Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment

Size: px
Start display at page:

Download "Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment"

Transcription

1 Rayleigh-Taylor Driven Mixing in a Multiply Stratified Environment Abstract Andrew George Weir Lawrie and Stuart Dalziel Department of Applied Mathematics and Theoretical Physics, University of Cambridge A.G.W.Lawrie@damtp.cam.ac.uk S.Dalziel@damtp.cam.ac.uk Mixing is ubiquitous in both the natural environment and industrial applications, and its consequences are far-reaching. This paper focuses on the details of the small scale mixing processes which are driven by buoyancy in a gravitational field. In particular we explore the evolution of an interleaved heavy-light-heavy miscible liquid system with one Rayleigh- Taylor unstable density interface, and one statically stable interface. Experiments are performed using LIF illumination of a chemically reactive but dynamically passive tracer, and we seek to quantify mixing induced across both interfaces. In a complementary numerical study, adaptive mesh refinement is used to target computational capacity at the small scales in the region surrounding the stable density interface. It is of particular interest whether simulations accurately capture mixing across stable density interfaces in liquid systems, when frequently such codes operate with Schmidt numbers of order unity. 1. Introduction The driving instability in the present study has been a focus for scientific curiosity since Rayleigh (1883) when the problem of dense fluid above less dense fluid in a gravitational field was first considered. Such instability is observed in a variety of fluids with applications ranging from geophysical and astrophysical to industrial fluid systems. Understanding the suppression of turbulent mixing by stable density stratification also has implications for geophysical systems and potential industrial application, and the interleaved heavy-light-heavy problem configuration (Jacobs and Dalziel (2005)) considered here is an appropriate case study, since turbulence generated by the development of the unstable interface induces mixing across the stable interface. The ability of modern numerical techniques to capture the flows with such varied mixing characteristics is not yet confirmed, and this is a focus of current investigation Computational Approach Despite the approximately exponential growth in computing power over time, numerical simulation of Rayleigh-Taylor instability remains a challenging problem. An approach called Implicit Large Eddy Simulation (ILES) is used in this paper, with the code of Almgren et al. (1998). Historically, the approach originated from the surprisingly successful application of modern numerical methods for compressible gas dynamics to problems involving intense mixing. Total Variation Diminishing (TVD) methods (eg. Leveque (1992)) were developed as a (non-linear) means of controlling truncation error terms in numerical algorithms. Dispersive error (odd order truncation error terms) manifests itself as spurious oscillations around discontinuities and high gradients. Such errors could be eliminated by using a numerical scheme which interpolates, using some empirically derived function,

2 between low and high order. Increased diffusive error (even order truncation error terms), although undesirable in regions of high gradient, is accepted as a consequence, since it has a physical analogue. The physical relevance of diffusion associated with high gradients motivated the change in application from wave-dominated to highly turbulent flows. It is well known that high gradients are smoothed by viscous effects in a real flow, and the observation that TVD methods also smoothed gradients led to the birth of ILES. Without explicitly applying viscous terms, real flows could be simulated with plausible results (eg. Youngs (1994); Dalziel et al. (1999); Ramaprabhu et al. (2005)). Effectively, the numerical error replaces a conventional eddy-viscosity sub-grid scale model, and performs a similar function. However, a better understanding of the numerical analysis of ILES for mixing problems is only now being developed (Margolin et al. (2006)) Experimental Method While in a broad range of fields much experimental work has focussed on the physics of mixing, obtaining direct visualisation of the mixing process is much less common. Light/Laser-Induced Fluorescence (LIF) techniques have been used in the past for this purpose in miscible liquid shear flows, eg. Koochesfahani and Dimotakis (1985), and more recently also a hybrid fluorescence/phosphorescence technique in gaseous shear flows (Hu and Koochesfahani (2002)), but in Rayleigh-Taylor driven mixing there seem not to be comparable experiments. Experiments using ph indicators in the Rayleigh-Taylor context (Linden et al. (1994)) to mark mixed fluid have been performed before; the present work extends this concept by using a fluorescent ph indicator, hence permitting detailed LIF visualisation of the actual mixing within the mixing region and furthering understanding of its structure. The experiments in the current study were conducted using developments of apparatus and techniques which have been applied previously by Dalziel (1993),Dalziel et al. (1999) and Jacobs and Dalziel (2005). The principal feature of the experimental rig is a horizontal barrier to provide initial separation of fluids across an unstable interface. Using a technique devised by Lane-Serff (1989), the barrier can be removed from the tank without applying the resulting shear to the fluid. The imaging technique used in this study is Light-Induced Fluorescence, using xenon arc lamps to provide incident light. The fluorescent dye used in these experiments is 2,3,5,6-dibenzo pyridine, which absorbs light in the ultraviolet wavelength range, but its emission wavelength is ph dependent. Above ph 5 (Weast (1971)), the emission is violet blue, but below ph 5 the emission is cyan-green. By appropriately filtering the emitted light before reaching the CCD camera, a signal is only received in areas of mixed fluid. The light sheet is thin relative to the dynamics of the flow, so the internal structure of the mixing in a two-dimensional crossection can be examined. The ratio of advection to reaction timescales is very large, so the reaction plays no dynamic role in the experiment. Acid is added to one (salt solution) fluid layer, the fluorescent dye to another. Refractive indices are matched using alcohol. The density is set by the combination of acid and salt. 2. Observations on Rayleigh-Taylor mixing As a starting point for validation of the numerical simulation, detailed experimental work was focussed on the Rayleigh-Taylor component of the flow, since ILES has been found to

3 Figure 1: Time series charting the flow evolution in experiment and simulation, using a comparable diagnostic. The white bar indicates the progress of nondimensional simulation time from 0 to 5. The experimental time origin has been shifted to account for the initialisation differences between experiment and simulation. work well for this problem. Direct comparison of experiment and simulation is not strictly appropriate because there are significant unsimulated effects in the experiments, such as asymmetries and large scale motions introduced in the experiment by the barrier removal, and discrepancies due to the random perturbation which initialises the simulation. However, a virtual time origin can be derived from the comparison of growth profiles. The experimental results have been spatially filtered down to the same resolution as the simulation, and an equivelant diagnostic used to present the simulations. A dual time-sequence of images in figure 1 compares the evolution of the flow. As is evident from the figure, the simulation does not explicitly capture the smallest scales of the flow that are visible even in the filtered experimental time series. However, the mesh size (160x80x200) in the simulation is chosen such that the energy dissipation by numerical error (the implicit sub-grid scale model) reasonably approximates the energy dissipation by turbulent diffusion (nature s sub-grid scale model). Thus the salient mixing statistics could be expected to compare well between experiment and simulation. A good indication of the rate of mixing can be obtained by considering the surface area over which mixing takes place, and the enclosed volume of mixed fluid which grows in time as the mixing front advances. The planar analogue of the surface area (the length by pixel count of the enclosing contour) is shown in 2 and is defined as the boundary of a region where pixel intensity is greater than a threshold. The corresponding volume is shown in figure 3. As before, the processing is performed on the filtered experimental data, for valid comparison with the simulation. The threshold is chosen for convenience, to avoid contaminating the image analysis with digital noise. However, signal intensity (in the absence of other effects) is linear in the local dye concentration, so as further mixing takes place towards later times, the signal

4 Figure 2: Evolution of mixing surface area in time. The length of the 2-D crossection through the surface is measured by pixel count. Close agreement between experiment and simulation is achieved. Figure 3: Evolution of mixed volume in time. The independent variable is measured as a fraction of total area. Agreement is good until the dilution of fluid in the experiment is such that recovered signal intensity is of the order of the noise threshold.

5 Figure 4: Numerical simulation of fluorescent dye behaviour when visualising mixing across the stable density interface. The orthogonal lines show a crossection of the grid patches used in the simulation. intensity of this mixed fluid reduces, until eventually falls below the noise threshold. Since this effect is not include in the simulation diagnostic, the experimental and simulation curves diverge at late time. 3. Mixing across the stable interface Adaptive Mesh Refinement is a numerical technique which enables arbitrarily selected regions of a flow to be investigated in considerably more detail, without the associated computational cost of resolving to this level in all regions. The mixed fluid around the stable interface is used to mark the region over which more detail is required, and the resulting region is shown in figure 4. As identified by George et al. (2002) the numerical diffusion inherent by cell averaging conserved quantities in finite volume codes applies not only to momentum, but also to density and tracer advection. This implies that ILES models have a numerical Schmidt number ( µ κ) of O (1). While this is close to the physical Schmidt number in gasses, the values for liquids are frequently two orders of magnitude higher. Quantification of the error is achieved by comparing a simulation which locally well resolves the dynamical scales and in which the Schmidt number is explicitly set by computing the diffusion terms, with a standard ILES simulation. 4. Conclusions An experimental technique has been presented for directly visualising regions of molecularly mixed flow in miscible liquid flows. Particular attention has been paid to the early time evolution of the Rayleigh-Taylor instability, obtaining quantitative measurements from a novel perspective on a widely studied problem. The present study develops previous work on chemical indicators of molecular mixing by gaining a first insight into the detailed structure of the mixing region. ILES numerical simulations have been performed which show comparable mixing behaviour to the experiments, when considering fractal dimension, mixing surface and mixed volume. Adaptive Mesh Refinement techniques are used to simulate in more detail the mixing across the stable interface in the heavy-lightheavy configuration.

6 Acknowledgements The authors would like to thank the UK Natural Environment Research Council (NERC) as primary funding source, and the Co-operative Awards in Science and Engineering (CASE) collaborator, AWE Ltd. Useful discussions with John Bell, Ann Almgren and Nikos Nikiforakis are gratefully acknowledged. References Almgren, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L. (1998). A conservative adaptive projection method for the variable density incompressible Navier- Stokes equations. J. Comp. Phys., 142:1 46. Dalziel, S. B. (1993). Rayleigh-Taylor instability: experiments with image analysis. Dyn. Atmos. Oceans, 20: Dalziel, S. B., Linden, P. F., and Youngs, D. L. (1999). Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability. J. Fluid Mech., 399:1 48. George, E., Glimm, J., Li, X.-L., Marchese, A., and Xu, Z.-L. (2002). A comparison of experimental, theoretical and numerical simulation Rayleigh-Taylor mixing rates. Proc. Natl. Acad. Sci., 99: Hu, H. and Koochesfahani, M. M. (2002). A novel method for instantaneous, quantitative measurement of molecular mixing in gaseous flows. Exp. Fluids, 31: Jacobs, J. W. and Dalziel, S. B. (2005). Rayleigh-Taylor instability in complex stratifications. J. Fluid Mech., 542: Koochesfahani, M. M. and Dimotakis, P. E. (1985). Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech., 170: Lane-Serff, G. F. (1989). Heat Flow and air movement in buildings. PhD thesis, DAMTP, University of Cambridge, UK. Leveque, R., editor (1992). Numerical Methods for Conservation Laws. Birkhauser. Linden, P. F., Redondo, J. M., and Youngs, D. L. (1994). Molecular mixing in Rayleigh- Taylor instability. J. Fluid Mech., 265: Margolin, L. G., Rider, W. J., and Grinstein, F. F. (2006). Modeling turbulent flow with implicit LES. J. Turbulence, 7:1 27. Ramaprabhu, P., Dimonte, G., and Andrews, M. J. (2005). A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability. J. Fluid Mech., 536: Rayleigh, L. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc., XIV: Weast, R. C., editor (1971). Handbook of Chemistry and Physics. CRC Press, 52 edition. Youngs, D. L. (1994). Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer- Meshkov instabilities. Laser and Particle Beams, 12:

Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008

Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008 Inertial-Range Dynamics and Mixing: Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, 29 September to 3 October 2008 MIXING DUE TO RAYLEIGH-TAYLOR INSTABILITY David Youngs AWE Aldermaston

More information

Shear instabilities in a tilting tube

Shear instabilities in a tilting tube Abstract Shear instabilities in a tilting tube Edmund Tedford 1, Jeff Carpenter 2 and Greg Lawrence 1 1 Department of Civil Engineering, University of British Columbia ttedford@eos.ubc.ca 2 Institute of

More information

Plumes and jets with time-dependent sources in stratified and unstratified environments

Plumes and jets with time-dependent sources in stratified and unstratified environments Plumes and jets with time-dependent sources in stratified and unstratified environments Abstract Matthew Scase 1, Colm Caulfield 2,1, Stuart Dalziel 1 & Julian Hunt 3 1 DAMTP, Centre for Mathematical Sciences,

More information

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document. Dobra, T., Lawrie, A., & Dalziel, S. B. (2016). Nonlinear Interactions of Two Incident Internal Waves. 1-8. Paper presented at VIIIth International Symposium on Stratified Flows, San Diego, United States.

More information

Buoyancy Fluxes in a Stratified Fluid

Buoyancy Fluxes in a Stratified Fluid 27 Buoyancy Fluxes in a Stratified Fluid G. N. Ivey, J. Imberger and J. R. Koseff Abstract Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed

More information

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow

Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow Simultaneous Velocity and Concentration Measurements of a Turbulent Jet Mixing Flow HUI HU, a TETSUO SAGA, b TOSHIO KOBAYASHI, b AND NOBUYUKI TANIGUCHI b a Department of Mechanical Engineering, Michigan

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids

Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Grid-generated turbulence, drag, internal waves and mixing in stratified fluids Not all mixing is the same! Stuart Dalziel, Roland Higginson* & Joanne Holford Introduction DAMTP, University of Cambridge

More information

Atrium assisted natural ventilation of multi storey buildings

Atrium assisted natural ventilation of multi storey buildings Atrium assisted natural ventilation of multi storey buildings Ji, Y and Cook, M Title Authors Type URL Published Date 005 Atrium assisted natural ventilation of multi storey buildings Ji, Y and Cook, M

More information

Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow

Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow Iowa State University From the SelectedWorks of Chris R. Rehmann January, 2003 Kinematic Effects of Differential Transport on Mixing Efficiency in a Diffusively Stable, Turbulent Flow P. Ryan Jackson,

More information

American Physical Society Division of Fluid Dynamics Meeting, San Antonio, TX, November 23 25, 2008.

American Physical Society Division of Fluid Dynamics Meeting, San Antonio, TX, November 23 25, 2008. American Physical Society Division of Fluid Dynamics Meeting, San Antonio, TX, November 23 25, 2008. TURBULENT MIXING DUE TO RAYLEIGH-TAYLOR INSTABILITY David Youngs AWE Aldermaston UNITED KINGDOM British

More information

Validating the FLASH Code: Vortex Dominated Flows

Validating the FLASH Code: Vortex Dominated Flows Validating the FLASH Code: Vortex Dominated Flows Greg Weirs, Vikram Dwarkadas, Tomek Plewa ASCI FLASH Center, University of Chicago vikram@flash.uchicago.edu, tomek@flash.uchicago.edu, weirs@flash.uchicago.edu

More information

Prototype Instabilities

Prototype Instabilities Prototype Instabilities David Randall Introduction Broadly speaking, a growing atmospheric disturbance can draw its kinetic energy from two possible sources: the kinetic and available potential energies

More information

Instabilities due a vortex at a density interface: gravitational and centrifugal effects

Instabilities due a vortex at a density interface: gravitational and centrifugal effects Instabilities due a vortex at a density interface: gravitational and centrifugal effects Harish N Dixit and Rama Govindarajan Abstract A vortex placed at an initially straight density interface winds it

More information

Donald Slinn, Murray D. Levine

Donald Slinn, Murray D. Levine 2 Donald Slinn, Murray D. Levine 2 Department of Civil and Coastal Engineering, University of Florida, Gainesville, Florida College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis,

More information

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR

Los Alamos National Laboratory Hydrodynamic Methods Applications and Research 1 LA-UR Rayleigh-Taylor instability is generated when a heavy fluid sits above a lighter fluid in a gravitational field. The flow behavior is described in terms of bubbles of light fluid rising into the heavier

More information

A finite-volume algorithm for all speed flows

A finite-volume algorithm for all speed flows A finite-volume algorithm for all speed flows F. Moukalled and M. Darwish American University of Beirut, Faculty of Engineering & Architecture, Mechanical Engineering Department, P.O.Box 11-0236, Beirut,

More information

The Johns Hopkins Turbulence Databases (JHTDB)

The Johns Hopkins Turbulence Databases (JHTDB) The Johns Hopkins Turbulence Databases (JHTDB) HOMOGENEOUS BUOYANCY DRIVEN TURBULENCE DATA SET Data provenance: D. Livescu 1 Database Ingest and Web Services: C. Canada 1, K. Kalin 2, R. Burns 2 & IDIES

More information

Atwood number effects in buoyancy driven flows

Atwood number effects in buoyancy driven flows Advanced Computational Methods in Heat Transfer IX 259 Atwood number effects in buoyancy driven flows M. J. Andrews & F. F. Jebrail Los Alamos National Laboratory, USA Abstract Consideration is given to

More information

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts

2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven Ocean Fronts DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 2013 Annual Report for Project on Isopycnal Transport and Mixing of Tracers by Submesoscale Flows Formed at Wind-Driven

More information

9 Fluid Instabilities

9 Fluid Instabilities 9. Stability of a shear flow In many situations, gaseous flows can be subject to fluid instabilities in which small perturbations can rapidly flow, thereby tapping a source of free energy. An important

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr): AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress

More information

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW

SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Proceedings of International Symposium on Visualization and Image in Transport Phenomena, Turkey, -9 Oct. SIMULTANEOUS VELOCITY AND CONCENTRATION MEASUREMENTS OF A TURBULENT JET MIXING FLOW Hui HU a, Tetsuo

More information

Mush liquid interfaces with cross flow

Mush liquid interfaces with cross flow Mush liquid interfaces with cross flow Devin Conroy March 15, 27 1 Introduction The solidification of a binary melt growing into a supercooled region may lead to the formation of a mushy layer as a result

More information

Turbulent mixing with physical mass diffusion

Turbulent mixing with physical mass diffusion Turbulent mixing with physical mass diffusion Xinfeng Liu, 1 Erwin George, 1 Wurigen Bo, 1 and J. Glimm 1,2 1 Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New

More information

arxiv:astro-ph/ v1 4 Mar 2004

arxiv:astro-ph/ v1 4 Mar 2004 Simulation of Vortex Dominated Flows Using the FLASH Code arxiv:astro-ph/0403109v1 4 Mar 2004 Vikram Dwarkadas, 1 Tomek Plewa, 1 Greg Weirs, 1 Chris Tomkins, 2 and Mark Marr-Lyon 2 1 ASCI FLASH Center,

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS

NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS June - July, 5 Melbourne, Australia 9 7B- NONLINEAR FEATURES IN EXPLICIT ALGEBRAIC MODELS FOR TURBULENT FLOWS WITH ACTIVE SCALARS Werner M.J. Lazeroms () Linné FLOW Centre, Department of Mechanics SE-44

More information

THE RESPONSE OF A PLUME TO A SUDDEN REDUCTION IN BUOYANCY FLUX

THE RESPONSE OF A PLUME TO A SUDDEN REDUCTION IN BUOYANCY FLUX THE RESPONSE OF A PLUME TO A SUDDEN REDUCTION IN BUOYANCY FLUX MATTHEW M. SCASE Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 1485, USA COLM P. CAULFIELD * BP Institute,

More information

VORTICITY FIELD EVOLUTION IN A FORCED WAKE. Richard K. Cohn Air Force Research Laboratory Edwards Air Force Base, CA 92524

VORTICITY FIELD EVOLUTION IN A FORCED WAKE. Richard K. Cohn Air Force Research Laboratory Edwards Air Force Base, CA 92524 Proceedings of the st International Symposium on Turbulence and Shear Flow Phenomena, Santa Barbara, CA, Sep. 5, 999, Eds. Banerjee, S. and Eaton, J. K., pp. 9-96. VORTICITY FIELD EVOLUTION IN A FORCED

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

METHODOLOGY (3) where, x o is the heat source separation and α is the. entrainment coefficient α.

METHODOLOGY (3) where, x o is the heat source separation and α is the. entrainment coefficient α. BSO12 First Building Simulation and Optimization Conference Loughborough, UK 10-11 September 2012 MODELLING BUOYANT THERMAL PLUMES IN NATURALLY VENTILATED BUILDINGS Faisal Durrani 1, Malcolm J Cook 2,

More information

A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows

A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows Ocean Engineering 30 (2003) 153 161 www.elsevier.com/locate/oceaneng A two-fluid model of turbulent two-phase flow for simulating turbulent stratified flows Y.M. Shen a,, C.-O. Ng b, A.T. Chwang b a State

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer

Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear layer Satoshi Kimura, William Smyth July 3, 00 Abstract We describe three-dimensional direct numerical simulations

More information

Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets

Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets Center for Turbulence Research Annual Research Briefs 1998 35 Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets By L. K. Su 1. Motivation and objectives The

More information

LES of turbulent shear flow and pressure driven flow on shallow continental shelves.

LES of turbulent shear flow and pressure driven flow on shallow continental shelves. LES of turbulent shear flow and pressure driven flow on shallow continental shelves. Guillaume Martinat,CCPO - Old Dominion University Chester Grosch, CCPO - Old Dominion University Ying Xu, Michigan State

More information

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell Proceedings of the 8 th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows Lyon, July 2007 Paper reference : ISAIF8-00130 Analysis of Turbulent Free Convection

More information

Mixing at the External Boundary of a Submerged Turbulent Jet

Mixing at the External Boundary of a Submerged Turbulent Jet Mixing at the External Boundary of a Submerged Turbulent Jet A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Sapir-Katiraie The Ben-Gurion University of the Negev, Beer-Sheva, Israel G. Hazak

More information

Double-diffusive lock-exchange gravity currents

Double-diffusive lock-exchange gravity currents Abstract Double-diffusive lock-exchange gravity currents Nathan Konopliv, Presenting Author and Eckart Meiburg Department of Mechanical Engineering, University of California Santa Barbara meiburg@engineering.ucsb.edu

More information

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient

PIV measurements of turbulence in an inertial particle plume in an unstratified ambient PIV measurements of turbulence in an inertial particle plume in an unstratified ambient D.B. Bryant & S.A. Socolofsky Zachry Department of Civil Engineering, Texas A&M University, USA ABSTRACT: A high-speed

More information

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble Collaborations: Olivier Praud, Toulouse P.H Chavanis, Toulouse F. Bouchet, INLN Nice A. Venaille, PhD student LEGI OVERVIEW

More information

PASSIVE SCALAR MIXING IN A TURBULENT JET

PASSIVE SCALAR MIXING IN A TURBULENT JET Seoul, Korea, 22-24 June 29 PASSIVE SCALAR MIXING IN A TURBULENT JET Massimo Falchi Propulsion and Cavitation Laboratory, INSEAN, Italian Ship Model Basin Via di Vallerano 39, Roma, 28, Italy m.falchi@insean.it

More information

Turbulence: Basic Physics and Engineering Modeling

Turbulence: Basic Physics and Engineering Modeling DEPARTMENT OF ENERGETICS Turbulence: Basic Physics and Engineering Modeling Numerical Heat Transfer Pietro Asinari, PhD Spring 2007, TOP UIC Program: The Master of Science Degree of the University of Illinois

More information

1. Comparison of stability analysis to previous work

1. Comparison of stability analysis to previous work . Comparison of stability analysis to previous work The stability problem (6.4) can be understood in the context of previous work. Benjamin (957) and Yih (963) have studied the stability of fluid flowing

More information

Scattering of internal gravity waves

Scattering of internal gravity waves Scattering of internal gravity waves S.B. Dalziel*, B.R. Sutherland s.dalziel@damtp.cam.ac.uk * DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, ENGLAND Department of Mathematical &

More information

ANALYSIS OF IMPLICIT LES METHODS

ANALYSIS OF IMPLICIT LES METHODS ISSUE COVER COMM. APP. MATH. AND COMP. SCI. Vol. 3, No. 1, 2008 ANALYSIS OF IMPLICIT LES METHODS ANDREW ASPDEN, NIKOS NIKIFORAKIS, STUART DALZIEL AND JOHN B. BELL Implicit LES methods are numerical methods

More information

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli

For example, for values of A x = 0 m /s, f 0 s, and L = 0 km, then E h = 0. and the motion may be influenced by horizontal friction if Corioli Lecture. Equations of Motion Scaling, Non-dimensional Numbers, Stability and Mixing We have learned how to express the forces per unit mass that cause acceleration in the ocean, except for the tidal forces

More information

The Evolution of Large-Amplitude Internal Gravity Wavepackets

The Evolution of Large-Amplitude Internal Gravity Wavepackets The Evolution of Large-Amplitude Internal Gravity Wavepackets Sutherland, Bruce R. and Brown, Geoffrey L. University of Alberta Environmental and Industrial Fluid Dynamics Laboratory Edmonton, Alberta,

More information

Implicit LES of Low and High Speed Flows Using High-Resolution and High-Order Methods

Implicit LES of Low and High Speed Flows Using High-Resolution and High-Order Methods Implicit LES of Low and High Speed Flows Using High-Resolution and High-Order Methods Dimitris Drikakis Cranfield University Aerospace Sciences Department Fluid Mechanics & Computational Science Group

More information

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING

INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING 1 INTERFACIAL WAVE BEHAVIOR IN OIL-WATER CHANNEL FLOWS: PROSPECTS FOR A GENERAL UNDERSTANDING M. J. McCready, D. D. Uphold, K. A. Gifford Department of Chemical Engineering University of Notre Dame Notre

More information

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container

CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container 35 th UKELG Meeting, Spadeadam, 10-12 Oct. 2017 CFD Analysis of Vented Lean Hydrogen Deflagrations in an ISO Container Vendra C. Madhav Rao & Jennifer X. Wen Warwick FIRE, School of Engineering University

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

meters, we can re-arrange this expression to give

meters, we can re-arrange this expression to give Turbulence When the Reynolds number becomes sufficiently large, the non-linear term (u ) u in the momentum equation inevitably becomes comparable to other important terms and the flow becomes more complicated.

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002 arxiv:cond-mat/0212257v1 [cond-mat.stat-mech] 11 Dec 2002 International Journal of Modern Physics B c World Scientific Publishing Company VISCOUS FINGERING IN MISCIBLE, IMMISCIBLE AND REACTIVE FLUIDS PATRICK

More information

Capillary-gravity waves: The effect of viscosity on the wave resistance

Capillary-gravity waves: The effect of viscosity on the wave resistance arxiv:cond-mat/9909148v1 [cond-mat.soft] 10 Sep 1999 Capillary-gravity waves: The effect of viscosity on the wave resistance D. Richard, E. Raphaël Collège de France Physique de la Matière Condensée URA

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

2 In this paper, we give a brief summary of the front tracking algorithm for axisymmetric ow. We report simulations of spherical shock refraction by a

2 In this paper, we give a brief summary of the front tracking algorithm for axisymmetric ow. We report simulations of spherical shock refraction by a A Fast Algorithm for Moving Interface Problems S. Dutta 1,J.Glimm 1 2,J.W.Grove 3,D.H.Sharp 4, and Y. Zhang 1 1 Department of Applied Mathematics and Statistics, University at Stony Brook, Stony Brook,

More information

Natural Convection Heat Loss from A Partly Open Cubic Enclosure Timothy N Anderson 1,a * and Stuart E Norris 2,b

Natural Convection Heat Loss from A Partly Open Cubic Enclosure Timothy N Anderson 1,a * and Stuart E Norris 2,b Natural Convection Heat Loss from A Partly Open Cubic Enclosure Timothy N Anderson 1,a * and Stuart E Norris 2,b 1 Auckland University of Technology, New Zealand 2 University of Auckland, New Zealand a

More information

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS

THE EFFECT OF SAMPLE SIZE, TURBULENCE INTENSITY AND THE VELOCITY FIELD ON THE EXPERIMENTAL ACCURACY OF ENSEMBLE AVERAGED PIV MEASUREMENTS 4th International Symposium on Particle Image Velocimetry Göttingen, Germany, September 7-9, 00 PIV 0 Paper 096 THE EFFECT OF SAMPLE SIZE, TURBULECE ITESITY AD THE VELOCITY FIELD O THE EXPERIMETAL ACCURACY

More information

Effects of inclination angle on a shock-accelerated heavy gas column

Effects of inclination angle on a shock-accelerated heavy gas column Computational Methods in Multiphase Flow VIII 171 Effects of inclination angle on a shock-accelerated heavy gas column D. Olmstead, C. R. Truman, P. Wayne & P. Vorobieff Department of Mechanical Engineering,

More information

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions

Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions Journal of Physics: Conference Series PAPER OPEN ACCESS Impact of numerical method on auto-ignition in a temporally evolving mixing layer at various initial conditions To cite this article: A Rosiak and

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Influence of Lock Aspect Ratio upon the Evolution of an Axisymmetric Intrusion

Influence of Lock Aspect Ratio upon the Evolution of an Axisymmetric Intrusion Under consideration for publication in J. Fluid Mech. 1 Influence of Lock Aspect Ratio upon the Evolution of an Axisymmetric Intrusion By AMBER M. HOLDSWORTH and BRUCE R. SUTHERLAND Departments of Physics

More information

Before we consider two canonical turbulent flows we need a general description of turbulence.

Before we consider two canonical turbulent flows we need a general description of turbulence. Chapter 2 Canonical Turbulent Flows Before we consider two canonical turbulent flows we need a general description of turbulence. 2.1 A Brief Introduction to Turbulence One way of looking at turbulent

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Tilting Shear Layers in Coastal Flows

Tilting Shear Layers in Coastal Flows DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Tilting Shear Layers in Coastal Flows Karl R. Helfrich Department of Physical Oceanography, MS-21 Woods Hole Oceanographic

More information

Experiments on the perturbation of a channel flow by a triangular ripple

Experiments on the perturbation of a channel flow by a triangular ripple Experiments on the perturbation of a channel flow by a triangular ripple F. Cúñez *, E. Franklin Faculty of Mechanical Engineering, University of Campinas, Brazil * Correspondent author: fernandodcb@fem.unicamp.br

More information

The Reynolds experiment

The Reynolds experiment Chapter 13 The Reynolds experiment 13.1 Laminar and turbulent flows Let us consider a horizontal pipe of circular section of infinite extension subject to a constant pressure gradient (see section [10.4]).

More information

Application of the immersed boundary method to simulate flows inside and outside the nozzles

Application of the immersed boundary method to simulate flows inside and outside the nozzles Application of the immersed boundary method to simulate flows inside and outside the nozzles E. Noël, A. Berlemont, J. Cousin 1, T. Ménard UMR 6614 - CORIA, Université et INSA de Rouen, France emeline.noel@coria.fr,

More information

CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline

CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline CHAM Limited Pioneering CFD Software for Education & Industry CHAM Case Study CFD Modelling of Gas Dispersion from a Ruptured Supercritical CO 2 Pipeline 1. INTRODUCTION This demonstration calculation

More information

Flux Enhancement By Shear Free Surfaces In A Turbulent Convection

Flux Enhancement By Shear Free Surfaces In A Turbulent Convection Flux Enhancement By Shear Free Surfaces In A Turbulent Convection Snigdha Lal, Seema Mahto, V. N. Bartaria Abstract: In this Paper we will be dealing with turbulent natural convection in a long vertical

More information

Intuitive Introduction To Acoustic-gravity Waves

Intuitive Introduction To Acoustic-gravity Waves EP711 Supplementary Material Thursday, January 26 th, 2012 Intuitive Introduction To Acoustic-gravity Waves Jonathan B. Snively Embry-Riddle Aeronautical University 1 Contents EP711 Supplementary Material

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

5. 3P PIV Measurements

5. 3P PIV Measurements Micro PIV Last Class: 1. Data Validation 2. Vector Field Operator (Differentials & Integrals) 3. Standard Differential Scheme 4. Implementation of Differential & Integral quantities with PIV data 5. 3P

More information

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT

DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT 10 th International Symposium on Turbulence and Shear Flow Phenomena (TSFP10), Chicago, USA, July, 2017 DNS STUDY OF TURBULENT HEAT TRANSFER IN A SPANWISE ROTATING SQUARE DUCT Bing-Chen Wang Department

More information

28. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode. We now consider the case where the magneto-fluid system is subject to a gravitational force F g

28. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode. We now consider the case where the magneto-fluid system is subject to a gravitational force F g 8. THE GRAVITATIONAL INTERCHANGE MODE, OR g-mode We now consider the case where the magneto-fluid system is subject to a gravitational force F g =!g, where g is a constant gravitational acceleration vector.

More information

DYNAMICS OF LIQUEFIED SEDIMENT FLOW. Advances in Natural and Technological Hazards Research Vol. 19

DYNAMICS OF LIQUEFIED SEDIMENT FLOW. Advances in Natural and Technological Hazards Research Vol. 19 DYNAMICS OF LIQUEFIED SEDIMENT FLOW Advances in Natural and Technological Hazards Research Vol. 9 THE DYNAMICS OF LIQUEFIED SEDIMENT FLOW UNDERGOING PROGRESSIVE SOLIDIFICATION S. SASSA Disaster Prevention

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

Visualization of high-speed gas jets and their airblast sprays of cross-injected liquid

Visualization of high-speed gas jets and their airblast sprays of cross-injected liquid Short communications Experiments in Fluids 27 (1999) 102 106 Springer-Verlag 1999 Visualization of high-speed gas jets and their airblast sprays of cross-injected liquid K. D. Kihm, T. K. Kim, S. Y. Son

More information

Theoretical Advances on Generalized Fractals with Applications to Turbulence

Theoretical Advances on Generalized Fractals with Applications to Turbulence Proceedings of the 5th IASME / WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007 288 2007 IASME/WSEAS 5 th International Conference on Fluid Mechanics

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

Density Field Measurement by Digital Laser Speckle Photography

Density Field Measurement by Digital Laser Speckle Photography Density Field Measurement by Digital Laser Speckle Photography by M. Kawahashi and H. Hirahara Saitama University Department of Mechanical Engineering Shimo-Okubo 255, Urawa, Saitama, 338-8570, Japan ABSTRACT

More information

Oblique shock interaction with a cylindrical density interface

Oblique shock interaction with a cylindrical density interface Computational Methods in Multiphase Flow VIII 161 Oblique shock interaction with a cylindrical density interface P. Wayne 1, D. Olmstead 1, P. Vorobieff 1, C. R. Truman 1 & S. Kumar 2 1 Department of Mechanical

More information

Computation of turbulent natural convection with buoyancy corrected second moment closure models

Computation of turbulent natural convection with buoyancy corrected second moment closure models Computation of turbulent natural convection with buoyancy corrected second moment closure models S. Whang a, H. S. Park a,*, M. H. Kim a, K. Moriyama a a Division of Advanced Nuclear Engineering, POSTECH,

More information

Internal Wave Generation and Scattering from Rough Topography

Internal Wave Generation and Scattering from Rough Topography Internal Wave Generation and Scattering from Rough Topography Kurt L. Polzin Corresponding author address: Kurt L. Polzin, MS#21 WHOI Woods Hole MA, 02543. E-mail: kpolzin@whoi.edu Abstract Several claims

More information

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Dimensionality influence on energy, enstrophy and passive scalar transport.

Dimensionality influence on energy, enstrophy and passive scalar transport. Dimensionality influence on energy, enstrophy and passive scalar transport. M. Iovieno, L. Ducasse, S. Di Savino, L. Gallana, D. Tordella 1 The advection of a passive substance by a turbulent flow is important

More information

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD

Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer. John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Numerical Simulations of a Stratified Oceanic Bottom Boundary Layer John R. Taylor - MIT Advisor: Sutanu Sarkar - UCSD Motivation Objective I: Assess and improve parameterizations of the bottom boundary

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches Joint probability density function modeling of velocity and scalar in turbulence with unstructured grids arxiv:6.59v [physics.flu-dyn] Jun J. Bakosi, P. Franzese and Z. Boybeyi George Mason University,

More information

Experiments at the University of Minnesota (draft 2)

Experiments at the University of Minnesota (draft 2) Experiments at the University of Minnesota (draft 2) September 17, 2001 Studies of migration and lift and of the orientation of particles in shear flows Experiments to determine positions of spherical

More information

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition

Contents. Parti Fundamentals. 1. Introduction. 2. The Coriolis Force. Preface Preface of the First Edition Foreword Preface Preface of the First Edition xiii xv xvii Parti Fundamentals 1. Introduction 1.1 Objective 3 1.2 Importance of Geophysical Fluid Dynamics 4 1.3 Distinguishing Attributes of Geophysical

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION

VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION VERTICAL TURBULENT BUOYANT HELIUM JET CFD MODELING AND VALIDATION Cheng Z, Agranat V.M. and Tchouvelev A.V. A.V.Tchouvelev & Associates, Inc., 659 Spinnaker Circle, Mississauga, Ontario, Canada L5W R Hydrogenics

More information