Belo Horizonte, Minas Gerais, Brasil. Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais, Brasil

Size: px
Start display at page:

Download "Belo Horizonte, Minas Gerais, Brasil. Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais, Brasil"

Transcription

1 Detailed computational results for the paper entitled The k-cardinality Tree Problem: Reformulations and Lagrangian Relaxation, under revision for Discrete Applied Mathematics Frederico P. Quintão a,b Alexandre Salles da Cunha b,,1 Geraldo R. Mateus b,2 Abilio Lucena c,3 a Google Engineering Belo Horizonte, Minas Gerais, Brasil b Departamento de Ciência da Computação Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais, Brasil c Departamento de Administração and Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil 1 Introduction In this manuscript, we report detailed computational results for the paper The k-cardinality Tree Problem: Reformulations and Lagrangian Relaxation. The results presented here were summarized in the main text body of the paper. For the sake of completeness, we describe in Section 2 all instances in our test bed. Two complete sets of computational results are presented in this manuscript: in the first one (see Section 3), we evaluate the quality of the Linear Programming bounds of each proposed formulation, as well as the overall performance Corresponding author addresses: fred@dcc.ufmg.br (Frederico P. Quintão), acunha@dcc.ufmg.br (Alexandre Salles da Cunha), mateus@dcc.ufmg.br (Geraldo R. Mateus), abiliolucena@globo.com (Abilio Lucena ). 1 Alexandre Salles da Cunha was partially funded by CNPq grants / and / Geraldo Robson Mateus was partially funded by CNPq grant / Abilio Lucena was partially funded by CNPq grant / Preprint submitted to Elsevier 21 October 2008

2 of Branch-and-bound algorithms based on them. In the second set (Section 4), we indicate the main results attained by the Lagrangian Relaxation procedure proposed in the paper. 2 Instances Our test bed involves 3 sets of instances. The first set, denoted g, was proposed by Blesa and Xhafa [2] and contains instances corresponding to 4-regular graphs with n ranging from 25 to 400. For all instances in this set, the same cardinality k = 20 was imposed. The second test set, named d, was proposed by Blum and Blesa [4]. Instances in this set are organized in groups, according to the types of graphs they were generated from. The first group of instances in set d, whose names start with a prefix bb, corresponds to grid graphs with n = 225 and k {20, 40, 60, 80}. The second group consists of some instances in set g, where k assumes values other than k = 20. The third group comes from the set of benchmark instances for the Steiner Problem in Graphs [1] and have n {500, 1000} and various values of k. These instances start their names with prefix stein followed by c or d, depending, on the Steiner set of instances in [1] (c or d) they were generated from. The last group of instances in this set are Leighton graphs [4,1], having n = 450 and k {45, 135, 225, 405}. The third and last set of instances in our study, named NWG, consists of nodeweighted grid graphs generated as suggested in [5]. We considered instances with sizes varying from to with integer node weights, uniformly chosen at random from the interval [10, 1000]. For intances in this set, we have fixed k n, since our computational experience suggests these are hard values 2 for the tree cardinality (see Kataoka et al. [6] as well). All our computational testings were performed with a Pentium XEON machine running at 3.0 GHz and with 2 GBytes of RAM memory, under Linux operating system. We used the state of the art CPLEX package, version , under default settings as the MIP solver, to evaluate the two proposed reformulations. 3 Linear Programming Strength and Branch-and-bound computational results In this section, we present the detailed computational results summarized at section of the paper. In Tables 1-3, we present Linear Programming re- 2

3 sults for each set of instances tested here. In the first four columns of these Tables, we indicate each instance name, n, m and k. In the following two columns, we report on the LP bound given by the multicommodity flow reformulation (LP MCFR ) and the time taken (in seconds) to evaluate this bound. Similar entries are presented in the next two columns, for MTZR. In the last column of these Tables, we present the ratio between LP MCFR and LP MTZR, the LP bound given by MTZR. Detailed computational results obtained by MTZR based Branch-and-bound algorithms are presented in Tables 4-7. Due to the difficulties mentioned above to evaluate LP MCFR, we do not quote results for the BB algorithm based on this reformulation. Typically these algorithms involved substantially less nodes but much longer computing times (sometimes more than a week). Detailed results for set d are split in Tables 5 and 6. The first four columns in Tables 4-7 are the instance name, n, m and k. In the next four, we quote the number of nodes in the enumeration tree, the time taken to run the algorithm to completion (in seconds), the best upper bound found during the search (BestUB), and, finally the status of the BB algorithm when it ended. An status OPT and OFM respectively indicates that CPLEX solved the instance to proven optimality and that CPLEX ran out of memory before completing it. An indication (+) right after OPT and OFM means that the upper bound found by CPLEX improves on the best previously known. As it can be appreciated from the Tables, 67 new optimality certificates were given. In particular, 16 new best known upper bounds were presented for instances in set d. 4 Lagrangian Relaxation computational results In this Section, we present detailed computational results summarized in Section 3.6 of the paper. Detailed results obtained by the Lagrangian Relaxation procedure are presented in Tables Due to the large amount of data, results for set d are split in Tables 9 and 10. The first four columns in these Tables are the instance name, n, m and k. In the next four columns, we present specific results attained by the method: the best dual bound, z d, the best Lagrangian upper bound, z, the implied duality gap,, the proportion of edges we managed to price out and the time (in seconds) taken to run the algorithm, t(s). In the following three columns, we present the ratio between z d and LP MCFR, the upper bound implied by the Kruskal Dynamic Tree algorithm of [3] and, finally, the best known upper bounds (BKV). z z d z d 3

4 MCFR MTZR n m k LP MCF R t(s) LP MTZR t(s) LP MCF R LP MTZR g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g Table 1 Linear programming results - set g 4

5 References [1] J.E. Beasley. OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society, 41(11): , [2] M.J. Blesa and F. Xhafa. A C++ Implementation of Tabu Search for v- Cardinality Tree Problem based on Generic Programming and Component reuse. In Net Objective Days 2000, pages , [3] C. Blum. Revisiting dynamic programming for finding optimal subtrees in trees. European Journal of Operational Research, 177: , [4] C. Blum and M. J. Blesa. New Metaheuristic approaches for the edge-weighted k- cardinality tree problem. Computers and Operations Research, 32(6): , [5] J. Brimberg, D. Urosević, and N. Mladenović. Variable neighborhood search for the vertex weighted k-cardinality tree problem. European Journal of Operational Research, 171:74 84, [6] S. Kataoka, N. Araki, and T. Yamada. Upper and lower bounding procedures for minimum rooted k-subtree problem. European Journal of Operational Research, 122: ,

6 MCFR MTZR n m k LP MCF R t(s) LP MTZR t(s) LP MCF R LP MTZR bb15x bb15x bb45x bb45x g g steinc steinc steind le450 15a Table 2 Linear programming results - set d

7 MCFR MTZR n m k LP MCF R t(s) LP MTZR t(s) LP MCF R LP MTZR NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG Table 3 Linear programming results - set NWG 7

8 BB Results n m k nodes t(s) BestUB Status g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT g OPT Table 4 Branch-and-bound results, MTZR, set g. 8

9 BB Results n m k nodes t(s) BestUB Status bb15x OPT OPT OPT OPT bb15x OPT OPT OPT OPT bb45x OPT OPT OFM OFM bb45x OPT OPT OFM OFM bb33x OFM OFM OFM OFM bb33x OFM OFM OFM OFM g OPT OPT OPT OPT g OPT+ Table 5 Branch-and-bound results, MTZR, set d, part I OPT OPT OPT OPT 9

10 BB Results n m k nodes t(s) BestUB Status g OPT OFM OFM OFM OFM OFM g OPT OFM OFM OFM OFM OFM+ steinc OPT OPT OPT OPT OFM steinc OPT OPT OPT OPT OPT+ steind OFM OFM OFM OFM steind OPT OPT OFM OFM OFM le450 15a OPT Table 6 Branch-and-bound results, MTZR, set d, part II OPT OPT OFM 10

11 BB Results n m k nodes t(s) BestUB Status NWG OPT NWG OPT NWG OPT NWG OPT NWG OPT NWG OPT NWG OFM NWG OFM NWG OFM NWG OFM NWG OFM NWG OFM NWG OFM NWG OFM NWG OFM Table 7 Branch-and-bound results, MTZR, set NWG. 11

12 Lagrangian Relaxation n m k z d z gap (%) Fix (%) t(s) z d LP MCF R z DP BKV g g g g g g g g g g g g g g g g g g g g g g g g g g g g g g Table 8 Lagrangian Relaxation results, set g. 12

13 Lagrangian Relaxation n m k z d z gap (%) Fix (%) t(s) z d LP MCF R z DP BKV bb15x bb15x bb45x bb45x bb33x bb33x bb100x bb100x Table 9 Lagrangian Relaxation results - set d, part I

14 Lagrangian Relaxation n m k z d z gap (%) Fix (%) t(s) z d LP MCF R z DP BKV g g g g steinc steinc steind steind le450 15a Table Lagrangian Relaxation results - set d, part II

15 Lagrangian Relaxation n m k z d z gap (%) Fix (%) t(s) z d LP MCF R z DP BKV NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG NWG Table 11 Lagrangian Relaxation results - set NWG. 15

Formulations and Algorithms for Minimum Connected Dominating Set Problems

Formulations and Algorithms for Minimum Connected Dominating Set Problems Formulations and Algorithms for Minimum Connected Dominating Set Problems Abilio Lucena 1 Alexandre Salles da Cunha 2 Luidi G. Simonetti 3 1 Universidade Federal do Rio de Janeiro 2 Universidade Federal

More information

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem

Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Stabilized Branch-and-cut-and-price for the Generalized Assignment Problem Alexandre Pigatti, Marcus Poggi de Aragão Departamento de Informática, PUC do Rio de Janeiro {apigatti, poggi}@inf.puc-rio.br

More information

A Compact Linearisation of Euclidean Single Allocation Hub Location Problems

A Compact Linearisation of Euclidean Single Allocation Hub Location Problems A Compact Linearisation of Euclidean Single Allocation Hub Location Problems J. Fabian Meier 1,2, Uwe Clausen 1 Institute of Transport Logistics, TU Dortmund, Germany Borzou Rostami 1, Christoph Buchheim

More information

A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem

A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem A branch-and-cut algorithm for the single commodity uncapacitated fixed charge network flow problem Francisco Ortega and Laurence Wolsey CORE and INMA Université Catholique de Louvain September 28, 2000

More information

A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization Problem

A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization Problem Journal of Mathematical Modelling and Algorithms 2: 37 56, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 37 A Branch-and-Bound Algorithm to Solve a Multi-level Network Optimization

More information

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems

Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Math. Prog. Comp. (2010) 2:259 290 DOI 10.1007/s12532-010-0019-z FULL LENGTH PAPER Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems Artur Pessoa Eduardo Uchoa

More information

A Lagrangian bound for many-to-many assignment problems - Additional Results

A Lagrangian bound for many-to-many assignment problems - Additional Results Noname manuscript No. (will be inserted by the editor) A Lagrangian bound for many-to-many assignment problems - Additional Results Igor Litvinchev Socorro Rangel Jania Saucedo May, 2008 / last updated:

More information

Solving the maximum edge weight clique problem via unconstrained quadratic programming

Solving the maximum edge weight clique problem via unconstrained quadratic programming European Journal of Operational Research 181 (2007) 592 597 Discrete Optimization Solving the maximum edge weight clique problem via unconstrained quadratic programming Bahram Alidaee a, Fred Glover b,

More information

Disconnecting Networks via Node Deletions

Disconnecting Networks via Node Deletions 1 / 27 Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms Siqian Shen 1 J. Cole Smith 2 R. Goli 2 1 IOE, University of Michigan 2 ISE, University of Florida 2012 INFORMS

More information

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs

- Well-characterized problems, min-max relations, approximate certificates. - LP problems in the standard form, primal and dual linear programs LP-Duality ( Approximation Algorithms by V. Vazirani, Chapter 12) - Well-characterized problems, min-max relations, approximate certificates - LP problems in the standard form, primal and dual linear programs

More information

Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints

Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints Alysson M. Costa 1, Jean-François Cordeau 2 and Gilbert Laporte 1 1 Centre for Research on Transportation

More information

Integer Programming. Wolfram Wiesemann. December 6, 2007

Integer Programming. Wolfram Wiesemann. December 6, 2007 Integer Programming Wolfram Wiesemann December 6, 2007 Contents of this Lecture Revision: Mixed Integer Programming Problems Branch & Bound Algorithms: The Big Picture Solving MIP s: Complete Enumeration

More information

Event-based MIP models for the resource constrained project scheduling problem

Event-based MIP models for the resource constrained project scheduling problem Event-based MIP models for the resource constrained project scheduling problem Oumar Koné, Christian Artigues, Pierre Lopez LAAS-CNRS, Université de Toulouse, France Marcel Mongeau IMT, Université de Toulouse,

More information

A Benders decomposition based framework for solving cable trench problems

A Benders decomposition based framework for solving cable trench problems A Benders decomposition based framework for solving cable trench problems Hatice Calik 1, Markus Leitner 2, and Martin Luipersbeck 2 1 Department of Computer Science, Université Libre de Bruxelles, Brussels,

More information

Discrete lot sizing and scheduling on parallel machines: description of a column generation approach

Discrete lot sizing and scheduling on parallel machines: description of a column generation approach 126 IO 2013 XVI Congresso da Associação Portuguesa de Investigação Operacional Discrete lot sizing and scheduling on parallel machines: description of a column generation approach António J.S.T. Duarte,

More information

The Multidimensional Knapsack Problem: Structure and Algorithms

The Multidimensional Knapsack Problem: Structure and Algorithms The Multidimensional Knapsack Problem: Structure and Algorithms Jakob Puchinger NICTA Victoria Laboratory Department of Computer Science & Software Engineering University of Melbourne, Australia jakobp@csse.unimelb.edu.au

More information

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano

Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS. Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano Parallel PIPS-SBB Multi-level parallelism for 2-stage SMIPS Lluís-Miquel Munguia, Geoffrey M. Oxberry, Deepak Rajan, Yuji Shinano ... Our contribution PIPS-PSBB*: Multi-level parallelism for Stochastic

More information

arxiv: v1 [cs.ds] 31 Aug 2018

arxiv: v1 [cs.ds] 31 Aug 2018 Enhanced arc-flow formulations to minimize weighted completion time on identical parallel machines Arthur Kramer, Mauro Dell Amico, Manuel Iori Dipartimento di Scienze e Metodi dell Ingegneria Università

More information

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 8. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 8 Dr. Ted Ralphs ISE 418 Lecture 8 1 Reading for This Lecture Wolsey Chapter 2 Nemhauser and Wolsey Sections II.3.1, II.3.6, II.4.1, II.4.2, II.5.4 Duality for Mixed-Integer

More information

The CPLEX Library: Mixed Integer Programming

The CPLEX Library: Mixed Integer Programming The CPLEX Library: Mixed Programming Ed Rothberg, ILOG, Inc. 1 The Diet Problem Revisited Nutritional values Bob considered the following foods: Food Serving Size Energy (kcal) Protein (g) Calcium (mg)

More information

Column Generation for Extended Formulations

Column Generation for Extended Formulations 1 / 28 Column Generation for Extended Formulations Ruslan Sadykov 1 François Vanderbeck 2,1 1 INRIA Bordeaux Sud-Ouest, France 2 University Bordeaux I, France ISMP 2012 Berlin, August 23 2 / 28 Contents

More information

A heuristic algorithm for the Aircraft Landing Problem

A heuristic algorithm for the Aircraft Landing Problem 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 A heuristic algorithm for the Aircraft Landing Problem Amir Salehipour

More information

A column generation approach to the discrete lot sizing and scheduling problem on parallel machines

A column generation approach to the discrete lot sizing and scheduling problem on parallel machines A column generation approach to the discrete lot sizing and scheduling problem on parallel machines António J.S.T. Duarte and J.M.V. Valério de Carvalho Abstract In this work, we study the discrete lot

More information

Optimizing the Efficiency of the Liver Allocation System through Region Selection

Optimizing the Efficiency of the Liver Allocation System through Region Selection Optimizing the Efficiency of the Liver Allocation System through Region Selection Nan Kong Department of Industrial and Management Systems Engineering, University of South Florida Andrew J. Schaefer, Brady

More information

Feasibility Pump Heuristics for Column Generation Approaches

Feasibility Pump Heuristics for Column Generation Approaches 1 / 29 Feasibility Pump Heuristics for Column Generation Approaches Ruslan Sadykov 2 Pierre Pesneau 1,2 Francois Vanderbeck 1,2 1 University Bordeaux I 2 INRIA Bordeaux Sud-Ouest SEA 2012 Bordeaux, France,

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2017 04 07 Lecture 8 Linear and integer optimization with applications

More information

Discrete Optimization. Local search intensified: Very large-scale variable neighborhood search for the multi-resource generalized assignment problem

Discrete Optimization. Local search intensified: Very large-scale variable neighborhood search for the multi-resource generalized assignment problem Discrete Optimization 6 (2009) 370 377 Contents lists available at ScienceDirect Discrete Optimization journal homepage: www.elsevier.com/locate/disopt Local search intensified: Very large-scale variable

More information

Fixed-charge transportation problems on trees

Fixed-charge transportation problems on trees Fixed-charge transportation problems on trees Gustavo Angulo * Mathieu Van Vyve * gustavo.angulo@uclouvain.be mathieu.vanvyve@uclouvain.be November 23, 2015 Abstract We consider a class of fixed-charge

More information

A Hub Location Problem with Fully Interconnected Backbone and Access Networks

A Hub Location Problem with Fully Interconnected Backbone and Access Networks A Hub Location Problem with Fully Interconnected Backbone and Access Networks Tommy Thomadsen Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby Denmark tt@imm.dtu.dk

More information

Expert Systems With Applications

Expert Systems With Applications Expert Systems With Applications 54 (2016) 398 402 Contents lists available at ScienceDirect Expert Systems With Applications journal homepage: www.elsevier.com/locate/eswa Erratum Erratum to A cooperative

More information

Working Paper Series HEARIN CENTER FOR ENTERPRISE SCIENCE

Working Paper Series HEARIN CENTER FOR ENTERPRISE SCIENCE HCES -05-04 Working Paper Series HEARIN CENTER FOR ENTERPRISE SCIENCE Solving the Maximum Edge Weight Clique Problem via Unconstrained Quadratic Programming By Gary Kochenberger Fred Glover Bahram Alidaee

More information

Integer programming for the MAP problem in Markov random fields

Integer programming for the MAP problem in Markov random fields Integer programming for the MAP problem in Markov random fields James Cussens, University of York HIIT, 2015-04-17 James Cussens, University of York MIP for MRF MAP HIIT, 2015-04-17 1 / 21 Markov random

More information

Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem

Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem Online Companion for Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem Germán Morales-España, Jesus M. Latorre, and Andres Ramos Universidad Pontificia Comillas, Spain Institute

More information

Lecture 9: Dantzig-Wolfe Decomposition

Lecture 9: Dantzig-Wolfe Decomposition Lecture 9: Dantzig-Wolfe Decomposition (3 units) Outline Dantzig-Wolfe decomposition Column generation algorithm Relation to Lagrangian dual Branch-and-price method Generated assignment problem and multi-commodity

More information

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse

Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Strengthened Benders Cuts for Stochastic Integer Programs with Continuous Recourse Merve Bodur 1, Sanjeeb Dash 2, Otay Günlü 2, and James Luedte 3 1 Department of Mechanical and Industrial Engineering,

More information

A hard integer program made easy by lexicography

A hard integer program made easy by lexicography Noname manuscript No. (will be inserted by the editor) A hard integer program made easy by lexicography Egon Balas Matteo Fischetti Arrigo Zanette October 12, 2010 Abstract A small but notoriously hard

More information

Decision Diagrams for Discrete Optimization

Decision Diagrams for Discrete Optimization Decision Diagrams for Discrete Optimization Willem Jan van Hoeve Tepper School of Business Carnegie Mellon University www.andrew.cmu.edu/user/vanhoeve/mdd/ Acknowledgments: David Bergman, Andre Cire, Samid

More information

Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions

Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions Annals of Operations Research 117, 71 93, 2002 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions

More information

An efficient ILP formulation for the single machine scheduling problem

An efficient ILP formulation for the single machine scheduling problem An efficient ILP formulation for the single machine scheduling problem Cyril Briand a,b,, Samia Ourari a,b,c, Brahim Bouzouia c a CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France b Université

More information

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound

18 hours nodes, first feasible 3.7% gap Time: 92 days!! LP relaxation at root node: Branch and bound The MIP Landscape 1 Example 1: LP still can be HARD SGM: Schedule Generation Model Example 157323 1: LP rows, still can 182812 be HARD columns, 6348437 nzs LP relaxation at root node: 18 hours Branch and

More information

A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION

A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION A MIXED INTEGER DISJUNCTIVE MODEL FOR TRANSMISSION NETWORK EXPANSION Laura Bahiense*, Gerson C. Oliveira (PUC/Rio), Mario Pereira*, Member, Sergio Granville*, Member Abstract: The classical non-linear

More information

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA

A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem. Ryutsu Keizai University Naoto KATAYAMA A Capacity Scaling Procedure for the Multi-Commodity Capacitated Network Design Problem Ryutsu Keizai University Naoto KATAYAMA Problems 2006 1 Multi-Commodity Network Design Problem The basic model for

More information

SUPPLEMENTARY MATERIAL: General mixed Poisson regression models with varying dispersion

SUPPLEMENTARY MATERIAL: General mixed Poisson regression models with varying dispersion SUPPLEMENTARY MATERIAL: General mixed Poisson regression models with varying dispersion Wagner Barreto-Souza and Alexandre B. Simas Departamento de Estatística, Universidade Federal de Minas Gerais Pampulha,

More information

Analyzing the computational impact of individual MINLP solver components

Analyzing the computational impact of individual MINLP solver components Analyzing the computational impact of individual MINLP solver components Ambros M. Gleixner joint work with Stefan Vigerske Zuse Institute Berlin MATHEON Berlin Mathematical School MINLP 2014, June 4,

More information

Orbital Conflict. Jeff Linderoth. Jim Ostrowski. Fabrizio Rossi Stefano Smriglio. When Worlds Collide. Univ. of Wisconsin-Madison

Orbital Conflict. Jeff Linderoth. Jim Ostrowski. Fabrizio Rossi Stefano Smriglio. When Worlds Collide. Univ. of Wisconsin-Madison Orbital Conflict When Worlds Collide Jeff Linderoth Univ. of Wisconsin-Madison Jim Ostrowski University of Tennessee Fabrizio Rossi Stefano Smriglio Univ. of L Aquila MIP 2014 Columbus, OH July 23, 2014

More information

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem

Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem Benders Decomposition for the Uncapacitated Multicommodity Network Design Problem 1 Carlos Armando Zetina, 1 Ivan Contreras, 2 Jean-François Cordeau 1 Concordia University and CIRRELT, Montréal, Canada

More information

LieAlgDB. A database of Lie algebras 2.2. Serena Cicalò. Willem de Graaf. Csaba Schneider. The GAP Team. 9 April 2018

LieAlgDB. A database of Lie algebras 2.2. Serena Cicalò. Willem de Graaf. Csaba Schneider. The GAP Team. 9 April 2018 LieAlgDB A database of Lie algebras 2.2 9 April 2018 Serena Cicalò Willem de Graaf Csaba Schneider The GAP Team LieAlgDB 2 Serena Cicalò Email: cicalo@science.unitn.it Address: Dipartimento di Matematica

More information

An approach for the Class/Teacher Timetabling Problem using Graph Coloring

An approach for the Class/Teacher Timetabling Problem using Graph Coloring An approach for the Class/Teacher Timetabling Problem using Graph Coloring G. S. Bello M. C. Rangel M. C. S. Boeres Received: date / Accepted: date Keywords Timetabling Graph Coloring Metaheuristics Tabu

More information

Event-based formulations for the RCPSP with production and consumption of resources

Event-based formulations for the RCPSP with production and consumption of resources Event-based formulations for the RCPSP with production and consumption of resources Oumar KONE 1, Christian ARTIGUES 1, Pierre LOPEZ 1, and Marcel MONGEAU 2 May 2010 1: CNRS ; LAAS ; 7 avenue du colonel

More information

On the exact solution of a large class of parallel machine scheduling problems

On the exact solution of a large class of parallel machine scheduling problems 1 / 23 On the exact solution of a large class of parallel machine scheduling problems Teobaldo Bulhões 2 Ruslan Sadykov 1 Eduardo Uchoa 2 Anand Subramanian 3 1 Inria Bordeaux and Univ. Bordeaux, France

More information

Technische Universität Ilmenau Institut für Mathematik

Technische Universität Ilmenau Institut für Mathematik Technische Universität Ilmenau Institut für Mathematik Preprint No. M 14/05 Copositivity tests based on the linear complementarity problem Carmo Bras, Gabriele Eichfelder and Joaquim Judice 28. August

More information

Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs

Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs Matteo Fischetti 1, Ivana Ljubić 2, Markus Sinnl 2 1 Department of

More information

Week Cuts, Branch & Bound, and Lagrangean Relaxation

Week Cuts, Branch & Bound, and Lagrangean Relaxation Week 11 1 Integer Linear Programming This week we will discuss solution methods for solving integer linear programming problems. I will skip the part on complexity theory, Section 11.8, although this is

More information

Computing with multi-row Gomory cuts

Computing with multi-row Gomory cuts Computing with multi-row Gomory cuts Daniel G. Espinoza Departamento de Ingeniería Industrial, Universidad de Chile, Av. República 71, Santiago, 837-439, Chile Abstract Recent advances on the understanding

More information

Computational testing of exact separation for mixed-integer knapsack problems

Computational testing of exact separation for mixed-integer knapsack problems Computational testing of exact separation for mixed-integer knapsack problems Pasquale Avella (joint work with Maurizio Boccia and Igor Vasiliev ) DING - Università del Sannio Russian Academy of Sciences

More information

Recoverable Robust Knapsacks: Γ -Scenarios

Recoverable Robust Knapsacks: Γ -Scenarios Recoverable Robust Knapsacks: Γ -Scenarios Christina Büsing, Arie M. C. A. Koster, and Manuel Kutschka Abstract In this paper, we investigate the recoverable robust knapsack problem, where the uncertainty

More information

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms

Integer Program Reformulation for Robust. Branch-and-Cut-and-Price Algorithms Integer Program Reformulation for Robust Branch-and-Cut-and-Price Algorithms Marcus Poggi de Aragão 1, Eduardo Uchoa 2 1 Departamento de Informática, PUC-Rio, poggi@inf.puc-rio.br 2 Dep. de Engenharia

More information

The Core Concept for the Multidimensional Knapsack Problem

The Core Concept for the Multidimensional Knapsack Problem The Core Concept for the Multidimensional Knapsack Problem Jakob Puchinger 1, Günther R. Raidl 1, and Ulrich Pferschy 2 1 Institute of Computer Graphics and Algorithms Vienna University of Technology,

More information

The Steiner Tree Challenge: An updated Study

The Steiner Tree Challenge: An updated Study The Steiner Tree Challenge: An updated Study Tobias Polzin 1 and Siavash Vahdati Daneshmand 2 1 HaCon Ingenieurgesellschaft mbh, Hannover, Germany 2 Theoretische Informatik, Universität Mannheim, Germany

More information

Conic optimization under combinatorial sparsity constraints

Conic optimization under combinatorial sparsity constraints Conic optimization under combinatorial sparsity constraints Christoph Buchheim and Emiliano Traversi Abstract We present a heuristic approach for conic optimization problems containing sparsity constraints.

More information

Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints

Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints Nilay Noyan Andrzej Ruszczyński March 21, 2006 Abstract Stochastic dominance relations

More information

A New Compact Formulation for Discrete p-dispersion

A New Compact Formulation for Discrete p-dispersion Gutenberg School of Management and Economics & Research Unit Interdisciplinary Public Policy Discussion Paper Series A New Compact Formulation for Discrete p-dispersion David Sayah and Stefan Irnich November

More information

POLYNOMIAL MILP FORMULATIONS

POLYNOMIAL MILP FORMULATIONS POLYNOMIAL MILP FORMULATIONS Miller-Tucker-Zemlin (J. ACM, 1960); Gavish-Graves (MIT Tech. Report 1978) Fox-Gavish-Graves (Operations Research 1980); Wong (IEEE Conference, 1980); Claus (SIAM J. on Algebraic

More information

The single machine earliness and tardiness scheduling problem: lower bounds and a branch-and-bound algorithm*

The single machine earliness and tardiness scheduling problem: lower bounds and a branch-and-bound algorithm* Volume 29, N. 2, pp. 107 124, 2010 Copyright 2010 SBMAC ISSN 0101-8205 www.scielo.br/cam The single machine earliness and tardiness scheduling problem: lower bounds and a branch-and-bound algorithm* DÉBORA

More information

Integer Programming Part II

Integer Programming Part II Be the first in your neighborhood to master this delightful little algorithm. Integer Programming Part II The Branch and Bound Algorithm learn about fathoming, bounding, branching, pruning, and much more!

More information

The Multidimensional Knapsack Problem: Structure and Algorithms

The Multidimensional Knapsack Problem: Structure and Algorithms The Multidimensional Knapsack Problem: Structure and Algorithms Jakob Puchinger, Günther Raidl, Ulrich Pferschy To cite this version: Jakob Puchinger, Günther Raidl, Ulrich Pferschy. The Multidimensional

More information

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems.

Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Adaptive Dynamic Cost Updating Procedure for Solving Fixed Charge Network Flow Problems. Artyom Nahapetyan, Panos Pardalos Center for Applied Optimization Industrial and Systems Engineering Department

More information

Integer program reformulation for robust branch-and-cut-and-price

Integer program reformulation for robust branch-and-cut-and-price Integer program reformulation for robust branch-and-cut-and-price Marcus Poggi de Aragão Informática PUC-Rio Eduardo Uchoa Engenharia de Produção Universidade Federal Fluminense Outline of the talk Robust

More information

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths

Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths Weighted Acyclic Di-Graph Partitioning by Balanced Disjoint Paths H. Murat AFSAR Olivier BRIANT Murat.Afsar@g-scop.inpg.fr Olivier.Briant@g-scop.inpg.fr G-SCOP Laboratory Grenoble Institute of Technology

More information

Solving the Minimum String Cover Problem

Solving the Minimum String Cover Problem Solving the Minimum String Cover Problem Stefan Canzar 1 Tobias Marschall 1 Sven Rahmann 2,3 Chris Schwiegelshohn 4 1 Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amsterdam, Netherlands

More information

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2

Pedro Munari - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Pedro Munari [munari@dep.ufscar.br] - COA 2017, February 10th, University of Edinburgh, Scotland, UK 2 Outline Vehicle routing problem; How interior point methods can help; Interior point branch-price-and-cut:

More information

Mixed Integer Programming (MIP) for Causal Inference and Beyond

Mixed Integer Programming (MIP) for Causal Inference and Beyond Mixed Integer Programming (MIP) for Causal Inference and Beyond Juan Pablo Vielma Massachusetts Institute of Technology Columbia Business School New York, NY, October, 2016. Traveling Salesman Problem

More information

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation

Outline. Relaxation. Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING. 1. Lagrangian Relaxation. Lecture 12 Single Machine Models, Column Generation Outline DMP204 SCHEDULING, TIMETABLING AND ROUTING 1. Lagrangian Relaxation Lecture 12 Single Machine Models, Column Generation 2. Dantzig-Wolfe Decomposition Dantzig-Wolfe Decomposition Delayed Column

More information

Decision Diagrams: Tutorial

Decision Diagrams: Tutorial Decision Diagrams: Tutorial John Hooker Carnegie Mellon University CP Summer School Cork, Ireland, June 2016 Decision Diagrams Used in computer science and AI for decades Logic circuit design Product configuration

More information

Orbital Branching. Department of Industrial and Systems Engineering, Lehigh University 200 W. Packer Ave. Bethlehem, PA 18015, USA

Orbital Branching. Department of Industrial and Systems Engineering, Lehigh University 200 W. Packer Ave. Bethlehem, PA 18015, USA Orbital Branching JAMES OSTROWSKI, JEFF LINDEROTH Department of Industrial and Systems Engineering, Lehigh University 200 W. Packer Ave. Bethlehem, PA 18015, USA jao204@lehigh.edu jtl3@lehigh.edu FABRIZIO

More information

Column Basis Reduction, Decomposable Knapsack. and Cascade Problems. Gábor Pataki. joint work with Bala Krishnamoorthy. What is basis reduction?

Column Basis Reduction, Decomposable Knapsack. and Cascade Problems. Gábor Pataki. joint work with Bala Krishnamoorthy. What is basis reduction? Column Basis Reduction, Decomposable Knapsack and Cascade Problems Slide 1 Gábor Pataki Dept. of Statistics and Operations Research UNC, Chapel Hill joint work with Bala Krishnamoorthy Dept. of Mathematics,

More information

ILP-Based Reduced Variable Neighborhood Search for Large-Scale Minimum Common String Partition

ILP-Based Reduced Variable Neighborhood Search for Large-Scale Minimum Common String Partition Available online at www.sciencedirect.com Electronic Notes in Discrete Mathematics 66 (2018) 15 22 www.elsevier.com/locate/endm ILP-Based Reduced Variable Neighborhood Search for Large-Scale Minimum Common

More information

DM545 Linear and Integer Programming. Lecture 13 Branch and Bound. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 13 Branch and Bound. Marco Chiarandini DM545 Linear and Integer Programming Lecture 13 Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 2 Exam Tilladt Håndscanner/digital pen og ordbogsprogrammet

More information

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting

A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting A Branch-and-Cut-and-Price Algorithm for One-Dimensional Stock Cutting and Two-Dimensional Two-Stage Cutting G. Belov,1 G. Scheithauer University of Dresden, Institute of Numerical Mathematics, Mommsenstr.

More information

Cutting Planes in SCIP

Cutting Planes in SCIP Cutting Planes in SCIP Kati Wolter Zuse-Institute Berlin Department Optimization Berlin, 6th June 2007 Outline 1 Cutting Planes in SCIP 2 Cutting Planes for the 0-1 Knapsack Problem 2.1 Cover Cuts 2.2

More information

3.4 Relaxations and bounds

3.4 Relaxations and bounds 3.4 Relaxations and bounds Consider a generic Discrete Optimization problem z = min{c(x) : x X} with an optimal solution x X. In general, the algorithms generate not only a decreasing sequence of upper

More information

An Exact Algorithm for the Steiner Tree Problem with Delays

An Exact Algorithm for the Steiner Tree Problem with Delays Electronic Notes in Discrete Mathematics 36 (2010) 223 230 www.elsevier.com/locate/endm An Exact Algorithm for the Steiner Tree Problem with Delays Valeria Leggieri 1 Dipartimento di Matematica, Università

More information

Solving bilevel combinatorial optimization as bilinear min-max optimization via a branch-and-cut algorithm

Solving bilevel combinatorial optimization as bilinear min-max optimization via a branch-and-cut algorithm Solving bilevel combinatorial optimization as bilinear min-max optimization via a branch-and-cut algorithm Artur Alves Pessoa Production Engineering Department - Fluminense Federal University, Rua Passo

More information

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006

Matteo Fischetti, DEI, University of Padova. COFIN Matheon workshop, Villa Vigoni (Como), May 2006 Matteo Fischetti, DEI, University of Padova COFIN Matheon workshop, Villa Vigoni (Como), May 2006 1 MIP solvers for hard optimization problems Mixed-integer linear programming (MIP) plays a central role

More information

Dual bounds: can t get any better than...

Dual bounds: can t get any better than... Bounds, relaxations and duality Given an optimization problem z max{c(x) x 2 }, how does one find z, or prove that a feasible solution x? is optimal or close to optimal? I Search for a lower and upper

More information

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems

An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling Problems Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics San Antonio, TX, USA - October 2009 An Integrated Column Generation and Lagrangian Relaxation for Flowshop Scheduling

More information

Tightening a Discrete Formulation of the Quadratic Assignment Problem

Tightening a Discrete Formulation of the Quadratic Assignment Problem A publication of 1309 CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Optimization Bounds from Binary Decision Diagrams

Optimization Bounds from Binary Decision Diagrams Optimization Bounds from Binary Decision Diagrams J. N. Hooker Joint work with David Bergman, André Ciré, Willem van Hoeve Carnegie Mellon University ICS 203 Binary Decision Diagrams BDDs historically

More information

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions?

SOLVING INTEGER LINEAR PROGRAMS. 1. Solving the LP relaxation. 2. How to deal with fractional solutions? SOLVING INTEGER LINEAR PROGRAMS 1. Solving the LP relaxation. 2. How to deal with fractional solutions? Integer Linear Program: Example max x 1 2x 2 0.5x 3 0.2x 4 x 5 +0.6x 6 s.t. x 1 +2x 2 1 x 1 + x 2

More information

From structures to heuristics to global solvers

From structures to heuristics to global solvers From structures to heuristics to global solvers Timo Berthold Zuse Institute Berlin DFG Research Center MATHEON Mathematics for key technologies OR2013, 04/Sep/13, Rotterdam Outline From structures to

More information

Introduction to Bin Packing Problems

Introduction to Bin Packing Problems Introduction to Bin Packing Problems Fabio Furini March 13, 2015 Outline Origins and applications Applications: Definition: Bin Packing Problem (BPP) Solution techniques for the BPP Heuristic Algorithms

More information

Stochastic Decision Diagrams

Stochastic Decision Diagrams Stochastic Decision Diagrams John Hooker CORS/INFORMS Montréal June 2015 Objective Relaxed decision diagrams provide an generalpurpose method for discrete optimization. When the problem has a dynamic programming

More information

LOWER BOUNDS FOR THE UNCAPACITATED FACILITY LOCATION PROBLEM WITH USER PREFERENCES. 1 Introduction

LOWER BOUNDS FOR THE UNCAPACITATED FACILITY LOCATION PROBLEM WITH USER PREFERENCES. 1 Introduction LOWER BOUNDS FOR THE UNCAPACITATED FACILITY LOCATION PROBLEM WITH USER PREFERENCES PIERRE HANSEN, YURI KOCHETOV 2, NENAD MLADENOVIĆ,3 GERAD and Department of Quantitative Methods in Management, HEC Montréal,

More information

Development of the new MINLP Solver Decogo using SCIP - Status Report

Development of the new MINLP Solver Decogo using SCIP - Status Report Development of the new MINLP Solver Decogo using SCIP - Status Report Pavlo Muts with Norman Breitfeld, Vitali Gintner, Ivo Nowak SCIP Workshop 2018, Aachen Table of contents 1. Introduction 2. Automatic

More information

Introduction to Integer Linear Programming

Introduction to Integer Linear Programming Lecture 7/12/2006 p. 1/30 Introduction to Integer Linear Programming Leo Liberti, Ruslan Sadykov LIX, École Polytechnique liberti@lix.polytechnique.fr sadykov@lix.polytechnique.fr Lecture 7/12/2006 p.

More information

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands

MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands MILP reformulation of the multi-echelon stochastic inventory system with uncertain demands Axel Nyberg Åbo Aademi University Ignacio E. Grossmann Dept. of Chemical Engineering, Carnegie Mellon University,

More information

The Ongoing Development of CSDP

The Ongoing Development of CSDP The Ongoing Development of CSDP Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Joseph Young Department of Mathematics New Mexico Tech (Now at Rice University)

More information

On a Conjecture Concerning Helly Circle Graphs

On a Conjecture Concerning Helly Circle Graphs On a Conjecture Concerning Helly Circle Graphs Guillermo Durán 1 Agustín Gravano 2 Marina Groshaus 3 Fábio Protti 4 Jayme L. Szwarcfiter 5 Abstract We say that G is an e-circle graph if there is a bijection

More information

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1

2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa. Reducing dimensionality of DP page 1 2001 Dennis L. Bricker Dept. of Industrial Engineering The University of Iowa Reducing dimensionality of DP page 1 Consider a knapsack with a weight capacity of 15 and a volume capacity of 12. Item # Value

More information

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications

Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications Extended Formulations, Lagrangian Relaxation, & Column Generation: tackling large scale applications François Vanderbeck University of Bordeaux INRIA Bordeaux-Sud-Ouest part : Defining Extended Formulations

More information