Populations in lakes. Limnology Lecture 9

Size: px
Start display at page:

Download "Populations in lakes. Limnology Lecture 9"

Transcription

1 Populations in lakes Limnology Lecture 9

2 Outline Adaptations in lake organisms to Low oxygen Predation Seasonal disturbance Populations in lakes Exponential Logistic Metapopulation

3 Low Oxygen Tolerance Hemoglobin type pigments Anoxibiosis inactive, low metabolic rates Chironomid (midge larvae) Chaoborus

4 Low Oxygen Tolerance: snorkels and air tanks Breathing tubes physical lung Rat-tailed fly (Eristalomyia) Diving beetles (Dytiscidae)

5 Induced defenses Requires reliable cue Kairomones chemical signals produced by predators that affect prey defenses - Why do predators create cues? Assumes fitness cost to trait (trade-off) Either cost of maintaining plasticity or expressing wrong trait in wrong environment Why? Very common in aquatic systems Why?

6

7 Dodson 1989 Cyclomorphosis: seasonal variation in helmet and spine length in Daphnia Induced defenses Brachionus rotifer induced spines Induced neckteeth in Daphnia Reliable indicator of predation leads to altered prey traits Phenotypic plasticity trait change in response to enviroment

8 Seasonal disturbance Diapause: Physiological state with suspended metabolism Ephippium [Gr. saddle ] molted carapace containing 2 sexual eggs - resists drying, freezing, digestion

9

10 Disturbance: diapause Hairston & Kearns 2002 Resurrection ecology

11 Populations in Lakes Critical goal in ecology and fisheries management

12 Populations in Lakes Population group of conspecifics living in same place* * birth/death dynamics determined by local mechanisms rather than immigration - source and sink populations - a sink becomes extirpated if you remove emigration - sub-population - part of meta-population

13 Lake populations very dynamic Fig. 6.3

14 Populations sometimes cycle over longer periods Cohort effects strong recruitment Cannibalism leads to small future size classes

15 Nile perch introduced to Lake Victoria in 1950s > 400 lbs > 6 ft long One of world s 100 worst invasive species

16 Nile perch expansion and its ecological effects Nile perch catch in tons y = e x R² = Time in years Nile perch drove many cichlid species to extinction

17 Exponential growth Differential Equation dn/dt = rn N = population size r = intrinsic rate of natural increase = (b-d) per capita birth rate per capita death rate What does per capita mean?

18 Exponential growth Geometric growth (seasonal births) N t = N 0 e rt Nt N t = N 0 λ t λ = e r r=0, λ = 1 Population size N 0 0 t What values for r mean a decreasing pop.? What values for λ mean a decreasing pop.?

19 Exponential growth Geometric growth (seasonal births) N t = N 0 e rt Doubling time N t /N 0 = 2 = e rt ln(2) = 0.69 = rt t doubling ~ 0.7/r ~ 70/r*100

20 Nile perch Nile perch catch in tons (N) y= e x N t = e 0.5t N t = N 0 e rt What is the doubling time? Time in years (t)

21 Big assumption Birth and death rates do not vary with age Probability of death Males Females Age Matrix models

22 2 nd Big assumption Birth and death rates remain constant regardless of population density Beginning with 1 Hydra 99 days to span across equator Any organism growing exponentially would soon take over the Earth

23 What is population regulation? Density-dependent control of population size Birth/death rates depend on population size Due to intraspecific competition for limited resources

24 Density dependent vital rates b 0 Death rate d 0 Birth rate 0 K Population size (N)

25 The logistic equation describes the growth of a regulated population Population size N K K K/2 0 Time 0 Time

26 Logistic growth Differential Equation dn/dt = rn (1 N/K) N = population size r = intrinsic rate of natural increase K = carrying capacity

27 The logistic equation dn/dt = rn (1 N/K) (1 N/K) = (1 50/100) ½ rn (1 N/K) = (1 150/100) - ½ rn Population size N K= (1 N/K) = (1 1/100) rn (1 N/K) = (1 100/100) 0 Time

28 Nile perch today Nile perch catch in tons Time in years

29 Population control example Hall s work on Daphnia Expected higher densities and birth rates during summer Fig. 6.6 and 6.7 Solution:?

30 Factors affecting population size Density-dependent factors competition for resources predation (generalist) Allee effects (positive) Density-independent factors climate disturbance predation (specialist)

31 Metapopulation multiple subpopulations linked by migration Leibold et al Rescue effect large productive populations provide immigrants that keep small populations from going extinct by chance

32 Metapopulation multiple subpopulations linked by migration Leibold et al Fraction of occupied habitats depends on: 1. Migration 2. Local extinction

Age (x) nx lx. Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E

Age (x) nx lx. Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E Population dynamics Population size through time should be predictable N t+1 = N t + B + I - D - E Time 1 N = 100 20 births 25 deaths 10 immigrants 15 emmigrants Time 2 100 + 20 +10 25 15 = 90 Life History

More information

Population modeling of marine mammal populations

Population modeling of marine mammal populations Population modeling of marine mammal populations Lecture 1: simple models of population counts Eli Holmes National Marine Fisheries Service nmfs.noaa.gov Today s lecture topics: Density-independent growth

More information

Unit 6 Populations Dynamics

Unit 6 Populations Dynamics Unit 6 Populations Dynamics Define these 26 terms: Commensalism Habitat Herbivory Mutualism Niche Parasitism Predator Prey Resource Partitioning Symbiosis Age structure Population density Population distribution

More information

Background for Dynamic Nature of Scientific Knowledge

Background for Dynamic Nature of Scientific Knowledge Background for Dynamic Nature of Scientific Knowledge General lesson information: The lesson will take a minimum of two and a half weeks to conduct: three to five days for introduction and proposal development;

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species

Population Ecology. Study of populations in relation to the environment. Increase population size= endangered species Population Basics Population Ecology Study of populations in relation to the environment Purpose: Increase population size= endangered species Decrease population size = pests, invasive species Maintain

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems

Current controversies in Marine Ecology with an emphasis on Coral reef systems Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Ch. 4 - Population Ecology

Ch. 4 - Population Ecology Ch. 4 - Population Ecology Ecosystem all of the living organisms and nonliving components of the environment in an area together with their physical environment How are the following things related? mice,

More information

Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen

Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen 1. Metapopulation processes and variables 2. Stochastic Patch Occupancy Models (SPOMs) 3. Connectivity in metapopulation

More information

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e)

Population Ecology and the Distribution of Organisms. Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Population Ecology and the Distribution of Organisms Essential Knowledge Objectives 2.D.1 (a-c), 4.A.5 (c), 4.A.6 (e) Ecology The scientific study of the interactions between organisms and the environment

More information

The Ecology of Organisms and Populations

The Ecology of Organisms and Populations CHAPTER 18 The Ecology of Organisms and Populations Figures 18.1 18.3 PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions:

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions: Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already Discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

ENVE203 Environmental Engineering Ecology (Nov 05, 2012)

ENVE203 Environmental Engineering Ecology (Nov 05, 2012) ENVE203 Environmental Engineering Ecology (Nov 05, 2012) Elif Soyer Ecosystems and Living Organisms Population Density How Do Populations Change in Size? Maximum Population Growth Environmental Resistance

More information

Ecology - Defined. Introduction. scientific study. interaction of plants and animals and their interrelationships with the physical environment

Ecology - Defined. Introduction. scientific study. interaction of plants and animals and their interrelationships with the physical environment Ecology - Defined Introduction scientific study interaction of plants and animals and their interrelationships with the physical environment Ecology - Levels of Organization Abiotic factors (non-living

More information

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science

Ch 5. Evolution, Biodiversity, and Population Ecology. Part 1: Foundations of Environmental Science Ch 5 Evolution, Biodiversity, and Population Ecology Part 1: Foundations of Environmental Science PowerPoint Slides prepared by Jay Withgott and Heidi Marcum Copyright 2006 Pearson Education, Inc., publishing

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live B. Etymology study of the origin and development of a word 1. Earliest - Haeckel (1869)

More information

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth Characteristics of Fish Populations Unexploited Populations Recruitment - Birth Mortality (natural) Growth Exploited Populations Recruitment and Yield Fishing and Natural Mortality Compensatory Growth

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

Reproduction leads to growth in the number of interacting, interbreeding organisms of one species in a contiguous area--these form a population.

Reproduction leads to growth in the number of interacting, interbreeding organisms of one species in a contiguous area--these form a population. POPULATION DYNAMICS Reproduction leads to growth in the number of interacting, interbreeding organisms of one species in a contiguous area--these form a population. (Distinguish between unitary and modular

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth.

4. is the rate at which a population of a given species will increase when no limits are placed on its rate of growth. Population Ecology 1. Populations of mammals that live in colder climates tend to have shorter ears and limbs than populations of the same species in warm climates (coyotes are a good example of this).

More information

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points

Multiple choice 2 pts each): x 2 = 18) Essay (pre-prepared) / 15 points. 19) Short Answer: / 2 points. 20) Short Answer / 5 points P 1 Biology 217: Ecology Second Exam Fall 2004 There should be 7 ps in this exam - take a moment and count them now. Put your name on the first p of the exam, and on each of the ps with short answer questions.

More information

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following levels of ecological organization is arranged in the correct sequence

More information

Paradigms In Conservation

Paradigms In Conservation Lecture 17, 20 Oct 2009 Paradigms & Populations Conservation Biology ECOL 406R/506R University of Arizona Fall 2009 Kevin Bonine Mary Jane Epps Readings Primack parts of Ch 5 & 6 Marmontel et al. 1997

More information

Population Ecology & Biosystematics

Population Ecology & Biosystematics Population Ecology & Biosystematics Population: a group of conspecific individuals occupying a particular place at a particular time This is an operational definition Compare with Deme: a population unevenly

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Lesson 4.1 Studying Ecology Ernst Haeckel defined ecology in 1866 as the body of knowledge concerning the economy of nature the total relations of the animal to both its inorganic

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 6: Population dynamics. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 6: Population dynamics Ilya Potapov Mathematics Department, TUT Room TD325 Living things are dynamical systems Dynamical systems theory

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology

Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology Chapter 9 Population Dynamics, Carrying Capacity, and Conservation Biology 9-1 Population Dynamics & Carrying Capacity Populations change in response to enviromental stress or changes in evironmental conditions

More information

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013

Chapter 2 Lecture. Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly. Spring 2013 Chapter 2 Lecture Density dependent growth and intraspecific competition ~ The Good, The Bad and The Ugly Spring 2013 2.1 Density dependence, logistic equation and carrying capacity dn = rn K-N Dt K Where

More information

Population Ecology Density dependence, regulation and the Allee effect

Population Ecology Density dependence, regulation and the Allee effect 2/22/15 Population Ecology Density dependence, regulation and the Allee effect ESRM 450 Wildlife Ecology and Conservation Wildlife Populations Groups of animals, all of the same species, that live together

More information

Ecology is studied at several levels

Ecology is studied at several levels Ecology is studied at several levels Ecology and evolution are tightly intertwined Biosphere = the total living things on Earth and the areas they inhabit Ecosystem = communities and the nonliving material

More information

IB 153 Fall 2006 Life histories and population regulation 9/21/2006. Life history classification schemes. r/k selection (MacArthur and Wilson 1967)

IB 153 Fall 2006 Life histories and population regulation 9/21/2006. Life history classification schemes. r/k selection (MacArthur and Wilson 1967) IB 153 Fall 26 Life histories and 9/21/26 Today's lecture: 1. Finish discussion on life histories 2. Review exponential and logistic growth equations 3. Effects of density on vital rates and consequences

More information

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization Biotic and Abiotic Factors The study of how organisms interact with each other and with their environments Scientists

More information

Chapter 4 Population Ecology

Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization The study of how organisms interact with each other and with their environments Scientists study ecology at various

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Chapter 4 TOPIC POPULATION ECOLOGY Indicator Species Serve as Biological Smoke Alarms Indicator species Provide early warning of damage to a community Can monitor environmental

More information

Population and Community Dynamics

Population and Community Dynamics Population and Community Dynamics Part 1. Genetic Diversity in Populations Pages 676 to 701 Part 2. Population Growth and Interactions Pages 702 to 745 I) Introduction I) Introduction to understand how

More information

Introduction to course: BSCI 462 of BIOL 708 R

Introduction to course: BSCI 462 of BIOL 708 R Introduction to course: BSCI 462 of BIOL 708 R Population Ecology: Fundamental concepts in plant and animal systems Spring 2013 Introduction The biology of a population = Population Ecology Issue of scale,

More information

Chapter 53 POPULATION ECOLOGY

Chapter 53 POPULATION ECOLOGY Ch. 53 Warm-Up 1. Sketch an exponential population growth curve and a logistic population growth curve. 2. What is an ecological footprint? 3. What are ways that you can reduce your ecological footprint?

More information

Exam 3. Principles of Ecology. April 14, Name

Exam 3. Principles of Ecology. April 14, Name Exam 3. Principles of Ecology. April 14, 2010. Name Directions: Perform beyond your abilities. There are 100 possible points (+ 9 extra credit pts) t N t = N o N t = N o e rt N t+1 = N t + r o N t (1-N

More information

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms Overview 1. What is ecology? APGR 40: Population Ecology and Distribution of Organisms 2. Study Figure 40.2 in your text. It shows the different levels of the biological hierarchy studied by ecologists.

More information

SATMINDER KAUR SUPERVISOR : DR HII YII SIANG

SATMINDER KAUR SUPERVISOR : DR HII YII SIANG INDUCTION OF DIAPAUSE IN Moina macrocopa INFLUENCE BY PHOTOPERIOD AND POPULATION DENSITY SATMINDER KAUR SUPERVISOR : DR HII YII SIANG INSTITUTE OF TROPICAL AQUACULTURE (satmin_27@yahoo.com) INTRODUCTION

More information

BIOL 410 Population and Community Ecology. Predation

BIOL 410 Population and Community Ecology. Predation BIOL 410 Population and Community Ecology Predation Intraguild Predation Occurs when one species not only competes with its heterospecific guild member, but also occasionally preys upon it Species 1 Competitor

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

4. Ecology and Population Biology

4. Ecology and Population Biology 4. Ecology and Population Biology 4.1 Ecology and The Energy Cycle 4.2 Ecological Cycles 4.3 Population Growth and Models 4.4 Population Growth and Limiting Factors 4.5 Community Structure and Biogeography

More information

2/16/2015. After this lecture, you will be able to: Evolution, Biodiversity and Population Ecology. Natural selection

2/16/2015. After this lecture, you will be able to: Evolution, Biodiversity and Population Ecology. Natural selection Evolution, Biodiversity and Population Ecology After this lecture, you will be able to: Chapter 3 Explain the process of natural selection and cite evidence for this process Describe the ways in which

More information

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale

BIOS 3010: ECOLOGY. Dr Stephen Malcolm. Laboratory 6: Lotka-Volterra, the logistic. equation & Isle Royale BIOS 3010: ECOLOGY Dr Stephen Malcolm Laboratory 6: Lotka-Volterra, the logistic equation & Isle Royale This is a computer-based activity using Populus software (P), followed by EcoBeaker analyses of moose

More information

Fish Conservation and Management

Fish Conservation and Management Fish Conservation and Management CONS 486 Life history: Reproduction Ross Chapter 3 Reproduction topics Reproduction Fecundity Life history strategies Reproductive Schedules Semelparity vs iteroparity

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

MODELS ONE ORDINARY DIFFERENTIAL EQUATION:

MODELS ONE ORDINARY DIFFERENTIAL EQUATION: MODELS ONE ORDINARY DIFFERENTIAL EQUATION: opulation Dynamics (e.g. Malthusian, Verhulstian, Gompertz, Logistic with Harvesting) Harmonic Oscillator (e.g. pendulum) A modified normal distribution curve

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 3: Intraspecific Competition. Lecture summary: Definition. Characteristics. Scramble & contest. Density dependence k-values

More information

Populations. ! Population: a group of organisms of the same species that are living within a certain area

Populations. ! Population: a group of organisms of the same species that are living within a certain area Population Dynamics Populations! Population: a group of organisms of the same species that are living within a certain area Species: a group of organisms that are able to reproduce and produce fertile

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability 1 2 3 4 Community and Population Ecology Chapter 6 Populations & Communities Biosphere> ecosystems> communities> populations> individuals A population is all of the individuals of the same species in a

More information

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 Lesson Description In this lesson we: Revise population ecology by working through some exam questions. Key Concepts Definition of Population A population

More information

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species

Temperature. (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species Temperature (1) directly controls metabolic rates of ectotherms (invertebrates, fish) Individual species (2) controls concentrations (3) is relatively predictable over and can provide a basis for species.

More information

FACTORS FOR INSECTS ABUNDANCE. 1. More number of species: In the animal kingdom more than 85 per cent of the species

FACTORS FOR INSECTS ABUNDANCE. 1. More number of species: In the animal kingdom more than 85 per cent of the species FACTORS FOR INSECTS ABUNDANCE Measures of dominance 1. More number of species: In the animal kingdom more than 85 per cent of the species belongs to insect group. Total number of insects described so far

More information

BIOL 410 Population and Community Ecology. Density-dependent growth 1

BIOL 410 Population and Community Ecology. Density-dependent growth 1 BIOL 410 Population and Community Ecology Density-dependent growth 1 Exponential growth N t = N 0 e rt # Model 6, Exponential growth t

More information

Ecology. How the World Works

Ecology. How the World Works Ecology How the World Works Ecology is the study of interactions between living organisms and other living organisms and non living resources that they interact with. Levels of Organization Organism- a

More information

Concepts and Principles of Population Dynamics

Concepts and Principles of Population Dynamics Reprinted from Vkislas on Nemtology Concepts and Principles of Population Dynamics H. FERRIS AND L. T. WILSON Professor, Division of Nematology, University of California, Davis, CA 956 16. Associate Professor,

More information

A population is a group of individuals of the same species occupying a particular area at the same time

A population is a group of individuals of the same species occupying a particular area at the same time A population is a group of individuals of the same species occupying a particular area at the same time Population Growth As long as the birth rate exceeds the death rate a population will grow Immigration

More information

Biology 182: Study Guide PART IV. ECOLOGY, BEHAVIOR & CONSERVATION: Ch

Biology 182: Study Guide PART IV. ECOLOGY, BEHAVIOR & CONSERVATION: Ch Biology 182: Study Guide PART IV. ECOLOGY, BEHAVIOR & CONSERVATION: Ch. 51-56 The field of ecology has expanded dramatically over the last few decades, with an ever greater focus on the effects of humans

More information

6 TH. Most Species Compete with One Another for Certain Resources. Species Interact in Five Major Ways. Some Species Evolve Ways to Share Resources

6 TH. Most Species Compete with One Another for Certain Resources. Species Interact in Five Major Ways. Some Species Evolve Ways to Share Resources Endangered species: Southern Sea Otter MILLER/SPOOLMAN ESSENTIALS OF ECOLOGY 6 TH Chapter 5 Biodiversity, Species Interactions, and Population Control Fig. 5-1a, p. 104 Species Interact in Five Major Ways

More information

REVISION: POPULATION ECOLOGY 01 OCTOBER 2014

REVISION: POPULATION ECOLOGY 01 OCTOBER 2014 REVISION: POPULATION ECOLOGY 01 OCTOBER 2014 Lesson Description In this lesson we revise: Introduction to Population Ecology What s Happening in the Environment Human Population: Analysis & Predictions

More information

DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES. Siemens Research Report

DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES. Siemens Research Report DETERMINING THE EFFECT OF DAPHNIA WHEN EXPOSED TO FISH HORMONES Siemens Research Report 0 Table of Contents Abstract...ii Executive Summary...ii Introduction...1 Materials and Methods.1 Illustration and

More information

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology

Biology 11 Unit 1: Fundamentals. Lesson 1: Ecology Biology 11 Unit 1: Fundamentals Lesson 1: Ecology Objectives In this section you will be learning about: ecosystem structure energy flow through an ecosystem photosynthesis and cellular respiration factors

More information

LECTURE 1: Introduction and Brief History of Population Ecology

LECTURE 1: Introduction and Brief History of Population Ecology WMAN 512 SPRING 2010 ADV WILDL POP ECOL LECTURE 1: Introduction and Brief History of Population Ecology Cappuccino, N. 1995. Novel approaches to the study of population dynamics. pp 2-16 in Population

More information

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories:

BIOS 3010: Ecology Lecture 14: Life Histories: 2. Components of life histories: Growth, fecundity and survivorship. 3. Components of life histories: BIOS 3010: Ecology Lecture 14: Life Histories: Lecture summary: Components of life histories: Growth. Fecundity. Survivorship. Reproductive value. Trade-offs. r- and K-selection. Habitat templates. Clutch

More information

Exam 2. Principles of Ecology. March 25, Name

Exam 2. Principles of Ecology. March 25, Name Exam 2. Principles of Ecology. March 25, 2009. Name N t = N o λ t N t = N o e rt N t+1 = N t + r o N t (1-N t /K) N t = K/(1 + [(K N o )/N o ] * e rt ) dn/dt = rn(1-n/k) N captured and marked initially

More information

A.P. Biology CH Population Ecology. Name

A.P. Biology CH Population Ecology. Name 1 A.P. Biology CH. 53 - Population Ecology Name How many ants (shown below - 6 ants / cm 2 ) would there be in an ant colony that is flat and one meter long on each side? Dispersion Patterns Matching A

More information

Focal Resource: BIGHORN SHEEP

Focal Resource: BIGHORN SHEEP Focal Resource: BIGHORN SHEEP Taxonomy and Related Information: Bighorn sheep (Ovis canadensis); south Sierra, White and Inyo Mountains, perhaps more on east side. SENSITIVITY RESULTS.7 ADAPTIVE CAPACITY

More information

14.1 Habitat And Niche

14.1 Habitat And Niche 14.1 Habitat And Niche A habitat differs from a niche. Habitat physical area in which an organism lives Niche each species plays a specific role in an ecosystem niche includes the species habitat, feeding

More information

discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations)

discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations) Basic demographic models N t+1 = N t dn/dt = r N discrete variation (e.g. semelparous populations) continuous variation (iteroparous populations) Where r is the intrinsic per capita rate of increase of

More information

Living Things and the Environment

Living Things and the Environment Unit 21.1 Living Things and the Environment Section 21.1 Organisms obtain food, water, shelter, and other things it needs to live, grow, and reproduce from its environment. An environment that provides

More information

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book

14.1. KEY CONCEPT Every organism has a habitat and a niche. 38 Reinforcement Unit 5 Resource Book 14.1 HABITAT AND NICHE KEY CONCEPT Every organism has a habitat and a niche. A habitat is all of the living and nonliving factors in the area where an organism lives. For example, the habitat of a frog

More information

Ecology and evolution. Limnology Lecture 2

Ecology and evolution. Limnology Lecture 2 Ecology and evolution Limnology Lecture 2 Outline Lab notebooks Quick and dirty ecology and evolution review The Scientific Method 1. Develop hypothesis (general models) Null hypothesis Alternative hypothesis

More information

Chapter Notes- Organism And Population

Chapter Notes- Organism And Population Chapter Notes- Organism And Population 1 CHAPTER CONCEPT NOTES Ecology # It deals with the interaction (i) Among organisms (ii) Between organisms (iii) Physical environment. Atmosphere Organism Organism

More information

CHAPTER 5. Interactions in the Ecosystem

CHAPTER 5. Interactions in the Ecosystem CHAPTER 5 Interactions in the Ecosystem 1 SECTION 3.3 - THE ECOSYSTEM 2 SECTION 3.3 - THE ECOSYSTEM Levels of Organization Individual one organism from a species. Species a group of organisms so similar

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology. Definition 1. Oikos, ology - the study of the house - the place we live. Etymology - origin and development of the the word 1. Earliest - Haeckel (1869) - comprehensive

More information

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts A Primer of Ecology Fourth Edition NICHOLAS J. GOTELLI University of Vermont Sinauer Associates, Inc. Publishers Sunderland, Massachusetts Table of Contents PREFACE TO THE FOURTH EDITION PREFACE TO THE

More information

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere)

CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) WLHS / AP Bio / Monson Name CHAPTER 52 Study Questions (An Introduction to Ecology and the Biosphere) 52.1: Earth s climate varies by latitude and season and is changing rapidly (p. 1144-1150) 1) Distinguish

More information

population size at time t, then in continuous time this assumption translates into the equation for exponential growth dn dt = rn N(0)

population size at time t, then in continuous time this assumption translates into the equation for exponential growth dn dt = rn N(0) Appendix S1: Classic models of population dynamics in ecology and fisheries science Populations do not grow indefinitely. No concept is more fundamental to ecology and evolution. Malthus hypothesized that

More information

Madhya Pradesh Bhoj Open University. Bhopal M.sc Zoology Final Year

Madhya Pradesh Bhoj Open University. Bhopal M.sc Zoology Final Year Subject : Comparative Anatomy of Vertebrates Q.1 Describe the inter-relationship of Uro chords and cephalochordates and their relationship with other deuterostomes. Q.2 Describe origin, evolution and general

More information

Evolutionary Forces. What changes populations (Ch. 17)

Evolutionary Forces. What changes populations (Ch. 17) Evolutionary Forces What changes populations (Ch. 17) Forces of evolutionary change Natural selection traits that improve survival or reproduction accumulate in the population ADAPTIVE change Genetic drift

More information

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos.

1.Introduction: 2. The Model. Key words: Prey, Predator, Seasonality, Stability, Bifurcations, Chaos. Dynamical behavior of a prey predator model with seasonally varying parameters Sunita Gakkhar, BrhamPal Singh, R K Naji Department of Mathematics I I T Roorkee,47667 INDIA Abstract : A dynamic model based

More information

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x )

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x ) Basic reproductive rate, R o = Σ l x m x umber of offspring produced by an individual female in her lifetime, can be used as multiplier to compute population growth rate if generations don t overlap. If

More information

Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses to Notonecta and Chaoborus

Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses to Notonecta and Chaoborus Limnol. Oceanogr., 38(5), 1993, 986-996 1993, by the American Society of Limnology and Oceanography, Inc. Predator-induced phenotypic plasticity in Daphnia pulex: Life history and morphological responses

More information

Examples Functional Response Numerical Response Simple predator prey models Complex interactions

Examples Functional Response Numerical Response Simple predator prey models Complex interactions Definitions Examples Functional Response Numerical Response Predation Simple predator prey models Complex interactions trophic cascades hyperpredation and subsidies indirect effects (the ecology of ff

More information

POPULATION GROWTH MODELING

POPULATION GROWTH MODELING POPULATION GROWTH MODELING INTRODUCTION All organisms tend to show the capability of unlimited exponential growth. Consequently, mathematical models have been developed to try to simulate this phenomenon.

More information

Ecology and Evolution 07 February 2007

Ecology and Evolution 07 February 2007 Ecology and Evolution 07 February 2007 Wilson & Dillard Thanks to guests 07 February READINGS: EO Wilson book chapter Annie Dillard book Chapter Friday 09 Feb: Quammen reading, Mayr Interview Monday 12

More information

Evolution of Population Characteristics - Life History

Evolution of Population Characteristics - Life History Population Biology Although most trees and perennial tropical plants reproduce about once a year, the "Suicide Tree", Tachygalia versicolor is a long-lived canopy species that reproduces only once and

More information

Introduction to population dynamics & adaptation

Introduction to population dynamics & adaptation Introduction to population dynamics & adaptation David Claessen Ecole Normale Supérieure CERES-ERTI, 24 rue Lhomond, Paris & Laboratory «Ecology and Evolution» UMR 7625 CNRS-ENS-UPMC 13/06/12 1 Plan Introduction

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Species 1 isocline. Species 2 isocline

Species 1 isocline. Species 2 isocline 1 Name BIOLOGY 150 Final Exam Winter Quarter 2002 Before starting please write your name on each page! Last name, then first name. You have tons of time. Take your time and read each question carefully

More information

14.1. Every organism has a habitat and a niche. A habitat differs from a niche. Interactions in Ecosystems CHAPTER 14.

14.1. Every organism has a habitat and a niche. A habitat differs from a niche. Interactions in Ecosystems CHAPTER 14. SECTION 14.1 HABITAT AND NICHE Study Guide KEY CONCEPT Every organism has a habitat and a niche. VOCABULARY habitat ecological niche competitive exclusion ecological equivalent A habitat differs from a

More information

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences BIOS 5970: Plant-Herbivore Interactions Dr. Stephen Malcolm, Department of Biological Sciences D. POPULATION & COMMUNITY DYNAMICS Week 10. Population models 1: Lecture summary: Distribution and abundance

More information

Ecology Student Edition. A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for food. D. Sparrows use plants for shelter.

Ecology Student Edition. A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for food. D. Sparrows use plants for shelter. Name: Date: 1. Which of the following does not give an example of how sparrows use resources in their environment to survive? A. Sparrows breathe air. B. Sparrows drink water. C. Sparrows use the sun for

More information