APPLICATIONS AND EXTENSIONS OF THE THEORY OF ATOMS IN MOLECULES

Size: px
Start display at page:

Download "APPLICATIONS AND EXTENSIONS OF THE THEORY OF ATOMS IN MOLECULES"

Transcription

1 A THEORETICA~ STUDY OF REACTIVITIES AND SYNTHESIS OF MOLECULES: APPLICATIONS AND EXTENSIONS OF THE THEORY OF ATOMS IN MOLECULES By CHENG CHANG, M.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy McMaster University (c) Copyright by Cheng Chang, November 1990

2 A THIDRETICAL STUDY OF THE REACl'IVITY AND SYNTHESIS OF MOLECULES

3 DOCTOR OF PHILOSOPHY (1990) (Chemistry) McMASTER UNIVERSITY Hamilton. Ontorio TITLE: A THEORFl'ICAL STUDY OF THE REACTIVITY AND SYNTHESIS OF MOLECULES: APPLICATIONS AND EXrENSIONS OF THE THFnRY OF ATOMS IN MOLECULES AUTHOR: Cheng Chang. B.Sc. (B~jjing Teacher"s College) M.Sc. (Beijing Teacher's College) SUPERVISOR: Professor R.F.W. Bader NUMBER OF PAGES: xv. 198 ii

4 ABSTRACI' This thesis 8P?lies and extends the theory of atoms in molecules to some general, important and chemically interesting subjects: a means of studying molecules of biochemical size using high-lev~l quantum chemistry. the chemical reactivities of aromatic molecules as well as the nature of ~ type hydrogen bonding. Quantum mechanical principles define an atom in a molecule and its properties as well as the chemical bonds which link the atoms to yield a molecular structure. The resulting theory is called the theory of atoms in molecules. The theory also predicts the chemical reactivity of a molecule through the properties of the Laplacian of its electronic charge distribution. the Laplacian of the charge density also provides the physical basis of the Lewis and VSEPR models. The theory is reviewed in Chapter 1. Molecules of biochemical interest always cause difficulties for computational chemists because of the size. Semiempirical methods have been used in the past. but must alternatively be replaced by ab initio theory. An attempt to use a nonempirical method with reliable trial functions to solve such problems, as made possible through the application of the tools provided in the theory of atoms in molecules, is presented in Chapter 2, and gives ml encouraging result. The study of the chemical reactivities of aromatic I10lecules is of general interest to chemists. An enormous amount of research has been dene in this area. A new way of using the theory to study the reactbities and energetics of monosubstituted benzenes and their para and meta protonatecl intermediates is presented in Chapters 3 and 4. The directing ability of a iii

5 substituent and its ability to activat~ or deactivate the phenyl group in electrophilic substitution reaction are related to atomic, bond and molecular properties of the aromatic molecules. The nature of n-type hydrogen bonding is discussed in Chapter 5. The molecular structures of three CaHaHF complexes are determined for the first time.,. iv

6 AC:IiliOWT.EOOMENTS I wish to take this chance to thank all the members of Dr.Bader's Theoretical Chemistry Laboratory for their help, ~ooperation and friendship during the time I have been studying here, This is the first time for me to leave my country to study in a completely different environment -- different language, different culture, different concepts of value, almost everything is different except for the language and concepts of science. It was the friendship of Dr. Marshall Carroll and Hr. James Cheeseman that encouraged me to overcome many unexpected difficulties with regard to both the study and life aspects of my early time here. I would also like to thank Dr. Preston MacDougall for his help in my understanding of many important concepts of the theory; talking with him about science has always been stimulating. I would like particularly to thank Dr. Keith Laidig and Hr. Danny Legare. The former contributed to developing, maintaining and converting the programs I used and the computers on which they have been run; a part of this thesis could not be done without his work. The latter contributed his precious time in proof-reading and helping me to correct my English gr8dlldbr. I would like to give my special thanks to Dr. Richard Bader, my supervisor. I have really enjoyed the many discussions I have had with him, fran which I have leamed so mch, although at times the discussions were filled with heated arguments and differences of opinion. His enthusibsll in approaching chemistry and his being ultimately responsible for each of the subjects en which we collaborated and for this thesis have v

7 left a deep impression on me. (" ;/ '.. /: ',",".-,... Y1

8 This thesis is dedicated to my wife J Sufang Wang J my parents and my motherland -- China..-=:. vii (

9 TABI.E OF mntents Abstract Acknowledgements Table of Contents EAGE iii v viii List of Figures ~ List of Tables xii Introduction 1 Chapter 1. The Theory of Atoms in Molecules Molecular Electronic Charge Distribution Topological Properties of Charge Distribution Topology of the Laplacian of the Charge Density Properties of Atoms in Molecules 29 Chapter 2. The Theoretical Synthesis of POlypeptides from Amino Acid Fragments Conformation and Structure The Transferability of Amino Acid Fragments The Synthesis of Polypeptides From Amino Acid Fragments Conclusion 87 Chapter 3. Electrophilic Aromatic Substitution The History and Background of the Study of the Electrophilic Aromatic Substitution Calculations Molecular Structure and Bond Properties of Monosubstituted Benzenes Atomic Properties of Monosubstituted Benzenes 104 viii

10 TABLE OF mn'i'ents (con d) 3.5 Susceptibility to F,lectrophilic Attack &S Determined by the Laplacian of ~ 3.6. Conclusion Chapter 4. Energetics of Protonated Monosubstituted Benzenes 4.1. Calculations Molecular Structures and Atomic Properties of Arenium Ion Intermediates Energies of Formation of Protonated Monosubstituted Benzenes 4.4. Conclusions " Chapter 5. Hydrogen-BondP.d Complexes of Unsaturated Hydrocarbons Geometries and Structures Comparisons of the Properties of Tt-Type and a-type Hydrogen Bvnd Complexes 180 References 193 ix

11 LIST OF FIGURES FIGURE 1.1 Contour plots and corresponding relief maps of the electron density of benzene EAGE Plots of a function. f(x), its first and second derivatives Gradient vector field map of the electron density of benzene 1.4 Contour plot of the electron density on the cross section of C~ bond of benzene Plot of a monotonically decreasing function f(x) and its first 1.6 and second derivatives Laplacian distribution of the isolated Argon atoill Contour plot of v~ for molecules with valence-shell and close-shell interactions Contour plot and corresponding relef map of -v2.p of formaldel13'de 27,.., Display of quadrupole moment in different cases au ch&rge density envelopes for hydrocarbon molecules 36 Molecular graphs of neutral glycine and alanine molecules 44 Three different forms of glycine fragment in polypeptides 46 Display of the common fragments of glycine and alanine in different molecules Geometrical parameters of the optimized molecules Contour plot of v2.p for Gly-Gly dipeptide Contour plots of p for the mcx:lel molecules containing GI, IG"I and IG' fragments respectively Contour plots of P for the synthesized and calculated Gly-Gly 81 x

12 LIST OE EIGURES (con'd) 2.8 Contour plots of P for the synthesized and calculated Gly-Gly-Gly Structures of monosubstituted benzenes and the atomic net charges Relationship between bond. atomic properties and Taft's aa D resonance parameter for monosubstituted benzenes Relationship between the relative R population of carbons and quadrupole moment for monosubstituted benzenes Atomic graphs of the VS:X of a carbon atom in methane and benzene Relief maps of the negative of the Laplacian of t=' for benzene and phenoxide Displays of the Laplacian distribution for substituted benzenes Molecular graphs of protonated monosusbtituted benzenes and the benzenium ion Molecular structures of hydrogen-bond complexes of unsaturated hydrocarbons and hydrogen fluoride Molecular graph of slightly distorted C2H4-HF complex Displays of the hydrogen-bond path of CaHeHF(D) and CeHaHF(E) Contour plot of P for CiH4HF overlaid with a contour plot of P for C2H4 186,': xi

13 LIST OF TABLES T.AB.LE EAGE Optimized geometries of glycine and alanine molecules for 4-31G basis set 45 Geometrical comparison of glycine fragments in different molecules 53 Geometrical comparison of alanine fragments in different molecules Comparison of properties of P at bond critical points for glycine fragments in different molecules Comparison of properties of P at bond critical points for alanine frasma~ts in different molecules Comparison of atomic populations for glycine fragments in different molecules Comparison of atomic populations for alanine fraglnents in different molecules Comparison of atomic energies for glycine fragments in different molecules Comparison of atomic energies for alanine fragments in different molecules Comparison of atomic volumes for glycine fragments in different molecules Comparison of atomic volumes for alanine fragments in different molecules Comparison of properties at critical points in v~ for glycine fragments in different molecules xii

14 LIST OF TABLES (can'd) TABLE 2.13 Comparison of properties at critical points in q~ for alanine fragments jn different molecules A Comparison of total properties of synthesised molecules with the calculated ones 83 Crystal structure data of zwitterions: glycine. alanine. gly-g!y. gly-ala. ala-gly and gly-gly-gly 90 Values of Pb in monosubstituted benzenes 99 Values of 'V2fb in monosubstituted benzenes 100 Ellipticities at bond critical points of monosubstituted benzenes 102 Atomic populations of monosubstituted benzenes 106 Atomic It populations of monosubstituted benzenes 107 Relative atomic populations of monosubstituted benzenes 109 Relative atomic It populations of monosubstituted benzenes 110 Relative atomic 0 populations of monosubstituted benzenes 111 Relative quadruple moments of monosubstituted benzenes 119 Relative values of 'V2P in monosubstituted benzenes 125 Off-axis angle of reactive centers in the Laplacian of monosubstituted benzenes Comparison of Complementary Anglesa of Secondary Concentrations With Their Relative 'V2p values Optimized geometry of planar aniline at 6-31G level Atomic populations of pyramidal aniline 128 Charge xiii

15 LIST OF TABLES (COD d) TABLE Energies and Virial ratios for substituted benzenes, arenium intermediates. and pentadienyl Cation 138 Bond and ring critical point data for arenium ion intermediates 143 Comparison of bond and atomic properties of benzenium and Pentadienyl cations Atomic charges q(q) in arenium ion intermediates Quadrupole moments ~(Q) of arenium ion intermediates 151 Atomic populations of arenium ion intermediates relative to their values in Ph-X Energies of formation and group contributions for arenium ions Charges and atomic first moments of C1 and bonded substituent atom Xl in Ph-X and [Ph-X]H Atomic Energies of arenium ion intermedialts [Ph-X]H+ relative to their values in Ph-X 159 A4.1 Optimized Geometries of protonated benzene for various basis sets 165 A4.2 Optimized geometries of protonated fluorobenzene for various basis sets 166 A4.3 Optimized geometries ofprotonated phenol fur various basis sets 167 A4.4 Optimized geometries of protonated cyanobenzene for various basis sets 168 xiv

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

APPLICATION OF THE THEORY OF ATOMS IN MOLECULES

APPLICATION OF THE THEORY OF ATOMS IN MOLECULES APPLICATION OF THE THEORY OF ATOMS IN MOLECULES By Clement D.H. Lau, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

More information

STRUCfURE AND REACfIVITY OF THE. 1,3-DlOXOLAN-2-YLIUM ION SYSTEM. JOHN PAUL BELLAVIA, B. Sc. A Thesis. Submitted to the School of Graduate Studies

STRUCfURE AND REACfIVITY OF THE. 1,3-DlOXOLAN-2-YLIUM ION SYSTEM. JOHN PAUL BELLAVIA, B. Sc. A Thesis. Submitted to the School of Graduate Studies STRUCfURE AND REACfIVITY OF THE 1,3-DlOXOLAN-2-YLIUM ION SYSTEM By JOHN PAUL BELLAVIA, B. Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

2. Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction? A) NO 2

2. Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction? A) NO 2 Name: CHEM 226 Practice Quiz 3 Chapter 4-Aromatic Compounds and Chapter 7- Alcohols, Phenols and Thiols Attempt all questions showing your answers and work clearly for full and partial credits 1. Which

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Benzene and Aromaticity

Benzene and Aromaticity Benzene and Aromaticity Why this Chapter? Reactivity of substituted aromatic compounds is tied to their structure Aromatic compounds provide a sensitive probe for studying relationship between structure

More information

Contents. Preface to the Second Edition. Acknowledgments

Contents. Preface to the Second Edition. Acknowledgments Contents Preface to the Second Edition Preface Acknowledgments xi xiii xv 1. How Science Deals with Complex Problems 1 1.1 Introduction: Levels in Science... 2 1.2 What Are Molecules Made of?... 4 1.3

More information

Atom in Molecules a Quantum Theory (AIM)

Atom in Molecules a Quantum Theory (AIM) Atom in Molecules a Quantum Theory (AIM) Richard F. W. Bader* The primary purpose in postulating the existence of atoms in molecules is a consequence of the observation that atoms or groupings of atoms

More information

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 1: ORGANIC - I (Nature of Bonding Module 4: Applications of Electronic Effects CHE_P1_M4 PAPER 1: ORGANIC - I (Nature of Bonding

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2

Introduction. A1.1 (a) Shell number and number of subshells 1. A1.1 (b) Orbitals 2. A1.1 (c ) Orbital shapes (s, p & d) 2 Preface Table of Contents Introduction i A1.1 (a) Shell number and number of subshells 1 A1.1 (b) Orbitals 2 A1.1 (c ) Orbital shapes (s, p & d) 2 A1.1 (d) Relative energies of s,p,d,f sub-shells 4 A 1.1

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ]

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ] Chapter 19: Benzene and Aromatic Substitution eactions [Sections: 18.2, 18.6; 19.1-19.12] omenclature of Substituted Benzenes i. Monosubstituted Benzenes C 2 C 3 ii. Disubstituted Benzenes X X X Y Y Y

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. CONTACT HOURS: Lecture: 3 Laboratory: 4

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. CONTACT HOURS: Lecture: 3 Laboratory: 4 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by: Dr. M. DeCastro September 2011 Organic Chemistry II COURSE NUMBER: CHM 271 CREDITS: 5 CONTACT HOURS: Lecture:

More information

March 08 Dr. Abdullah Saleh

March 08 Dr. Abdullah Saleh March 08 Dr. Abdullah Saleh 1 Effects of Substituents on Reactivity and Orientation The nature of groups already on an aromatic ring affect both the reactivity and orientation of future substitution Activating

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

Chemistry Class 11 Syllabus

Chemistry Class 11 Syllabus Chemistry Class 11 Syllabus Course Structure Unit Title Marks I Basic Concepts of Chemistry 11 II Structure of Atom III Classification of Elements & Periodicity in Properties 4 IV Chemical Bonding and

More information

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6

BRCC CHM 102 Class Notes Chapter 13 Page 1 of 6 BRCC CHM 102 ass Notes Chapter 13 Page 1 of 6 Chapter 13 Benzene and Its Derivatives aliphatic hydrocarbons include alkanes, alkenes, and alkynes aromatic hydrocarbons compounds that contain one or more

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important:

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important: Aside on Chapter 22, Organic Chemistry Why is organic chemistry important: 1) Materials 2) Energy (oil & coal) 3) Human health a) diagnosis b) treatment (drugs) 4) A drug development logic progression

More information

Downloaded from

Downloaded from 1 Class XI Chemistry Ch 13: Hydrocarbons TOP Concepts: 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

Aryl Halides. Structure

Aryl Halides. Structure Aryl Halides Structure Aryl halides are compounds containing halogen attached directly to an aromatic ring. They have the general formula ArX, where Ar is phenyl, substituted phenyl. X= F,Cl,Br,I An aryl

More information

The Electronic Structure Studies of Hydroxyl Substituted Benzoic Acids

The Electronic Structure Studies of Hydroxyl Substituted Benzoic Acids Journal of Photopolymer Science and Technology Volume 12,Number2(1999) 331-338 1999TAPJ i The Electronic Structure Studies of Hydroxyl Substituted Benzoic Acids Wang Liyuan and Yu Shangxian Department

More information

Electrophilic Aromatic Substitution: Direction

Electrophilic Aromatic Substitution: Direction Electrophilic Aromatic Substitution: Direction or each of the following species, show the most likely site(s) for electrophilic aromatic substitution, and predict whether the molecule reacts with electrophiles

More information

Lecture 24 Organic Chemistry 1

Lecture 24 Organic Chemistry 1 CEM 232 Organic Chemistry I at Chicago Lecture 24 Organic Chemistry 1 Professor Duncan Wardrop April 6, 2010 1 Which shorthand orbital diagram best represents the LUMO of a dienophile in a Diels-Alder

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

A CHEMIST'S GUIDE TO VALENCE BOND THEORY

A CHEMIST'S GUIDE TO VALENCE BOND THEORY A CHEMIST'S GUIDE TO VALENCE BOND THEORY Sason Shaik The Hebrew University Jerusalem, Israel Philippe C. Hiberty Universite de Paris-Sud Orsay, France BICENTENNIAL 3ICCNTENNIAL WILEY-INTERSCIENCE A JOHN

More information

Alkenes, Alkynes, and Aromatic Compounds

Alkenes, Alkynes, and Aromatic Compounds Alkenes, Alkynes, and Aromatic Compounds Alkenes and Alkynes Unsaturated Contain carbon-carbon DOUBLE and TRIPLE bond to which more hydrogen atoms can be added Alkenes: carbon-carbon double bonds Alkynes:

More information

1 TOP Concepts: Class XI Chemistry Ch 13: Hydrocarbons 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION 1. Consider carefully the mechanism of the following electrophilic aromatic substitution reaction and indicate which of

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction

DAMIETTA UNIVERSITY. Energy Diagram of One-Step Exothermic Reaction DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 5 Dr Ali El-Agamey 1 Energy Diagram of One-Step Exothermic Reaction The vertical axis in this graph represents the potential energy. The transition

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, Orlando,

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Chapter 19: Aromatic Substitution Reactions

Chapter 19: Aromatic Substitution Reactions Chem A225 Notes Page 52 Chapter 19: Aromatic Substitution Reactions Topic One: lectrophilic Aromatic Substitution I. Introduction to lectrophilic Aromatic Substitution (AS) A. eneral Reaction Pattern B.

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 1 Course Description CH 240. Organic

More information

Chapter 15: Reactions of Substituted Benzenes

Chapter 15: Reactions of Substituted Benzenes Learning Objectives: Chapter 15: Reactions of Substituted Benzenes 1. Be able to recognize and utilize the oxidative and reductive reactions involving the substituents on benzene. 2. Recognize whether

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES

THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES THE DECOMPOSITION OF AMMONIA ON TUNGSTEN SURFACES by YU.KWANG PENG, DIPL. CHEM. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Lecture 12 Electrophilic Aromatic Substitution E E February 22, 2018 Electrophilic Aromatic Substitution Electrophilic aromatic substitution: a reaction in which a hydrogen atom on an aromatic ring is

More information

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives Arenium ion from addition of tert-butyl cation to benzene (blue is δ+and red δ-) Note: Problems with italicized numbers

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

Chapter 15: Benzene & Aromaticity

Chapter 15: Benzene & Aromaticity Chapter 15: Benzene & Aromaticity Learning Objective & Key Concepts 1. Sources and nomenclature of aromatic compounds. 2. Introduction to Huckel 4n+2 rule and aromaticity stability and reactivity, 3. Introduction

More information

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems.

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems. Subject Chemistry Paper No and Title Paper-5, Organic Chemistry-II Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para Module Tag CHE_P5_M29 TABLE OF CONTENTS 1. Learning Outcomes

More information

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2 Lecture outline Directing effects of substituents Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. e.g., nitration of toluene 3

More information

, MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE. by Mark James Pollock

, MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE. by Mark James Pollock , MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE by Mark James Pollock A Thesi s Submitted to the Schoo~ of Graduate Studies in Partial Fulfilment

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Examination #2 Reactions of Alkenes & Alkynes, Chemistry of Aromatic Compounds, and Stereochemistry Thursday, October 5,

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Examination #2 Reactions of Alkenes & Alkynes, Chemistry of Aromatic Compounds, and Stereochemistry Thursday, October 8,

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Bonding - Ch. 7. Types of Bonding

Bonding - Ch. 7. Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

Topic 4.8 AMINO ACIDS. Structure Acid-Base Properties Condensation Reactions Proteins

Topic 4.8 AMINO ACIDS. Structure Acid-Base Properties Condensation Reactions Proteins Topic 4.8 AMI AIDS Structure Acid-Base Properties ondensation eactions Proteins STUTUE F AMI AIDS Amino acids are molecules containing an amine group and a carboxylic acid group. aturally occurring amino

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Solutions In each case, the chirality center has the R configuration

Solutions In each case, the chirality center has the R configuration CAPTER 25 669 Solutions 25.1. In each case, the chirality center has the R configuration. C C 2 2 C 3 C(C 3 ) 2 D-Alanine D-Valine 25.2. 2 2 S 2 d) 2 25.3. Pro,, Trp, Tyr, and is, Trp, Tyr, and is Arg,

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution o General reaction - an electrophile replaces a hydrogen Electrons of pi system attack strong electrophile, generating resonancestabilized

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a

Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Aliphatic Hydrocarbons Anthracite alkanes arene alkenes aromatic compounds alkyl group asymmetric carbon Alkynes benzene 1a Hard coal, which is high in carbon content any straight-chain or branched-chain

More information

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: http://math.mercyhurst.edu/~jwilliams/ jwilliams@mercyhurst.edu (or just visit Department web site and look

More information

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111 Ed: Pls provide art About the Authors Preface xvii xvi 1 Matter: Its Properties and Measurement 1 1-1 The Scientific Method 2 1-2 Properties of Matter 4 1-3 Classification of Matter 5 1-4 Measurement of

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2015 Dr. Rainer Glaser Examination #2 Reactions of Alkenes & Alkynes, Chemistry of Aromatic Compounds, and Stereochemistry Thursday, October 8,

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

Class XII: Chemistry Chapter 13: Amines Top concepts

Class XII: Chemistry Chapter 13: Amines Top concepts Class XII: Chemistry Chapter 13: Amines Top concepts 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification

More information

Hey, Baby. You and I Have a Bond...Ch. 8

Hey, Baby. You and I Have a Bond...Ch. 8 I. IONIC BONDING FUNDAMENTALS A. They form between... 1. A and a a. A to become b. A to become B. How it happens (Let s first focus on two atoms): 1. When a metal and a nonmetal meet, electrons get transferred

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) State the reagents and conditions needed to convert benzene into (i) chlorobenzene, (ii) bromobenzene, (iii) nitrobenzene....[4] (b) The nitration of benzene is a two-step reaction that can be represented

More information

Chapter 4. An Introduction to Organic Compounds

Chapter 4. An Introduction to Organic Compounds Chapter 4 An Introduction to Organic Compounds Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line bond structure. 2. Understand and construct condensed

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Module III: Aromatic Hydrocarbons (6 hrs)

Module III: Aromatic Hydrocarbons (6 hrs) Module III: Aromatic Hydrocarbons (6 hrs) Nomenclature and isomerism in substituted benzene. Structure and stability of benzene: Kekule, resonance and molecular orbital description. Mechanism of aromatic

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information