CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems.

Size: px
Start display at page:

Download "CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems."

Transcription

1 Subject Chemistry Paper No and Title Paper-5, Organic Chemistry-II Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para Module Tag CHE_P5_M29

2 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Electronic effects of the substituent 3.1 R = O, NR 2, NHR, NH 2, OH, OR, NHCOR, OCOR 3.2 R = NO 2, CN, SO 3 H, CHO, COR, CO 2 H, CONH R = + NR 3, + NH 3, CCl 3, CF R = Alkyl or Phenyl 3.5 R = Carboxylate Anions, CO R = F, Cl, Br, I 4. Effects of more than one substituent 5. Ipso-substitution 6. Orientation in other ring systems 7. Summary

3 1. Learning Outcomes After studying this module, you shall be able to Know various possibilities in electrophilic aromatic substitutions of substituted benzenes Learn about ortho, para, meta and ipso substitutions Familiarize with groups that either direct o/p-substitution or are m-directing Acquire an understanding of the observed orientation of the EAS products in benzene and other ring systems 2. Introduction When substituted benzenes undergo electrophilic substitution reactions, then there are usually 3 possibilities: the substitution may occur either at ortho or para or meta-position to the original substituents. Also, sometimes, a fourth type of substitution may be encountered viz. ipso substitution, a special case of electrophilic aromatic substitution where the leaving group is not hydrogen but the original substituent itself. These 4 possibilities are illustrated in the following figure: For example, consider the nitration reaction of the following substrates:

4 As can be seen, toluene gave a mixture of ortho and para-substitution products, while, nitrobenzene gave, predominantly, the meta-substitution product. The rate of the latter reaction is very slow as compared to the former one. A natural question arises, What are the influences of the original substituent in aromatic ring which leads to such observed product ratios? The answer(s) to this can be found out by studying the electronic nature of the substituent and its effects on the aromatic ring. 3. Electronic effects of the substituent Based on the observed pattern of electrophilic aromatic substitutions of a wide range of monosubstituted benzenes (R-C 6 H 5 ), the substituent R falls into the following categories: O, NR 2, NHR, NH 2, OH, OR, NHCOR, OCOR NO 2, CN, SO 3 H, CHO, COR, CO 2 H, CONH 2 + NR 3, + NH 3, CCl 3, CF 3 Alkyl/Phenyl CO 2 F, Cl, Br, I These are now discussed one-by-one in the following sections: 3.1 X = O, NR 2, NHR, NH 2, OH, OR, NHCOR, OCOR These groups (with the exception of O ), show an electron-withdrawing inductive effect ( I effect) as the atom directly attached to the benzene ring is more electronegative than carbon. On the other hand, there is also a strong +R (resonance) effect since each of these groups has a lone pair of electrons which they are able to donate to the ring via resonance.

5 +R >> I, for O, NR 2, NHR, NH 2, OH, OR +R > I, For NHCOR, OCOR Thus, these groups make the ring more electron rich than benzene and hence making the ring more susceptible to attack by electrophiles. Thus, aromatic rings bearing these groups react faster than benzene and the groups are said to be activating, in the following decreasing order of reactivity: O > NR 2 > NHR > NH 2 > OH > OR > NHCOR > OCOR (The latter two are less activating than the others because the lone pairs on the hetero-atom are to some extent also being delocalised into the carbonyl group). Now, to explain the orientation in these cases, as can be seen from the preceding figure, the resonance effect builds up negative charge only on the ortho and para positions in the starting material. Thus, one can expect the electrophile to attack these positions selectively. Also, if one may consider the formation and stabilization of the Wheland complexes (σ-complex) of the three possible mode of electrophilic attack, the same conclusion is reached. The same is explained in the case of anisole as shown below: As illustrated, for the attack at either ortho or para positions, the Wheland intermediate has an extra canonical form in which the positive charge is delocalised onto the O-atom by involvement

6 of the lone pair on O. This is not possible on attack at the meta position and hence the meta-attack intermediate is less stable than those from either ortho or para. (However, steric effects also come to play and hence the ratio of the ortho to para product is ~1:2 for anisole). Thus, these groups are activating and ortho, para directing. 3.2 X = NO 2, CN, SO 3 H, CHO, COR, CO 2 H, CONH 2 These groups show a moderate to strong electron-withdrawing inductive effect, ( I effect) as these possess a partial to full positive charge on the atom directly attached to the aromatic ring. They also display electron-withdrawing resonance effects, R. These effects are illustrated below for the case of nitrobenzene: In effect, they make the aromatic ring electron-poor in comparison to benzene, and thereby, act as strongly deactivating groups i.e. reactions proceed much slower in rings bearing these groups compared to benzene. Also, the orientation of the resulting product can be predicted in two ways: (i) Presence of positive charges at the ortho and para positions in the resonance hybrids as shown above for nitrobenzene will dissuade the electrophile to attack at these positions. Hence, meta product will mainly predominate as only the meta position is now available for the electrophile to attack. (ii) By comparing the stability of the Wheland intermediates:

7 As shown, while the attack at the ortho or para positions will lead to one canonical form, wherein, a positive charge is situated adjacent to the positively charged substituent, which is unfavourable electrostatically, such a situation is avoided in meta attack. Hence, these groups will be deactivating and meta directing. 3.3 X = + NR 3, + NH 3, CCl 3, CF 3 These groups also show a strong electron-withdrawing inductive effect ( I) due to their positive charge or because of the strong electronegativity of the halogens (which leads to a positive polarization of the atom directly attached to the aromatic ring). However, there is no resonance effect as there are no orbitals or electron pairs which can overlap with those of the ring. The inductive effect creates small positive charges on the ortho and para positions but not on the meta position and it destabilises the Wheland intermediate. Hence these groups are deactivating and meta-directing. This is illustrated in the figures below:

8 So, for the deactivating, meta-directing groups (discussed in 3.2 and 3.3) the effect in the decreasing order is as shown below: 3.4 X = Alkyl or Phenyl Since, there is a weak electronegativity difference between the carbon atom of the alkyl group and its hydrogen atoms, the C-atom becomes more electron-rich and it passes this electronic current to the aromatic ring. Thus, there is a weak inductive effect (+I). Also, weak resonance effects from hyperconjugation also increase the electron density in the ring.

9 These two effects will thus aid the attack of the electrophile, albeit weakly, and so alkyl groups should be mildly activating. Also, these are weak ortho and para directing groups, as can be seen by the resonance hybrids of the substrate (shown above) or by the stabilization of the Wheland intermediates as shown below for the ortho-attack: In case of a phenyl substituent, resonance stabilization of the Wheland intermediate for ortho and para electrophilic attack takes place, and so, these are also weakly activating and o-/p- directing. 3.5 X = Carboxylate Anions, CO 2 There is an almost zero resonance effect since the negative charge of the anion is itself delocalized with the carbonyl group. So, there is no electron withdrawing resonance effect. The negatively charged carboxylate ion moderately repels the electrons in the bond attaching it to the ring. Thus, there is moderate electron-donating +I effect producing small negative charges on the ortho and para positions but not on the meta position. So, overall the carboxylate group has a weak activating influence on the aromatic ring and are o-/p- directing. Similar argument can be applied for the stabilisation of the Wheland intermediate.

10 3.6 X = F, Cl, Br, I Consider the nitration of chlorobenzene: The reaction is much slower than benzene, and ortho and para products are mainly formed. To justify these effects, consider the properties of the halogens. These are powerful electronwithdrawing elements (being very electronegative) and thus show a strong I effect, thereby, deactivating the ring for electrophilic attack. However, the halogens also have lone pairs of electrons that they can donate via resonance in the σ-complexes for ortho- and para- electrophile attack, while the reaction at the meta- position does not allow for the positive charge to be placed next to to the halogen, and therefore does not result in any stabilization. The canonical forms of σ-complex for para- electrophile attack is shown below: Thus, these groups are deactivating but o/p directing. 4. Effects of more than one substituent The cumulative effects of both the substituents have to be taken into account and it is often possible to predict the correct isomer of electrophilic aromatic substitution, especially, when

11 groups on the ring reinforce their directing abilities. For example, consider the following compounds: In the molecule A, where both the -OMe and -Cl are o/p-directing will cumulatively guide the incoming electrophile to the ortho/para positions as marked above. Similarly, in molecule B, both -COOH group and -NO 2 are m-directing and will guide the incoming electrophile to only one of the m-position as marked in the figure. However, in molecule C, where the groups oppose each other, it is more difficult and one often gets a mixture. However, there are some general rules for prediction of the orientation: We can arrange the groups in the following order of influence: O-, NR 2, NHR, NH 2, OH, OR > NHCOR, OCOR > R > F, Cl, Br, I > all m- directing groups Due to steric reasons, the electrophile is less likely to attack between two groups. When an o-/p- directing is meta to a meta-directing group the electrophile goes predominantly ortho to the meta directing group rather than para to it. 5. Ipso-substitution There is also a possibility of electrophilic attack at the ring carbon-atom to which the substituent X is attached. So, substitution of the original substituent by the electrophile is termed as ipso substitution.

12 As can be logically anticipated, ipso substitution will be promoted by those substituents (X) which can form stable X + cation after attack by the electrophile. Thus substituents such as: Br, I, SiR 3, SnR 3, R (usually secondary/tertiary alkyls) undergo electrophilic aromatic substitutions with predominant ipso product. Some examples of ipso substitutions are provided below: Also, protodesulfonylation occurs, where the electrophile H +, replaces the substituent SO 3 which subsequently is hydrated to form H 2 SO 4. However, the ipso attack can theoretically have five possible fates: electrophile migration, ipso group migration, ipso group loss, electrophile loss, nucleophile addition. This is shown below:

13 H Nu E X -E+ E -X+ X X H E E X E H X 6. Orientation in other ring systems In naphthalene, there are only two possible sites for substitution: 1 (α) and 2 (β). (all others are equivalent to 1 and 2). However, electrophilic substitution predominantly occurs at C-1 than C-2. This can be explained on the basis of stabilization of the respective σ-complexes: Attack at C-1 (stabilization by allylic resonance; benzenoid character of other ring is maintained) Attack at C-2 (the benzenoid character of the other ring is sacrificed for stabilization of the +ve charge by resonance) Similarly, in Anthracene, electrophilic substitution occurs at the middle ring via intermediate-a. This is due to the fact that intermediate-a has one resonating structure preserving two benzenoid rings which is lacking in other modes of attack.

14 For hetero-aromatic systems such as pyridine, furan, pyrrole etc., no generalizations can be made. However, each group has to be studied differently. Pyridine reacts very slowly towards EAS and its reactivity resembles that of nitrobenzene as the presence of electronegative N-atom in ring causes π electrons to be held more strongly than in benzene. EAS takes place at C-3. For eg. sulfonation of pyridine at high temperatures is shown below: Pyrrole, Furan, and Thiophene are relatively reactive towards EAS as total 6π electrons are present in delocalised π-orbitals shared between 4 carbons and one hetero-atom (lone pair). Thus, these are π-excessive heterocycles and π electrons are held less strongly. Substitution at C-2 is favoured over C-3. For example, pyrrole undergoes nitration at C-2. Nitration at 3-position It can be clearly seen from the above resonating structures for nitration at C-2 and C-3 respectively that substitution at C-2 has more resonating structures. Thus, C-2 position is favoured.

15 7. Summary When substituted benzene compounds undergo electrophilic substitution reactions, then there are total 4 possibilities: the substitution may occur either at ortho or para or metaposition to the original substituents or ipso substitution may occur. Electron donating substituents, X = O, NR 2, NHR, NH 2, OH, OR, NHCOR, OCOR are activating and ortho, para directing. Electron-withdrawing substituents NO 2, CN, SO 3 H, CHO, COR, CO 2 H, CONH 2 are deactivating and meta directing. + NR 3, + NH 3, CCl 3, CF 3 are also de-activating and meta directing as these also show strong electron-withdrawing I effect. Alkyl or Phenyl groups are mildly activating and o-/p- directing due to hyperconjugation and resonance effects respectively. Carboxylate anions, CO 2 show weak activating influence on the aromatic ring and are o- /p- directing as there is moderate electron-donating +I effect. Halogens F, Cl, Br, I, being very electronegative, show a strong I effect and are deactivating. However, they are o-/p- directing by virtue of their lone pair of electrons which they can donate during resonance stabilization of the intermediates. When two substituents are present on the ring, the cumulative effects of both the substituents have to be taken into account and it is often possible to predict the correct isomer of electrophilic aromatic substitution when they are reinforcing each other s effects. Substitution of the original substituent by the electrophile is termed as ipso substitution and commonly encountered with substituents such as: Br, I, SiR 3, SnR 3, R (usually secondary/tertiary alkyls) and SO 3 H. Orientation in other ring systems including hetero-aromatic systems can be predicted on similar lines by considering the resonating structures of the σ-complexes.

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2.

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2. Electrophilic Aromatic Substitution (Aromatic compounds) Ar- = aromatic compound 1. Nitration Ar- + NO 3, 2 SO 4 Ar- + 2 O 2. Sulfonation Ar- + 2 SO 4, SO 3 Ar-SO 3 + 2 O 3. alogenation Ar- + X 2, Fe Ar-X

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Chapter 17: Reactions of Aromatic Compounds

Chapter 17: Reactions of Aromatic Compounds 1 Chapter 17: Reactions of Aromatic Compounds I. Introduction to Electrophilic Aromatic Substitution (EAS) A. General Mechanism II. Reactions of Electrophilic Aromatic Substitution A. Halogenation (E =

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Chemistry 391 10/14/02 Lecture 5 Diazonium Salts OH NH 2 NaNO 2 aq. HCl N N Cl H 2 O HCl Cl + H 3 O + Chemistry 391 10/16/02 Diazonium Salts The -N + 2 group of an arenediazonium

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 1: ORGANIC - I (Nature of Bonding Module 4: Applications of Electronic Effects CHE_P1_M4 PAPER 1: ORGANIC - I (Nature of Bonding

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Frost Circles a Great Trick

Frost Circles a Great Trick Aromatics Frost Circles a Great Trick Inscribe a polygon of the same number of sides as the ring to be examined such that one of the vertices is at the bottom of the ring The relative energies of the MOs

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

14: Substituent Effects

14: Substituent Effects 14: Substituent Effects 14.1 Substituents and Their Effects 14-3 Substituent Effects (14.1A) 14-3 Some Reactions or Properties Transmission of Substituent Effects Substituents (14.1B) 14-4 A List of Substituents

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Lecture 12 Electrophilic Aromatic Substitution E E February 22, 2018 Electrophilic Aromatic Substitution Electrophilic aromatic substitution: a reaction in which a hydrogen atom on an aromatic ring is

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

Module III: Aromatic Hydrocarbons (6 hrs)

Module III: Aromatic Hydrocarbons (6 hrs) Module III: Aromatic Hydrocarbons (6 hrs) Nomenclature and isomerism in substituted benzene. Structure and stability of benzene: Kekule, resonance and molecular orbital description. Mechanism of aromatic

More information

Chapter 19: Aromatic Substitution Reactions

Chapter 19: Aromatic Substitution Reactions Chem A225 Notes Page 52 Chapter 19: Aromatic Substitution Reactions Topic One: lectrophilic Aromatic Substitution I. Introduction to lectrophilic Aromatic Substitution (AS) A. eneral Reaction Pattern B.

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution . 13 hapter 13 eactions of Arenes lectrophilic Aromatic ubstitution lectrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. ecall: 3 4 Y 1 4 2 1 δ

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2 Lecture outline Directing effects of substituents Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. e.g., nitration of toluene 3

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

Learning Guide for Chapter 18 - Aromatic Compounds II

Learning Guide for Chapter 18 - Aromatic Compounds II Learning Guide for Chapter 18 Aromatic Compounds. lectrophilic aromatic substitution ntroduction Mechanism Reagents and Products lectrophiles ffects of stituents FriedelCrafts alkylation and acylation

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, Orlando,

More information

SIX MEMBERED AROMATIC HETEROCYCLES

SIX MEMBERED AROMATIC HETEROCYCLES SIX MEMBERED AROMATIC HETEROCYCLES Ṇ. Pyridine Pyridine is aromatic as there are six delocalized electrons in the ring. Six-membered heterocycles are more closely related to benzene as they are aromatic

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + +

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + + Effect on Rate Rate and Regioselectivity in Electrophilic Aromatic Substitution A substituent already present on the ring affects both the rate and regioselectivity of electrophilic aromatic substitution.

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper No. 5:Organic Chemistry-II Module No. 2: Overview of different types of Organic Reaction Mechanisms CHE_P5_M2 TABLE OF CONTENTS

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

Chapter 17 Aromati ti S u stit tit t u i tion Reactions Chapter 17 Aromatic Substitution Reactions 1 17.1 Mechanism for Electricphilic Aromatic Substitution Arenium ion resonance stabilization 2 Example 1. Example 2. 3 Example 2. Mechanism of the nitration

More information

March 08 Dr. Abdullah Saleh

March 08 Dr. Abdullah Saleh March 08 Dr. Abdullah Saleh 1 Effects of Substituents on Reactivity and Orientation The nature of groups already on an aromatic ring affect both the reactivity and orientation of future substitution Activating

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced.

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced. Chem 263 ct. 10, 2013 The strongest donating group determines where new substituents are introduced. N 2 N 3 2 S 4 + N 3 N 2 2 S 4 N 2 N 2 + 2 N N 2 N 3 2 S 4 N 2 2 N N 2 2,4,6-trinitrophenol picric acid

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Chemistry I (Organic) Aromatic Chemistry. LECTURE 4 Electrophilic Substitution (part 3)

Chemistry I (Organic) Aromatic Chemistry. LECTURE 4 Electrophilic Substitution (part 3) 1 Chemistry I (Organic) Aromatic Chemistry LCTU 4 lectrophilic Substitution (part 3) Alan C. Spivey a.c.spivey@imperial.ac.uk Dec 2009 2 Format and scope of presentation lectrophilic aromatic substitution

More information

Suggested solutions for Chapter 29

Suggested solutions for Chapter 29 s for Chapter 29 29 PRBLEM 1 or each of the following reactions (a) state what kind of substitution is suggested and (b) suggest what product might be formed if monosubstitution occured. Br 2 3 2 S 4 S

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations

PAPER No. 5:Organic Chemistry-2(Reaction Mechanism-1) MODULE No. 6: Generation, Structure, Stability and Reactivity of Carbocations Subject Chemistry Paper No and Title Module No and Title Module Tag Paper No. 5: Organic Chemistry-II (Reaction Mechanism-1) Generation, Structure, Stability and Reactivity of Carbocations CHE_P5_M6 TABLE

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION 1. Consider carefully the mechanism of the following electrophilic aromatic substitution reaction and indicate which of

More information

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base eactions 1 eactions 2 2. limination Alkyl halide is treated with a base B: 2. limination ften competes with nucleophilic substitution LIMINATIN Nu: SUBSTITUTIN Nu Bimolecular B: limination B * * 3 Kinetics

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material:

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material: Exam 2 Name CHEM 212 1. (36 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Pyrrole reaction. Assis.Prof.Dr.Mohammed Hassan Lecture 4

Pyrrole reaction. Assis.Prof.Dr.Mohammed Hassan Lecture 4 Pyrrole reaction Assis.Prof.Dr.Mohammed assan Lecture 4 Acidic properties of pyrrole Due to participation of lone pair in aromaticity), pyrrole has exceptionally strong acidic properties It can react with

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds 9.5 Polycyclic Aromatic Compounds The general concept of aromaticity can be extended to include polycyclic aromatic compounds Benzo[a]pyrene is one of the cancer-causing substances found in tobacco smoke

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

Aryl Halides. Structure

Aryl Halides. Structure Aryl Halides Structure Aryl halides are compounds containing halogen attached directly to an aromatic ring. They have the general formula ArX, where Ar is phenyl, substituted phenyl. X= F,Cl,Br,I An aryl

More information

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions Subject hemistry Paper o and Title Module o and Title Module Tag 05, ORGAI EMISTRY-II 12, S 1 Reactions E_P5_M12 EMISTRY PAPER o. 05: TITLE: ORGAI EMISTRY-II TABLE OF OTETS 1. Learning Outcomes 2. Introduction

More information

Chapter 3 N S. Substitutions of Aromatic Heterocycles. M. R. Naimi-Jamal. With special thanks to Dr. Javanshir 1

Chapter 3 N S. Substitutions of Aromatic Heterocycles. M. R. Naimi-Jamal. With special thanks to Dr. Javanshir 1 Chapter 3 N S Substitutions of Aromatic Heterocycles O M. R. Naimi-Jamal With special thanks to Dr. Javanshir 1 Pyridines carrying strongly electron-withdrawing substituents, or heterocycles with additional

More information

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing Chem 263 ct. 6, 2009 lectrophilic Substitution of Substituted Benzenes Resonance ffect Inductive ffect C=C, π system Single bonds, σ Strong Weak e - donating Activate Activate ortho and para directing

More information

More EAS. Lecture 12. Di- and Polysubstitution CH 3 + H + H HNO 2 NO 2. February 25, /25/16 OCH 3 OCH OCH. o-nitro-anisole (31%) Anisole

More EAS. Lecture 12. Di- and Polysubstitution CH 3 + H + H HNO 2 NO 2. February 25, /25/16 OCH 3 OCH OCH. o-nitro-anisole (31%) Anisole Lecture 12 More EAS February 25, 2016 Di- and Polysubstitution O O OC OC 3 3 NO 3 2 SO 4 Anisole o-nitro-anisole (31%) m-nitro-anisole (2%) p-nitro-anisole (67%) l -O is ortho-para directing and activating

More information

Chem 263 Oct. 4, 2016

Chem 263 Oct. 4, 2016 Chem 263 ct. 4, 2016 ow to determine position and reactivity: Examples The strongest donating group wins: 2 3 2 S 4 + 3 2 2 S 4 2 2 + 2 2 3 2 S 4 2 2 2 2,4,6-trinitrophenol picric acid This reactivity

More information

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular bimolecular B: limination B * 1 Kinetics 2 ate determining step involves both reactants rate = k [base] [-] Second order kinetics 2 B + 2 = limination, 2 nd order 2 3 2 4 Zaitsev s ule In some cases a

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O 432 CAPTER 19 Solutions 19.1. Base 19.2. S S - S 3 S S S CAPTER 19 433 19.3. D S D S 3 D D D D D 19.4. S - 2 nitronium ion 2 2 2 2 19.5. c) + 434 CAPTER 19 19.6. Al 3 Al 3 Al 3 Al 3 Al 3 Al 3 CAPTER 19

More information

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages.

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Chemistry 52 Exam #1 Name: 22 January 2003 This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Please check before beginning to make sure no questions are missing. 65 minutes

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) State the reagents and conditions needed to convert benzene into (i) chlorobenzene, (ii) bromobenzene, (iii) nitrobenzene....[4] (b) The nitration of benzene is a two-step reaction that can be represented

More information

Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS):

Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS): lectrophilic Aromatic Substitution (AS): Aromatic rings have a tendency to be unreactive due to their inherent stability. However, aromatic rings can react given the right incentives. ne way, they can

More information

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ]

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ] Chapter 19: Benzene and Aromatic Substitution eactions [Sections: 18.2, 18.6; 19.1-19.12] omenclature of Substituted Benzenes i. Monosubstituted Benzenes C 2 C 3 ii. Disubstituted Benzenes X X X Y Y Y

More information

Electrophilic Aromatic Substitution: Direction

Electrophilic Aromatic Substitution: Direction Electrophilic Aromatic Substitution: Direction or each of the following species, show the most likely site(s) for electrophilic aromatic substitution, and predict whether the molecule reacts with electrophiles

More information

Module No and Title. PAPER No: 5 ; TITLE : Organic Chemistry-II MODULE No: 25 ; TITLE: S E 1 reactions

Module No and Title. PAPER No: 5 ; TITLE : Organic Chemistry-II MODULE No: 25 ; TITLE: S E 1 reactions Subject Chemistry Paper No and Title Module No and Title Module Tag 5; Organic Chemistry-II 25; S E 1 reactions CHE_P5_M25 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. S E 1 reactions 3.1

More information

Chapter 8. Acidity, Basicity and pk a

Chapter 8. Acidity, Basicity and pk a Chapter 8 Acidity, Basicity and pk a p182 In this reaction water is acting as a base, according to our definition above, by accepting a proton from HCl which in turn is acting as an acid by donating a

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

Downloaded from

Downloaded from 1 Class XI Chemistry Ch 13: Hydrocarbons TOP Concepts: 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information