisms to Low oxygen Predation Seasonal disturbance Populations in lakes Exponential Logistic Metapopulation Low Oxygen Tolerance

More information

III Introduction to Populations III Introduction to Populations A. Definitions A population is (Krebs 2001:116) a group of organisms same species

III Introduction to Populations III Introduction to Populations A. Definitions A population is (Krebs 2001:116) a group of organisms same species III Introduction to s III Introduction to s A. Definitions B. characteristics, processes, and environment C. Uses of dynamics D. Limits of a A. Definitions What is a? A is (Krebs 2001:116) a group of organisms

More information

Paradigms In Conservation

Paradigms In Conservation Lecture 17, 20 Oct 2009 Paradigms & Populations Conservation Biology ECOL 406R/506R University of Arizona Fall 2009 Kevin Bonine Mary Jane Epps Readings Primack parts of Ch 5 & 6 Marmontel et al. 1997

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

Stability Of Specialists Feeding On A Generalist

Stability Of Specialists Feeding On A Generalist Stability Of Specialists Feeding On A Generalist Tomoyuki Sakata, Kei-ichi Tainaka, Yu Ito and Jin Yoshimura Department of Systems Engineering, Shizuoka University Abstract The investigation of ecosystem

More information

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth.

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth. Population Ecology 1. Populations of mammals that live in colder climates tend to have shorter ears and limbs than populations of the same species in warm climates (coyotes are a good example of this).

More information

Habitat fragmentation and evolution of dispersal. Jean-François Le Galliard CNRS, University of Paris 6, France

Habitat fragmentation and evolution of dispersal. Jean-François Le Galliard CNRS, University of Paris 6, France Habitat fragmentation and evolution of dispersal Jean-François Le Galliard CNRS, University of Paris 6, France Habitat fragmentation : facts Habitat fragmentation describes a state (or a process) of discontinuities

More information

Extinction risk and the persistence of fragmented populations

Extinction risk and the persistence of fragmented populations Extinction risk and the persistence of fragmented populations Dipartimento di Elettronica e Informazione Politecnico di Milano Milano, Italy Dick Levins 1 http://www.elet.polimi.it/upload/gatto/spatial_biology

More information

SPATIALLY EXPLICIT POPULATION MODELS

SPATIALLY EXPLICIT POPULATION MODELS SPATIALLY EXPLICIT POPULATION MODELS During the last decade, ecologists and particularl mathematical ecologists have focused on different approaches to the problem of spatial distribution of species. When

More information

ARTICLE IN PRESS. Journal of Theoretical Biology

ARTICLE IN PRESS. Journal of Theoretical Biology Journal of Theoretical Biology 255 (2008) 152 161 Contents lists available at ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi Generalizing Levins metapopulation

More information

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization Biotic and Abiotic Factors The study of how organisms interact with each other and with their environments Scientists

More information

Chapter 4 Population Ecology

Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization The study of how organisms interact with each other and with their environments Scientists study ecology at various

More information

Goal. Background and motivation

Goal. Background and motivation Biodiversity dynamics under intransitive competition and habitat destruction Matthew J. Labrum Department of Mathematics, Washington State University, Pullman, USA Goal To investigate how biodiversity

More information

Ch. 4 - Population Ecology

Ch. 4 - Population Ecology Ch. 4 - Population Ecology Ecosystem all of the living organisms and nonliving components of the environment in an area together with their physical environment How are the following things related? mice,

More information

Population viability analysis

Population viability analysis Population viability analysis Introduction The process of using models to determine risks of decline faced by populations was initially defined as population vulnerability analysis [1], but is now known

More information

FW662 Lecture 9 Immigration and Emigration 1. Lecture 9. Role of immigration and emigration in populations.

FW662 Lecture 9 Immigration and Emigration 1. Lecture 9. Role of immigration and emigration in populations. FW662 Lecture 9 Immigration and Emigration 1 Lecture 9. Role of immigration and emigration in populations. Reading: Sinclair, A. R. E. 1992. Do large mammals disperse like small mammals? Pages 229-242

More information

BIOS 230 Landscape Ecology. Lecture #32

BIOS 230 Landscape Ecology. Lecture #32 BIOS 230 Landscape Ecology Lecture #32 What is a Landscape? One definition: A large area, based on intuitive human scales and traditional geographical studies 10s of hectares to 100s of kilometers 2 (1

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

Optimal Translocation Strategies for Threatened Species

Optimal Translocation Strategies for Threatened Species Optimal Translocation Strategies for Threatened Species Rout, T. M., C. E. Hauser and H. P. Possingham The Ecology Centre, University of Queensland, E-Mail: s428598@student.uq.edu.au Keywords: threatened

More information

Goals: Be able to. Basic conflict: Economic opportunity vs. Environmental quality. Human population is growing exponentially

Goals: Be able to. Basic conflict: Economic opportunity vs. Environmental quality. Human population is growing exponentially Goals: Be able to Describe the general history of biodiversity and extinctions on Earth. Discuss why species go extinct. Explain why predators generally need larger land area than herbivores. Describe

More information

The incidence function approach to modelling of metapopulation dynamics

The incidence function approach to modelling of metapopulation dynamics The incidence function approach to modelling of metapopulation dynamics Cajo J.F. ter Braak 1,3, Ilkka Hanski 2 and Jana Verboom 3 1 Centre for Biometry Wageningen, PO Box 100, NL-6700 AC Wageningen, The

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

A population is a group of individuals of the same species occupying a particular area at the same time

A population is a group of individuals of the same species occupying a particular area at the same time A population is a group of individuals of the same species occupying a particular area at the same time Population Growth As long as the birth rate exceeds the death rate a population will grow Immigration

More information

Temporal Autocorrelation Can Enhance the Persistence and Abundance of Metapopulations Comprised of Coupled Sinks

Temporal Autocorrelation Can Enhance the Persistence and Abundance of Metapopulations Comprised of Coupled Sinks vol. 166, no. the american naturalist august 005 Temporal Autocorrelation Can Enhance the Persistence and Abundance of Metapopulations Comprised of Coupled Sinks Manojit Roy, * Robert D. Holt, and Michael

More information

Population viability analyses in conservation planning: an overview

Population viability analyses in conservation planning: an overview This is a preprint of Akçakaya H.R. and P. Sjögren-Gulve. 2000. Population viability analysis in Population viability analyses in conservation planning: an overview H. Reşit Akçakaya and Per Sjögren-Gulve

More information

On the Feasibility of Quantitative Population Viability Analysis in Recovery Planning: Efforts to Bridge the Gap Between Theory and Practice

On the Feasibility of Quantitative Population Viability Analysis in Recovery Planning: Efforts to Bridge the Gap Between Theory and Practice On the Feasibility of Quantitative Population Viability Analysis in Recovery Planning: Efforts to Bridge the Gap Between Theory and Practice LUTZ TISCHENDORF 1 AND KATHRYN LINDSAY 2 1 ELUTIS Modeling and

More information

Population Ecology Density dependence, regulation and the Allee effect

Population Ecology Density dependence, regulation and the Allee effect 2/22/15 Population Ecology Density dependence, regulation and the Allee effect ESRM 450 Wildlife Ecology and Conservation Wildlife Populations Groups of animals, all of the same species, that live together

More information

EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS

EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS (February 25, 2004) EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS BEN CAIRNS, University of Queensland PHIL POLLETT, University of Queensland Abstract The birth, death and catastrophe

More information

Bear Conservation. Recolonization. Reintroduction IDENTIFYING POTENTIAL COLONIZATION PATTERNS FOR REINTRODUCED BLACK BEAR POPULATIONS

Bear Conservation. Recolonization. Reintroduction IDENTIFYING POTENTIAL COLONIZATION PATTERNS FOR REINTRODUCED BLACK BEAR POPULATIONS IDENTIFYING POTENTIAL COLONIZATION PATTERNS FOR REINTRODUCED BLACK BEAR POPULATIONS Jared Laufenberg Department of Forestry, Wildlife and Fisheries University of Tennessee Bear Conservation Distribution

More information

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 Lesson Description In this lesson we: Revise population ecology by working through some exam questions. Key Concepts Definition of Population A population

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

4. Ecology and Population Biology

4. Ecology and Population Biology 4. Ecology and Population Biology 4.1 Ecology and The Energy Cycle 4.2 Ecological Cycles 4.3 Population Growth and Models 4.4 Population Growth and Limiting Factors 4.5 Community Structure and Biogeography

More information

EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS

EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS J. Appl. Prob. 41, 1211 1218 (2004) Printed in Israel Applied Probability Trust 2004 EXTINCTION TIMES FOR A GENERAL BIRTH, DEATH AND CATASTROPHE PROCESS BEN CAIRNS and P. K. POLLETT, University of Queensland

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Lesson 4.1 Studying Ecology Ernst Haeckel defined ecology in 1866 as the body of knowledge concerning the economy of nature the total relations of the animal to both its inorganic

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. !""#$%&'"&()*+%)%&,-)./#%)%+'&'&%1#&!2%+$%+'&31-#41'567&8&9:%1#4+4 8;%1'-#'-#&,)1-+. 9';-$#7&!$'5'.+$)5&8??5+$)%+'4@&A'5B&CD@&E'B&D@&

More information

Extinction threshold in metapopulation models

Extinction threshold in metapopulation models Ann. Zool. Fennici 40: 8 97 ISSN 0003-455X Helsinki 30 April 2003 Finnish Zoological and Botanical Publishing Board 2003 Extinction threshold in metapopulation models Otso Ovaskainen & Ilkka Hanski Metapopulation

More information

arxiv: v1 [math.pr] 1 Jan 2013

arxiv: v1 [math.pr] 1 Jan 2013 The role of dispersal in interacting patches subject to an Allee effect arxiv:1301.0125v1 [math.pr] 1 Jan 2013 1. Introduction N. Lanchier Abstract This article is concerned with a stochastic multi-patch

More information

Habitat Destruction, Environmental Catastrophes, and Metapopulation Extinction

Habitat Destruction, Environmental Catastrophes, and Metapopulation Extinction Theoretical Population Biology 61, 127 140 (2002) doi:101006/tpbi20011559, available online at http://wwwidealibrarycom on Habitat Destruction, Environmental Catastrophes, and Metapopulation Extinction

More information

SLOSS debate. reserve design principles. Caribbean Anolis. SLOSS debate- criticisms. Single large or several small Debate over reserve design

SLOSS debate. reserve design principles. Caribbean Anolis. SLOSS debate- criticisms. Single large or several small Debate over reserve design SLOSS debate reserve design principles Single large or several small Debate over reserve design SLOSS debate- criticisms Caribbean Anolis Pattern not always supported Other factors may explain diversity

More information

On the limitations of graph-theoretic connectivity in spatial ecology and conservation

On the limitations of graph-theoretic connectivity in spatial ecology and conservation Journal of Applied Ecology 2011, 48, 1543 1547 doi: 10.1111/j.1365-2664.2011.02062.x FORUM On the limitations of graph-theoretic connectivity in spatial ecology and conservation Atte Moilanen* Department

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 I) Introduction I) Introduction to understand how

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live B. Etymology study of the origin and development of a word 1. Earliest - Haeckel (1869)

More information

Unsaved Test, Version: 1 1

Unsaved Test, Version: 1 1 Name: Key Concepts Select the term or terms that best complete the statement. A. algae and bacteria B. Cretaceous Extinction C. fossil record D. mass extinction E. multicellular organism F. Permian Extinction

More information

Evolution of migration in a changing world. Cervus elaphus (known as red deer, elk, or wapiti)

Evolution of migration in a changing world. Cervus elaphus (known as red deer, elk, or wapiti) Evolution of migration in a changing world Cervus elaphus (known as red deer, elk, or wapiti) 1 Rates of energy gain by red deer or elk are highest when feeding on young vegetation (2-4 weeks of growth)

More information

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science Ch 5 Evolution, Biodiversity, and Population Ecology Part 1: Foundations of Environmental Science PowerPoint Slides prepared by Jay Withgott and Heidi Marcum Copyright 2006 Pearson Education, Inc., publishing

More information

Ch. 14 Interactions in Ecosystems

Ch. 14 Interactions in Ecosystems Ch. 14 Interactions in Ecosystems 1 14.1 Habitat vs. Niche Habitat all biotic and abiotic factors where an organism lives WHERE a species lives 2 Ecological Niche All physical, chemical, and biological

More information

The Living World Continued: Populations and Communities

The Living World Continued: Populations and Communities The Living World Continued: Populations and Communities Ecosystem Communities Populations Review: Parts of an Ecosystem 1) An individual in a species: One organism of a species. a species must be genetically

More information

Viability analyses with habitat-based metapopulation models

Viability analyses with habitat-based metapopulation models Popul Ecol (2000) 42:45 53 The Society of Population Ecology and Springer-Verlag Tokyo 2000 SPECIAL FEATURE: REVIEW H. Resit Akçakaya Viability analyses with habitat-based metapopulation models Received:

More information

Unit 6 Populations Dynamics

Unit 6 Populations Dynamics Unit 6 Populations Dynamics Define these 26 terms: Commensalism Habitat Herbivory Mutualism Niche Parasitism Predator Prey Resource Partitioning Symbiosis Age structure Population density Population distribution

More information

Prioritizing habitat patches for conservation in fragmented landscapes/townscapes using network-based models and analyses

Prioritizing habitat patches for conservation in fragmented landscapes/townscapes using network-based models and analyses Sustainable Development and Planning IV, Vol. 1 109 Prioritizing habitat patches for conservation in fragmented landscapes/townscapes using network-based models and analyses Ö. Bodin Stockholm Resilience

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Integrated approach to PVA: Plan

Integrated approach to PVA: Plan Integrated approach to PVA: Plan Demographic Stochasticity Extinction: fragmentation & patch size effects Connectivicty & dispersal Island biogeography -> Metapopulation Levins: colonisation versus local

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Chapter 4 TOPIC POPULATION ECOLOGY Indicator Species Serve as Biological Smoke Alarms Indicator species Provide early warning of damage to a community Can monitor environmental

More information

When group dispersal and Allee effect shape metapopulation dynamics

When group dispersal and Allee effect shape metapopulation dynamics https://heldahelsinkifi When group dispersal and Allee effect shape metapopulation dynamics Soubeyrand Samuel 27-4 Soubeyrand S & Laine A-L 27 ' When group dispersal and Allee effect shape metapopulation

More information

Are spatially correlated or uncorrelated disturbance regimes better for the survival of species?

Are spatially correlated or uncorrelated disturbance regimes better for the survival of species? OIKOS 103: 449 456, 2003 Are spatially correlated or uncorrelated disturbance regimes better for the survival of species? Karin Johst and Martin Drechsler Johst, K. and Drechsler, M. 2003. Are spatially

More information

Minimum Sizes for Viable Population and Conservation Biology

Minimum Sizes for Viable Population and Conservation Biology Uttam Kumar Rai/Our Nature (2003) 1: 3-9 Minimum Sizes for Viable Population and Conservation Biology Uttam Kumar Rai Columbus State University, Georgia, USA Email:raiuttam@yahoo.com Abstract Minimum viable

More information

Spatial Dimensions of Population Viability

Spatial Dimensions of Population Viability Spatial Dimensions of Population Viability Gyllenberg, M., Hanski, I. and Metz, J.A.J. IIASA Interim Report November 2004 Gyllenberg, M., Hanski, I. and Metz, J.A.J. (2004) Spatial Dimensions of Population

More information

LINKING LANDSCAPE DATA WITH POPULATION VIABILITY ANALYSIS: MANAGEMENT OPTIONS FOR THE HELMETED HONEYEATER Lichenostomus melanops cassidix

LINKING LANDSCAPE DATA WITH POPULATION VIABILITY ANALYSIS: MANAGEMENT OPTIONS FOR THE HELMETED HONEYEATER Lichenostomus melanops cassidix This is a preprint of an article published in Biological Conservation Volume 73 (1995) pages 169-176. 1995 Elsevier Science Limited. All rights reserved. LINKING LANDSCAPE DATA WITH POPULATION VIABILITY

More information

Community phylogenetics review/quiz

Community phylogenetics review/quiz Community phylogenetics review/quiz A. This pattern represents and is a consequent of. Most likely to observe this at phylogenetic scales. B. This pattern represents and is a consequent of. Most likely

More information

META-X: generic software for metapopulation viability analysis

META-X: generic software for metapopulation viability analysis Biodiversity and Conservation 13: 165 188, 2004. 2004 Kluwer Academic Publishers. Printed in the Netherlands. META-X: generic software for metapopulation viability analysis VOLKER GRIMM 1,, HELMUT LOREK

More information

Introduction to course: BSCI 462 of BIOL 708 R

Introduction to course: BSCI 462 of BIOL 708 R Introduction to course: BSCI 462 of BIOL 708 R Population Ecology: Fundamental concepts in plant and animal systems Spring 2013 Introduction The biology of a population = Population Ecology Issue of scale,

More information

Habitat Fragmentation and Biodiversity Collapse Under Recruitment Limitation

Habitat Fragmentation and Biodiversity Collapse Under Recruitment Limitation Habitat Fragmentation and Biodiversity Collapse Under Recruitment Limitation Ricard V. Solé David Alonso SFI WORKING PAPER: 2000-12-066 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41

Contents PART 1. 1 Speciation, Adaptive Radiation, and Evolution 3. 2 Daphne Finches: A Question of Size Heritable Variation 41 Contents List of Illustrations List of Tables List of Boxes Preface xvii xxiii xxv xxvii PART 1 ear ly problems, ea r ly solutions 1 1 Speciation, Adaptive Radiation, and Evolution 3 Introduction 3 Adaptive

More information

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks Aggregations on larger scales. Metapopulation Definition: A group of interconnected subpopulations Sources and Sinks Metapopulation - interconnected group of subpopulations sink source McKillup and McKillup

More information

Galapagos Islands 2,700 endemic species! WHY?

Galapagos Islands 2,700 endemic species! WHY? Galapagos Islands Galapagos Islands 2,700 endemic species! WHY? Denali, Alaska Low species diversity. Why? Patterns of Species Diversity Latitudinal Global pattern drivers? Islands (but also mtn. tops,

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Ecology is studied at several levels

Ecology is studied at several levels Ecology is studied at several levels Ecology and evolution are tightly intertwined Biosphere = the total living things on Earth and the areas they inhabit Ecosystem = communities and the nonliving material

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

A Unifying Framework for Metapopulation Dynamics

A Unifying Framework for Metapopulation Dynamics vol. 160, no. 2 the american naturalist august 2002 A Unifying Framework for Metapopulation Dynamics Karin C. Harding 1,* and John M. McNamara 2, 1. Department of Marine Ecology, Göteborg University, Box

More information

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores:

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores: BIOS 3010: Ecology Lecture 20: Community Structure & Predation: Lecture summary: Effects of grazing herbivores. Effects of predators. Effects of parasites & disease. Variation in time. Disturbance & community

More information

Species 1 isocline. Species 2 isocline

Species 1 isocline. Species 2 isocline 1 Name BIOLOGY 150 Final Exam Winter Quarter 2002 Before starting please write your name on each page! Last name, then first name. You have tons of time. Take your time and read each question carefully

More information

Chapter 54: Community Ecology

Chapter 54: Community Ecology AP Biology Guided Reading Name Chapter 54: Community Ecology Overview 1. What does community ecology explore? Concept 54.1 Community interactions are classified by whether they help, harm, or have no effect

More information

Ecological rescue under environmental change. Supplementary Material 1: Description of full metacommunity model

Ecological rescue under environmental change. Supplementary Material 1: Description of full metacommunity model Ecological rescue under environmental change Supplementary Material 1: Description of full metacommunity model *Pradeep Pillai 1, Tarik C. Gouhier 1, and Steven V. Vollmer 1 * Corresponding author: pradeep.research@gmail.com

More information

Nordic Society Oikos. Blackwell Publishing and Nordic Society Oikos are collaborating with JSTOR to digitize, preserve and extend access to Oikos.

Nordic Society Oikos. Blackwell Publishing and Nordic Society Oikos are collaborating with JSTOR to digitize, preserve and extend access to Oikos. Nordic Society Oikos Metapopulation Persistence of an Endangered Butterfly in a Fragmented Landscape Author(s): Ilkka Hanski, Timo Pakkala, Mikko Kuussaari, Guangchun Lei Source: Oikos, Vol. 72, No. 1

More information

Landscape Connectivity & Metapopulation Dynamics

Landscape Connectivity & Metapopulation Dynamics Shelby Southworth 509: Concepts in GIS & RS December 6 th, 2012 Landscape Connectivity & Metapopulation Dynamics The natural world is growing increasingly fragmented due to human activities, and once expansive

More information

Four aspects of a sampling strategy necessary to make accurate and precise inferences about populations are:

Four aspects of a sampling strategy necessary to make accurate and precise inferences about populations are: Why Sample? Often researchers are interested in answering questions about a particular population. They might be interested in the density, species richness, or specific life history parameters such as

More information

Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change.

Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change. 1 2 3 Influence of dispersal processes on the global dynamics of Emperor penguin, a species threatened by climate change. Running head: Would dispersal act as an ecological rescue? 4 Stéphanie Jenouvrier

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

CHAPTER 14. Interactions in Ecosystems: Day One

CHAPTER 14. Interactions in Ecosystems: Day One CHAPTER 14 Interactions in Ecosystems: Day One Habitat versus Niche Review! What is a habitat? All of the biotic and abiotic factors in the area where an organism lives. Examples: grass, trees, and watering

More information

Lecture 11- Populations/Species. Chapters 18 & 19 - Population growth and regulation - Focus on many local/regional examples

Lecture 11- Populations/Species. Chapters 18 & 19 - Population growth and regulation - Focus on many local/regional examples Lecture 11- Populations/Species Chapters 18 & 19 - Population growth and regulation - Focus on many local/regional examples Why Study Birds? From DNT 11-6-2007 Causes of the Decline Temperate? Tropical?

More information

Stabilization through spatial pattern formation in metapopulations with long-range dispersal

Stabilization through spatial pattern formation in metapopulations with long-range dispersal Stabilization through spatial pattern formation in metapopulations with long-range dispersal Michael Doebeli 1 and Graeme D. Ruxton 2 1 Zoology Institute, University of Basel, Rheinsprung 9, CH^4051 Basel,

More information

BIOLOGY WORKSHEET GRADE: Two robins eating worms on the same lawn is an example of

BIOLOGY WORKSHEET GRADE: Two robins eating worms on the same lawn is an example of BIOLOGY WORKSHEET GRADE: 11 Q.1: Choose the letter of the best answer. 1. Two robins eating worms on the same lawn is an example of a. mutualism. b. commensalism. c. competition. d. parasitism. 2. Predation

More information

Social and landscape effects on food webs: a multi-level network simulation model

Social and landscape effects on food webs: a multi-level network simulation model Journal of Complex Networks (2013) 1, 160 182 doi:10.1093/comnet/cnt013 Advance Access publication on 25 September 2013 Social and landscape effects on food webs: a multi-level network simulation model

More information