CHEMICALLY-DRIVEN HYDRODYNAMIC INSTABILITIES. Anne De Wit Nonlinear Physical Chemistry Unit Université Libre de Bruxelles

Size: px
Start display at page:

Download "CHEMICALLY-DRIVEN HYDRODYNAMIC INSTABILITIES. Anne De Wit Nonlinear Physical Chemistry Unit Université Libre de Bruxelles"

Transcription

1 CHEMICALLY-DRIVEN HYDRODYNAMIC INSTABILITIES Anne De Wit Nonlinear Physical Chemistry Unit Université Libre de Bruxelles 1

2 Scientific questions Chemical reactions can induce changes in viscosity or density which, in turn, can lead to hydrodynamic flows. Hence questions raised are: In which conditions can chemical reactions be at the very origin of hydrodynamic instabilities and not merely passive scalars? What are the properties of the patterns that can then arise? Influence on transport and yield of reaction? 2

3 Outline of the talk 1. A+B C reaction fronts 2. Chemically-driven viscous fingering 3. Buoyancy-driven flows around reaction fronts 3

4 Outline of the talk 1. A+B C reaction fronts 2. Chemically-driven viscous fingering 3. Buoyancy-driven flows around reaction fronts 4

5 1) Reaction-diffusion A+B C fronts position of reaction front x f = position of maximum production rate kab r=b o /A o

6 Reaction-diffusion profiles of an A+B->C front Galfi-Racz predictions (Phys. Rev. A 38, 3151 (1988)) Case 1: immobile RD front D a = D b r=b o /A o =1 Position of the reaction front x f = 0

7 Case 2: moving RD front D a D b or r=b o /A o 1 Galfi-Racz scalings: the front moves with x f ~ t 1/2 A o > B o : front moves to the right (i.e. invades B) Beta=A o2 D A /B o2 D B

8 Outline of the talk 1. A+B C reaction fronts 2. Chemically-driven viscous fingering 3. Buoyancy-driven flows around reaction fronts 8

9 Viscous fingering instability The viscous fingering instability is a hydrodynamical instability that occurs when a low viscosity fluid displaces a more viscous fluid in a porous medium. The interface between the two fluids is unstable and develops fingers of the more mobile solution that invade the less mobile one. Fingering affects both immiscible solutions in which case surface tension must be taken into account miscible solutions for which dispersion plays a key role

10 Miscible VF driven by an A+B C reaction Injection of a reactant A into another reactant B of the same viscosity. At the interface, production of a more viscous product C by a simple reaction A+B C B injected into A A injected into B CTAB (B) injected into NaSal (A) NaSal injected into CTAB Podgorski, Sostarecz, Zorman, Belmonte, Phys. Rev. E, 76, (2007) Radial injection

11 Rectilinear displacement in a Hele-Shaw cell (R. Maes, ULB) CTAB injected into NaSal B injected into A NaSal injected into CTAB A injected into B

12 Rectilinear displacement

13 TheoreDcal model Injection speed U Reaction A+B C Reactants of same viscosity Th. Gérard and A. De Wit, Phys. Rev. E., 79, (2009)

14 A B Symmetric case A o =B o D A =D B C A B A Reaction rate ab

15 A injected into B: larger c gradient hence larger viscosity gradient A C B Asymmetric case B o =2 A o D A =D B Fingering more intense where the less concentrated solution invades the more concentrated one (A into B here) A B A

16 B injected into A: larger c gradient hence larger viscosity gradient A B C Asymmetric case B o = A o D A > D B Fingering more intense where the slowest species invades the quickest one (B into A here) A B A

17 Rectilinear displacement Here D A > D B B injected into A: more intense fingering

18 Outline of the talk 1. A+B C reaction fronts 2. Chemically-driven viscous fingering 3. Buoyancy-driven flows around reaction fronts 18

19 Experiments in vertical Hele-Shaw cells Density varies with concentrations (with C. Almarcha, P. Trevelyan and P. Grosfils, ULB)

20 Experiments in verdcal Hele- Shaw cells (with C. Almarcha, P. Trevelyan and P. Grosfils, ULB) Acid-base neutralization reaction HCl 0.01M A+B C HCl+NaOH NaCl + H 2 O NaOH 0.01M Initial contact line Visualization by interferometry

21 No Rayleigh- Taylor instability as acid is lighter than base here

22 TheoreDcal model R b,c : Rayleigh numbers = t hyd / t chem

23 No Rayleigh- Taylor instability as acid is lighter than base here Source of the instability: the fast diffusion of acid towards the lower layer creates a depletion zone where locally one has heavy over light flows due to a diffusive-layer convection mechanism

24 Reactive system Non reactive system The chemical reaction breaks the symmetry of the hydrodynamic instability patterns

25 AcDve role of the color indicator (with A. D Onofrio et al., Buenos Aires) Same experiment in presence of a color indicator: bromocresol green Acid HCl 0.01M Instability also in the lower layer due to an active role of the color indicator g A. Zalts et al. Phys. Rev. E 77, (2008) Base NaOH 0.01M

26 Conclusions

27 1) Viscous fingering 27

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002 arxiv:cond-mat/0212257v1 [cond-mat.stat-mech] 11 Dec 2002 International Journal of Modern Physics B c World Scientific Publishing Company VISCOUS FINGERING IN MISCIBLE, IMMISCIBLE AND REACTIVE FLUIDS PATRICK

More information

Postdoc Fellowships for non-eu researchers Final Report. 1 Objectives of the Fellowship. Precipitation fingering.

Postdoc Fellowships for non-eu researchers Final Report. 1 Objectives of the Fellowship. Precipitation fingering. Postdoc Fellowships for non-eu researchers Final Report Name Priyanka Shukla Selection 2013 Host institution ULB, Brussels Supervisor Prof. Anne De Wit Period covered by this report From 20/3/2014 to 19/07/2015

More information

Control of convective dissolution by chemical reactions: general classification and application to CO 2 dissolution in reactive aqueous solutions

Control of convective dissolution by chemical reactions: general classification and application to CO 2 dissolution in reactive aqueous solutions Control of convective dissolution by chemical reactions: general classification and application to CO 2 dissolution in reactive aqueous solutions V. Loodts, C. Thomas, L. Rongy, A. De Wit Nonlinear Physical

More information

Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells

Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 2 8 JULY 2004 Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells Desiderio A. Vasquez Department of Physics, Indiana

More information

Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations

Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations A. De Wit Service de Chimie Physique and Centre for Nonlinear Phenomena and Complex Systems, CP 231 Université Libre

More information

Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers

Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers THE JOURNAL OF CHEMICAL PHYSICS 127, 114710 2007 Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers L. Rongy Nonlinear Physical Chemistry Unit and Center

More information

Non-Isothermal Displacements with Step-Profile Time Dependent Injections in Homogeneous Porous Media

Non-Isothermal Displacements with Step-Profile Time Dependent Injections in Homogeneous Porous Media Proceedings o the World Congress on Mechanical, Chemical, and Material Engineering (MCM 015) Barcelona, Spain July 0-1, 015 Paper No. 93 Non-Isothermal Displacements with Step-Proile Time Dependent Injections

More information

Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls

Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls THE JOURNAL OF CHEMICAL PHYSICS 123, 234503 2005 Fingering of exothermic reaction-diffusion fronts in Hele-Shaw cells with conducting walls J. D Hernoncourt a Service de Chimie Physique and Center for

More information

On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell

On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell On the displacement of two immiscible Stokes fluids in a 3D Hele-Shaw cell Gelu Paşa Abstract. In this paper we study the linear stability of the displacement of two incompressible Stokes fluids in a 3D

More information

Miscible displacements in capillary tubes: Influence of Korteweg stresses and divergence effects

Miscible displacements in capillary tubes: Influence of Korteweg stresses and divergence effects PHYSICS OF FLUIDS VOLUME 14, NUMBER 7 JULY 2002 Miscible displacements in capillary tubes: Influence of Korteweg stresses and divergence effects Ching-Yao Chen a) Department of Mechanical Engineering,

More information

Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion

Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion PHYSICS OF FLUIDS VOLUME 16, NUMBER 10 OCTOBER 2004 Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion A. Riaz Department

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2 2nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2 June 9-4, 2, Nantes, France OMAE2-5 FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED

More information

Studies on dispersive stabilization of porous media flows

Studies on dispersive stabilization of porous media flows Studies on dispersive stabilization of porous media flows Prabir Daripa and Craig Gin Citation: Physics of Fluids 28, 082105 2016); doi: 10.1063/1.4961162 View online: http://dx.doi.org/10.1063/1.4961162

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

Radial source flows in porous media: Linear stability analysis of axial and helical perturbations in miscible displacements

Radial source flows in porous media: Linear stability analysis of axial and helical perturbations in miscible displacements PHYSICS OF FLUIDS VOLUME 15, NUMBER 4 APRIL 2003 Radial source flows in porous media: Linear stability analysis of axial and helical perturbations in miscible displacements Amir Riaz and Eckart Meiburg

More information

arxiv: v1 [physics.flu-dyn] 15 May 2015

arxiv: v1 [physics.flu-dyn] 15 May 2015 Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media Satyajit Pramanik, Tapan Kumar Hota, Manoranjan Mishra Department of Mathematics, Indian Institute of Technology Ropar,

More information

Fingering instabilities of a reactive micellar interface

Fingering instabilities of a reactive micellar interface Fingering instabilities of a reactive micellar interface Thomas Podgorski, 1,2 Michael C. Sostarecz, 1, * Sylvain Zorman, 2 and Andrew Belmonte 1, 1 W. G. Pritchard Laboratories, Department of Mathematics,

More information

ON CONVEXITY OF HELE- SHAW CELLS Ibrahim W. Rabha Institute of Mathematical Sciences, University Malaya, Kuala Lumpur, Malaysia

ON CONVEXITY OF HELE- SHAW CELLS Ibrahim W. Rabha Institute of Mathematical Sciences, University Malaya, Kuala Lumpur, Malaysia ROMAI J., v.8, no.1(2012), 93 101 ON CONVEXITY OF HELE- SHAW CELLS Ibrahim W. Rabha Institute of Mathematical Sciences, University Malaya, Kuala Lumpur, Malaysia rabhaibrahim@yahoo.com Abstract The main

More information

Numerical Simulation of Viscous Fingering Phenomenon in Immiscible Displacement of Two Fluids in Porous Media Using Lattice Boltzmann Method

Numerical Simulation of Viscous Fingering Phenomenon in Immiscible Displacement of Two Fluids in Porous Media Using Lattice Boltzmann Method nd Micro and Nano Flows Conference West London, UK, 1- September 009 Numerical Simulation of Viscous Fingering Phenomenon in Immiscible Displacement of Two Fluids in Porous Media Using Lattice Boltzmann

More information

Density-driven instabilities of miscible fluids in a Hele-Shaw cell: linear stability analysis of the three-dimensional Stokes equations

Density-driven instabilities of miscible fluids in a Hele-Shaw cell: linear stability analysis of the three-dimensional Stokes equations J. Fluid Mech. (), vol. 451, pp. 61 8. c Cambridge University Press DOI: 1.117/S1116516 Printed in the United Kingdom 61 Density-driven instabilities of miscible fluids in a Hele-Shaw cell: linear stability

More information

Miscible, Porous Media Displacements with Density Stratification

Miscible, Porous Media Displacements with Density Stratification Miscible, Porous Media Displacements with Density Stratification AMIR RIAZ AND ECKART MEIBURG Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, California,

More information

Hydrodynamic Instability. Agenda. Problem definition. Heuristic approach: Intuitive solution. Mathematical approach: Linear stability theory

Hydrodynamic Instability. Agenda. Problem definition. Heuristic approach: Intuitive solution. Mathematical approach: Linear stability theory Environmental Fluid Mechanics II Stratified Flow and Buoyant Mixing Hydrodynamic Instability Dong-Guan Seol INSTITUTE FOR HYDROMECHANICS National Research Center of the Helmholtz Association www.kit.edu

More information

Effects of constant electric fields on the buoyant stability of reaction fronts

Effects of constant electric fields on the buoyant stability of reaction fronts Effects of constant electric fields on the buoyant stability of reaction fronts A. Zadražil, 1 I. Z. Kiss, 2 J. D Hernoncourt, 3 H. Ševčíková, 1 J. H. Merkin, 2 and A. De Wit 3 1 Center for Nonlinear Dynamics

More information

A Numerical Study of Instability Control for the Design of an Optimal Policy of Enhanced Oil Recovery by Tertiary Displacement Processes

A Numerical Study of Instability Control for the Design of an Optimal Policy of Enhanced Oil Recovery by Tertiary Displacement Processes Transp Porous Med DOI.7/s4--9977- A Numerical Study of Instability Control for the Design of an Optimal Policy of Enhanced Oil Recovery by Tertiary Displacement Processes Prabir Daripa Xueru Ding Received:

More information

A Growth Constant Formula for Generalized Saffman-Taylor Problem

A Growth Constant Formula for Generalized Saffman-Taylor Problem Applied Mathematics 014 4(1): 1-11 DOI: 10.593/j.am.0140401.01 A Growth Constant Formula for Generalized Saffman-Taylor Problem Gelu Pasa Simion Stoilow Institute of Mathematics of Romanian Academy Calea

More information

Density-driven unstable flows of miscible fluids in a Hele-Shaw cell

Density-driven unstable flows of miscible fluids in a Hele-Shaw cell J. Fluid Mech. (2002), vol. 451, pp. 239 260. c 2002 Cambridge University Press DOI: 10.1017/S0022112001006504 Printed in the United Kingdom 239 Density-driven unstable flows of miscible fluids in a Hele-Shaw

More information

A review on double-diffusive instability in viscosity stratified flows

A review on double-diffusive instability in viscosity stratified flows A review on double-diffusive instability in viscosity stratified flows Kirti Chandra Sahu 1 Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram 502 205, Andhra Pradesh,

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Miscible displacement in a Hele-Shaw cell at high rates

Miscible displacement in a Hele-Shaw cell at high rates J. Fluid Mech. (999), vol. 398, pp. 299 39. Printed in the United Kingdom c 999 ambridge University Press 299 Miscible displacement in a Hele-Shaw cell at high rates By E. LAJEUNESSE, J. MARTIN, N. RAKOTOMALALA,

More information

Theory and simulations of hydrodynamic instabilities in inertial fusion

Theory and simulations of hydrodynamic instabilities in inertial fusion Theory and simulations of hydrodynamic instabilities in inertial fusion R. Betti Fusion Science Center, Laboratory for Laser Energetics, University of Rochester IPAM/UCLA Long Program PL2012 - March 12

More information

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM

PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Excerpt from the Proceedings of the COMSOL Conference 2010 Paris PORE-SCALE PHASE FIELD MODEL OF TWO-PHASE FLOW IN POROUS MEDIUM Igor Bogdanov 1*, Sylvain Jardel 1, Anis Turki 1, Arjan Kamp 1 1 Open &

More information

Onset of convection of a reacting fluid layer in a porous medium with temperature-dependent heat source

Onset of convection of a reacting fluid layer in a porous medium with temperature-dependent heat source AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 2011, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X doi:10.5251/ajsir.2011.2.6.860.864 Onset of convection of a reacting fluid layer in

More information

Complexity of Two-Phase Flow in Porous Media

Complexity of Two-Phase Flow in Porous Media 1 Complexity of Two-Phase Flow in Porous Media Rennes September 16, 2009 Eyvind Aker Morten Grøva Henning Arendt Knudsen Thomas Ramstad Bo-Sture Skagerstam Glenn Tørå Alex Hansen 2 Declining oil production,

More information

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION

ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION ANALYSIS OF LOW DENSITY PARTICLES USING DIFFERENTIAL CENTRIFUGAL SEDIMENTATION Conventional Centrifugal Methods Centrifugal sedimentation of particles suspended in a fluid is a well known method (1, 2)

More information

CRAIG GIN. Department of Applied Mathematics, University of Washington, Seattle, WA PRABIR DARIPA

CRAIG GIN. Department of Applied Mathematics, University of Washington, Seattle, WA PRABIR DARIPA STABILITY RESULTS ON RADIAL POROUS MEDIA AND HELE-SHAW FLOWS WITH VARIABLE VISCOSITY BETWEEN TWO MOVING INTERFACES arxiv:191.7v1 [physics.flu-dyn] 11 Jan 19 CRAIG GIN Department of Applied Mathematics

More information

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Role of polymers in the mixing of Rayleigh-Taylor turbulence Physics Department University of Genova Italy Role of polymers in the mixing of Rayleigh-Taylor turbulence Andrea Mazzino andrea.mazzino@unige.it Guido Boffetta: University of Torino (Italy) Stefano Musacchio:

More information

Erratum Experimental and numerical tools for miscible fluid displacements studies in porous media with large heterogeneities

Erratum Experimental and numerical tools for miscible fluid displacements studies in porous media with large heterogeneities Eur. Phys. J. AP 7, 277 289 (1999) THE EUROPEAN PHYSICAL JOURNAL APPLIED PHYSICS c EDP Sciences 1999 Erratum Experimental and numerical tools for miscible fluid displacements studies in porous media with

More information

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl ChE 385M Surface Phenomena University of Texas at Austin Marangoni-Driven Finger Formation at a Two Fluid Interface James Stiehl Introduction Marangoni phenomena are driven by gradients in surface tension

More information

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)

Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS) A flight project in the Microgravity Materials Science Program 2002 Microgravity Materials Science Meeting June 25, 2002 John A. Pojman

More information

arxiv:nlin/ v2 [nlin.ps] 5 Jun 2007

arxiv:nlin/ v2 [nlin.ps] 5 Jun 2007 Fingering instabilities of a reactive micellar interface Thomas Podgorski 1,2, Michael C. Sostarecz 1, Sylvain Zorman 2, and Andrew Belmonte 1 1 W. G. Pritchard Laboratories, Department of Mathematics,

More information

Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime

Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime PHYSICS OF FLUIDS VOLUME 14, NUMBER 2 FEBRUARY 2002 Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime Hyeong-Gi Lee and J. S. Lowengrub a) School

More information

Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium

Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium Klaus Johannsen a,, Sascha Oswald b, Rudolf Held c, Wolfgang Kinzelbach d, a IWR/Technical

More information

Black holes and the leaking faucet in your bathroom

Black holes and the leaking faucet in your bathroom Black holes and the leaking faucet in your bathroom Nicolas Vasset Journal club May 5th, 2011 Nicolas Vasset (Basel) Black holes and leaking faucets 05/11 1 / 17 Based on the following articles [Lehner

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Applications of Partial Differential Equations in Reservoir Simulation

Applications of Partial Differential Equations in Reservoir Simulation P-32 Applications of Partial Differential Equations in Reservoir Simulation Deepak Singh Summary The solution to stochastic partial differential equations may be viewed in several manners. One can view

More information

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed

Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Diffusive Evolution of Gaseous and Hydrate Horizons of Methane in Seabed Denis S. Goldobin (University of Leicester), et al. ( Quaternary Hydrate Stability ) MethaneNet Early Career Workshop Milton Keynes

More information

Principles of Convective Heat Transfer

Principles of Convective Heat Transfer Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix

More information

CHAPTER 5. RUDIMENTS OF HYDRODYNAMIC INSTABILITY

CHAPTER 5. RUDIMENTS OF HYDRODYNAMIC INSTABILITY 1 Lecture Notes on Fluid Dynamics (1.63J/.1J) by Chiang C. Mei, 00 CHAPTER 5. RUDIMENTS OF HYDRODYNAMIC INSTABILITY References: Drazin: Introduction to Hydrodynamic Stability Chandrasekar: Hydrodynamic

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Flow Instabilities During Injection of CO into Saline Aquifers Permalink https://escholarship.org/uc/item/8b3d7k Authors

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

Growth activity during fingering in a porous Hele-Shaw cell

Growth activity during fingering in a porous Hele-Shaw cell PHYSICAL REVIEW E 70, 026301 (2004) Growth activity during fingering in a porous Hele-Shaw cell Grunde Løvoll, 1,2 Yves Méheust, 3,2,1 Renaud Toussaint, 1,3 Jean Schmittbuhl, 2 and Knut Jørgen Måløy 1

More information

Numerical Simulations of Miscible Channel Flow. with Chemical Reactions

Numerical Simulations of Miscible Channel Flow. with Chemical Reactions Numerical Simulations of Miscible Channel Flow with Chemical Reactions A Thesis Submitted for the Degree of Master of Technology in the Department of Chemical Engineering by J.N.Kusuma Department of Chemical

More information

Experimental study of CO 2 absorption dynamics in an aqueous amine solution using Mach-Zehnder interferometry

Experimental study of CO 2 absorption dynamics in an aqueous amine solution using Mach-Zehnder interferometry Experimental study of CO 2 absorption dynamics in an aqueous amine solution using Mach-Zehnder interferometry C. Wylock, S. Dehaeck, D. Alonso, P. Colinet and B. Haut GLS - 11 Coex, Seoul, Korea August,

More information

Selected Topics in Plasma Astrophysics

Selected Topics in Plasma Astrophysics Selected Topics in Plasma Astrophysics Range of Astrophysical Plasmas and Relevant Techniques Stellar Winds (Lecture I) Thermal, Radiation, and Magneto-Rotational Driven Winds Connections to Other Areas

More information

Summit:Technology and Opportunity

Summit:Technology and Opportunity Study of the gas-liquid CO 2 absorption in aqueous monoethanolamine solutions: development of a new experimental tool C. Wylock, S. Dehaeck, E. Boulay, P. Colinet and B. Haut CO 2 Summit:Technology and

More information

Experimental Study of the Growth of Mixing Zone in Miscible Viscous Fingering

Experimental Study of the Growth of Mixing Zone in Miscible Viscous Fingering Experimental Study of the Growth of Mixing Zone in Miscible Viscous Fingering Authors: Sahil Malhotra, Mukul M. Sharma, Eric R. Lehman Authors: institution(s)/affiliation(s) for each author: Sahil Malhotra,

More information

Inertial effects on viscous fingering in the complex plane

Inertial effects on viscous fingering in the complex plane J. Fluid Mech. (011), vol. 668, pp. 436 445. c Cambridge University Press 011 doi:10.1017/s0011010005859 Inertial effects on viscous fingering in the complex plane ANDONG HE 1 AND ANDREW BELMONTE 1, 1

More information

A breakthrough curve analysis of unstable density-driven flow and transport in homogeneous porous media

A breakthrough curve analysis of unstable density-driven flow and transport in homogeneous porous media WATER RESOURCES RESEARCH, VOL. 40,, doi:10.1029/2003wr002668, 2004 A breakthrough curve analysis of unstable density-driven flow and transport in homogeneous porous media M. Wood, C. T. Simmons, and J.

More information

Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns

Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns CHAOS 27, 104617 (2017) Dissipative structures: From reaction-diffusion to chemo-hydrodynamic patterns M. A. Budroni a) and A. De Wit b) Nonlinear Physical Chemistry Unit, Service de Chimie Physique et

More information

Contents. I Introduction 1. Preface. xiii

Contents. I Introduction 1. Preface. xiii Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Microgravity Investigations of Instability and Mixing Flux in Frontal Displacement of Fluids

Microgravity Investigations of Instability and Mixing Flux in Frontal Displacement of Fluids Smirnov N.N. (), Nikitin V.F. (), Ivashnyov O.E. (), Maximenko A. (2), Thiercelin M. (2) Vedernikov A. (3), Scheid B. (3), Legros J.C. (3) Microgravity Investigations of Instability and Mixing Flux in

More information

A Numerical Simulation Framework for the Design, Management and Optimization of CO 2 Sequestration in Subsurface Formations

A Numerical Simulation Framework for the Design, Management and Optimization of CO 2 Sequestration in Subsurface Formations A Numerical Simulation Framework for the Design, Management and Optimization of CO 2 Sequestration in Subsurface Formations Investigators Hamdi Tchelepi, Associate Professor of Petroleum Engineering; Lou

More information

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009

Instabilities and Mixing in Supernova Envelopes During Explosion. Xuening Bai AST 541 Seminar Oct.21, 2009 Instabilities and Mixing in Supernova Envelopes During Explosion Xuening Bai AST 541 Seminar Oct.21, 2009 Outline Overview Evidence of Mixing SN 1987A Evidence in supernova remnants Basic Physics Rayleigh-Taylor

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

PARALLEL PSEUDO-SPECTRAL SIMULATIONS OF NONLINEAR VISCOUS FINGERING IN MIS- Center for Parallel Computations, COPPE / Federal University of Rio de

PARALLEL PSEUDO-SPECTRAL SIMULATIONS OF NONLINEAR VISCOUS FINGERING IN MIS- Center for Parallel Computations, COPPE / Federal University of Rio de PARALLEL PSEUDO-SPECTRAL SIMULATIONS OF NONLINEAR VISCOUS FINGERING IN MIS- CIBLE DISPLACEMENTS N. Mangiavacchi, A.L.G.A. Coutinho, N.F.F. Ebecken Center for Parallel Computations, COPPE / Federal University

More information

Particle-based Fluids

Particle-based Fluids Particle-based Fluids Particle Fluids Spatial Discretization Fluid is discretized using particles 3 Particles = Molecules? Particle approaches: Molecular Dynamics: relates each particle to one molecule

More information

Flow in two-dimensions: novel fluid behavior at interfaces

Flow in two-dimensions: novel fluid behavior at interfaces Flow in two-dimensions: novel fluid behavior at interfaces M. Dennin U. C. Irvine Department of Physics and Astronomy and Institute for Surface and Interfacial Science Research Overview Fluid Instabilities

More information

Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media fluids Article Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media Vandita Sharma, Satyajit Pramanik 2 and Manoranjan Mishra, * Department of Mathematics, Indian Institute of Technology

More information

9 Fluid Instabilities

9 Fluid Instabilities 9. Stability of a shear flow In many situations, gaseous flows can be subject to fluid instabilities in which small perturbations can rapidly flow, thereby tapping a source of free energy. An important

More information

Surface tension driven oscillatory instability in a rotating fluid layer

Surface tension driven oscillatory instability in a rotating fluid layer J. Fluid Mech. (1969), wol. 39, part 1, pp. 49-55 Printed in Great Britain 49 Surface tension driven oscillatory instability in a rotating fluid layer By G. A. McCONAGHYT AND B. A. FINLAYSON University

More information

Arthur Varghese* and Shouvik Datta** Department of Physics, Indian Institute of Science Education and Research, Pune , Maharashtra, India.

Arthur Varghese* and Shouvik Datta** Department of Physics, Indian Institute of Science Education and Research, Pune , Maharashtra, India. Directionally asymmetric self-assembly of cadmium sulfide nanotubes using porous alumina nanoreactor need for chemo-hydrodynamic instability at the nanoscale Arthur Varghese* and Shouvik Datta** Department

More information

An optimal viscosity profile in enhanced oil recovery by polymer flooding

An optimal viscosity profile in enhanced oil recovery by polymer flooding International Journal of Engineering Science 42 (2004) 2029 2039 www.elsevier.com/locate/ijengsci An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a, *,G.Pasßa b

More information

FERROHYDRODYNAMICS R. E. ROSENSWEIG. DOVER PUBLICATIONS, INC. Mineola, New York

FERROHYDRODYNAMICS R. E. ROSENSWEIG. DOVER PUBLICATIONS, INC. Mineola, New York FERROHYDRODYNAMICS R. E. ROSENSWEIG DOVER PUBLICATIONS, INC. Mineola, New York CONTENTS Preface 1 Introduction 1.1 Scope of ferrohydrodynamics 1.2 Ferromagnetic solids 1.3 Magnetic fluids 1.4 Ferromagnetic

More information

PAPER 331 HYDRODYNAMIC STABILITY

PAPER 331 HYDRODYNAMIC STABILITY MATHEMATICAL TRIPOS Part III Thursday, 6 May, 016 1:30 pm to 4:30 pm PAPER 331 HYDRODYNAMIC STABILITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

Numerical solution of Hele-Shaw flows driven by a quadrupole

Numerical solution of Hele-Shaw flows driven by a quadrupole Euro. Jnl of Applied Mathematics (1997), vol. 8, pp. 551 566. c 1997 Cambridge University Press Printed in the United Kingdom 551 Numerical solution of Hele-Shaw flows driven by a quadrupole E. D. KELLY

More information

Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment

Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment Abstract Andrew George Weir Lawrie and Stuart Dalziel Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection

Combined Effect of Magnetic field and Internal Heat Generation on the Onset of Marangoni Convection International Journal of Fluid Mechanics & Thermal Sciences 17; 3(4): 41-45 http://www.sciencepublishinggroup.com/j/ijfmts doi: 1.11648/j.ijfmts.1734.1 ISSN: 469-815 (Print); ISSN: 469-8113 (Online) ombined

More information

Competition ofgravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study

Competition ofgravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study Energy 30 (2005) 861 872 www.elsevier.com/locate/energy Competition ofgravity, capillary and viscous forces during drainage in a two-dimensional porous medium, a pore scale study Grunde Løvoll a,b,, Yves

More information

Miscible droplets in a porous medium and the effects of Korteweg stresses

Miscible droplets in a porous medium and the effects of Korteweg stresses PHYSICS OF FLUIDS VOLUME 13, NUMBER 9 SEPTEMBER 2001 ARTICLES Miscible droplets in a porous medium and the effects of Korteweg stresses Ching-Yao Chen and Lilin Wang Department of Mechanical Engineering,

More information

Bjørnar Sandnes. Henning Arendt Knudsen. Knut Jørgen Måløy. Eirik Grude Flekkøy. Grunde Løvoll. Yves Meheust. Renaud Toussaint Univ.

Bjørnar Sandnes. Henning Arendt Knudsen. Knut Jørgen Måløy. Eirik Grude Flekkøy. Grunde Løvoll. Yves Meheust. Renaud Toussaint Univ. Pattern formation: building mazes with grains Bjørnar Sandnes Henning Arendt Knudsen Knut Jørgen Måløy Eirik Grude Flekkøy x (a) z (b) (c) Grunde Løvoll Yves Meheust NTNU Renaud Toussaint Univ. Strasbourg

More information

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 1 Xiang Fan 1, P H Diamond 1, Luis Chacon 2, Hui Li 2 1 University of California,San Diego

More information

D.A. Bratsun and A. De Wit, Buoyancy-driven pattern formation in reactive immiscible twolayer systems, Chem. Eng. Sci. 66, (2011).

D.A. Bratsun and A. De Wit, Buoyancy-driven pattern formation in reactive immiscible twolayer systems, Chem. Eng. Sci. 66, (2011). Books G.R. Fleming, G.D. Scholes and A. De Wit, Editors, Quantum effects in Chemistry and Biology, Proceedings of the 22nd Solvay Conference on Chemistry, (Procedia, Elsevier, 2011). P. Borckmans, P. De

More information

Finger competition dynamics in rotating Hele-Shaw cells

Finger competition dynamics in rotating Hele-Shaw cells PHYSICAL REVIEW E 70, 066308 (2004) Finger competition dynamics in rotating Hele-Shaw cells Hermes Gadêlha and José A. Miranda* Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade

More information

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Supplementary Material (ESI) for Soft Matter This journal is The Royal Society of Chemistry 2008 Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Michinao Hashimoto 1, Piotr Garstecki

More information

F59: Active Solute Transport in Saturated Porous Media

F59: Active Solute Transport in Saturated Porous Media Advanced Practical Course Environmental Physics F59: Active Solute Transport in Saturated Porous Media Institute of Environmental Physics Heidelberg University Philipp Kreyenberg Version: June 2017 Safety

More information

Pressure-Driven Displacement Flow of a Non-Newtonian Fluid by a Newtonian Fluid

Pressure-Driven Displacement Flow of a Non-Newtonian Fluid by a Newtonian Fluid Pressure-Driven Displacement Flow of a Non-Newtonian Fluid by a Newtonian Fluid A Thesis Submitted to Indian Institute of Technology Hyderabad in partial fulfillment of the requirements for the Degree

More information

Double-diffusive lock-exchange gravity currents

Double-diffusive lock-exchange gravity currents Abstract Double-diffusive lock-exchange gravity currents Nathan Konopliv, Presenting Author and Eckart Meiburg Department of Mechanical Engineering, University of California Santa Barbara meiburg@engineering.ucsb.edu

More information

Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell

Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell PHYSICAL REVIEW E, VOLUME 64, 638 Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell L. Meignin, P. Ern, P. Gondret, and M. Rabaud Laboratoire Fluides, Automatique et Systèmes Thermiques,

More information

Homogeneous Rayleigh-Bénard convection

Homogeneous Rayleigh-Bénard convection Slide 1 Homogeneous Rayleigh-Bénard convection scaling, heat transport and structures E. Calzavarini and F. Toschi, D. Lohse, R. Tripiccione, C. R. Doering, J. D. Gibbon, A. Tanabe Euromech Colloquium

More information

BOUNDARY LAYER STRUCTURE SPECIFICATION

BOUNDARY LAYER STRUCTURE SPECIFICATION August 2017 P09/01X/17 BOUNDARY LAYER STRUCTURE SPECIFICATION CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and ADMS-Airport 4.1. Where information refers to a subset of

More information

Numerical studies of reactive polymer flows in porous materials

Numerical studies of reactive polymer flows in porous materials Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Numerical studies of reactive polymer flows in porous materials Honggao Liu Louisiana State University and

More information

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES

MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES MODELING AND SIMULATION OF LOW TEMPERATURE PLASMA DISCHARGES Michael A. Lieberman University of California, Berkeley lieber@eecs.berkeley.edu DOE Center on Annual Meeting May 2015 Download this talk: http://www.eecs.berkeley.edu/~lieber

More information

Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation

Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation - 1 - Mutual diffusion in the ternary mixture of water + methanol + ethanol: Experiments and Molecular Simulation Tatjana Janzen, Gabriela Guevara-Carrión, Jadran Vrabec University of Paderborn, Germany

More information

Hydrodynamic and Hydromagnetic Stability of Two. Superposed Walters B' Viscoelastic Fluids. in Porous Medium

Hydrodynamic and Hydromagnetic Stability of Two. Superposed Walters B' Viscoelastic Fluids. in Porous Medium Adv. Theor. Appl. Mech., Vol. 4, 0, no. 3, 3 - Hydrodynamic and Hydromagnetic Stability of Two Superposed Walters B' Viscoelastic Fluids in Porous Medium S. K. Kango Department of Mathematics, Govt. College,

More information

2D Dynamics of a Drop Falling in a Miscible Fluid.

2D Dynamics of a Drop Falling in a Miscible Fluid. EUROPHYSICS LETTERS Europhys. Lett., 19 (3), pp. 171-176 (1992) 1 June 1992 2D Dynamics of a Drop Falling in a Miscible Fluid. A. GARCIMART~N, H. L. MANCINI(*) and C. PBREz-GARc~A(**) Departamento de Fisica

More information

Module 6: Free Convections Lecture 25: Buoyancy Driven Flows. The Lecture Contains: Free Convection. Objectives_template

Module 6: Free Convections Lecture 25: Buoyancy Driven Flows. The Lecture Contains: Free Convection. Objectives_template The Lecture Contains: Free Convection file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture25/25_1.html[12/24/2014 6:07:31 PM] Introduction Now

More information

Pattern formation and Turing instability

Pattern formation and Turing instability Pattern formation and Turing instability. Gurarie Topics: - Pattern formation through symmetry breaing and loss of stability - Activator-inhibitor systems with diffusion Turing proposed a mechanism for

More information

D O UBLE DISPL Ac EMENT REACTIONS

D O UBLE DISPL Ac EMENT REACTIONS Experiment 8 Name: D O UBLE DISPL Ac EMENT REACTIONS In this experiment, you will observe double displacement reactions and write the corresponding balanced chemical equation and ionic equations. Double

More information

D O UBLE DISPL Ac EMENT REACTIONS

D O UBLE DISPL Ac EMENT REACTIONS Experiment 8 Name: D O UBLE DISPL Ac EMENT REACTIONS In this experiment, you will observe double displacement reactions and write the corresponding balanced chemical equation and ionic equations. Double

More information