Benzenes & Aromatic Compounds

Size: px
Start display at page:

Download "Benzenes & Aromatic Compounds"

Transcription

1 Benzenes & Aromatic Compounds 1

2 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is a suspected carcinogen. Benzene and its derivatives are said to be aromatic compounds 2

3 Resonance Structure = 1.5 bonds on average Rearrange the bonding electrons Delocalisation, Resonance-stabilise molecules, so make them less reactive Delocalised or Conjugated System p-bonding electrons can move within the molecule 3

4 Aromatic compounds have the following characteristics: 1. Aromatic compounds are cyclic, planar and conjugated. 2. Aromatic compounds react with electrophiles to give substitution products, in which cyclic conjugation is restrained. 3. Must contain 4n2π electrons (where n = 0, 1, 2,...) Hückel Rule n = 1, 6π electrons Naphthalene Anthracene Phenanthrene 10 π 14 π 4

5 An Interesting Aromatic Compound 5

6 Selected drugs that contain a benzene rings 6

7 Monosubstituted Benzenes Br CH 3 O N O bromobenzene vinylbenzene methylbenzene (toluene) H N H OH HO O nitrobenzene aminobenzene (aniline) hydroxybenzene (phenol) Benzenecarboxylic acid (benzoic acid) 7

8 Disubstituted Benzenes Prefixes ortho- (o) metha- (m) para-(p) 8

9 Polysubstituted Benzenes 9

10 Reaction of Aromatic Compounds 10

11 Electrophilic Aromatic Substitution The characteristic reaction of aromatic compounds is substitution by a wide variety of electrophilic reagents- electrophilic aromatic substitution. 11

12 Examples of Electrophilic Aromatic Substitution Reactions X 2, FeX 3 X = Cl, Br HONO 2 H 2 SO 4 X Halogenation NO 2 Nitration SO 3 H 2 SO 4 SO 3 HSulfonation RCl R Friedel-Crafts AlCl 3 Alkylation O RCCl AlCl 3 = O C = R Friedel-Crafts Acylation These reactions are commonly used synthetic procedures for modifying arenes. They proceed by a general mechanism initiated by addition of an electrophile E to the aromatic π-system, forming a nonaromatic carbocation intermediate called an arenium ion. 12

13 Mechanism: Electrophilic Aromatic Substitution Step 1 : Electrophilic attack: Slow, Rate Determining Step 13

14 Mechanism: Electrophilic Aromatic Substitution Step 2 : Fast Step is the loss of a proton 14

15 Halogenation Halogenation requires a Lewis acid catalyst to form the electrophile. Cl 2, AlCl 3 Cl Br 2, FeBr 3 Br 15

16 Mechanism: Halogenation Br-Br FeBr 3 Br Br FeBr 3 Bromine-FeBr 3 complex Br Br Br FeBr3 H FeBr 4 Br H Br FeBr 4 HBr FeBr 3 Regenerate the catalyst so only a small amount is required 16

17 Aromatic Compounds are resonance stabilized. This gives them added stability. They undergo Electrophilic Substitution Reactions. Upon substitution, the fast step is the loss of a proton to regenerate aromaticity H Br H Br H Br double-headed arrows 17

18 ---rapid re-aromatization Nitration of Benzene HNO 3, H 2 SO 4 NO 2 Aromatic rings can be nitrated by reaction with a mixture of concentrate nitric and sulfuric acids. The electrophile in this reaction is the nitronium ion, NO 2, which is generated from HNO 3 by protonation and loss of water. O O H O S O H O S O O O H HO NO 2 O NO 2 NO 2 H 2 O H H 2 H 18

19 Mechanism: Nitration _ O O N O electrophilic attack N slow O electrophile = _ O N O O 2 N H O O N - H fast = NO 2 19

20 Sulfonation of Benzene Sulfonation of Benzene Benzene reacts with fuming sulfuric acid (concentrated sulfuric acid plus added SO 3, the actual electrophile) to give benzenesulfonic acid.. O.. Fuming H 2 SO SO 4 3 H S=O O 25 o C = = Sulfur trioxide Benzenesulfonic acid In concentrated sulfuric acid alone, an equilibrium-limited supply of SO 3 effects slow sulfonation. (1) Generation of the Electrophile :O: H-O-S-O-H :O: = = :O: H-O-S-O-H :O: = = :O: H-O-S-O: :O: = = - :O: H-O-S-O-H H:O: : = = :O: H-O-S-O-H H:O: : = =. O. H 3 O S=O O = = Sulfur trioxide 20

21 (2) Electrophilic Attack O. H. O slow S=O O: O :O: = S= : : - etc. (3) Deprotonation and Re-aromatization : H O S = O: :O: = : - :O: - :O-S-O-H :O: = = Hydrogen sulfate fast Arenium ion :O: - S O:. H 2 SO 4.. O. = = Benzenesulfonate ion (4) Acid-Base Equilibrium :O: - :O: S O: fast H 3 O S O-H.. O.... O. = = = = H 2 O Synthetic Applications Benzenesulfonic acid pk a =

22 Friedel-Crafts Alkylation Friedel-Crafts Alkylation Discovered in 1877 by French chemist Charles Friedel and his American collaborator James Crafts, this alkylation reaction (one introducing an alkyl group) and the related acylation reaction (one introducing an acyl group) are among the most useful synthetic reactions. Alkylation of an Arene R-X AlCl 3 R HX Alkyl halide Alkylbenzene This reaction requires a Lewis acid catalyst, typically aluminum chloride, AlCl 3. Many variations of the Friedel-Crafts alkylation reaction have been developed. All proceed by similar mechanisms. 22

23 A Mechanism for the Alkylation Reaction The Lewis acid catalysts generally required in Friedel-Crafts reactions promote formation of strong electrophiles. (1) Generation of the Electrophile R-Cl: Lewis base AlCl 3 Lewis acid R-Cl-AlCl 3 - Complex With 1 o halides, the complex itself, acting as an R transfer agent, reacts with the arene. With 2 o and 3 o alkyl halides, dissociation to carbocation intermediates seems to occur, and the resulting R species react with the arene. R-Cl-AlCl 3 - R AlCl

24 (2) Electrophilic Attack or R-Cl-AlCl 3 - H R etc. AlCl 4 - R AlCl 4 - Arenium ion (3) Deprotonation and Re-aromatization H R :Cl: :Cl - Al :Cl : Lewis base Cl: R Alkylbenzene HCl AlCl 3 Regenerated catalyst Note : Tertiary carbocations are usually effective in Friedel-Crafts alkylation 24

25 Friedel-Crafts Acylation Friedel-Crafts Acylation O Acylation is the introduction of an acyl group, R-C-, into a structure. Two important acyl groups are: O O C CH 3 C- Acetyl = Benzoyl = = The Friedel-Crafts acylation reaction attaches an acyl group to an arene. A Lewis acid catalyst is required to generate the electrophile from an acyl halide reactant. O O C-R =AlCl3 RCCl Acid (or acyl) chloride = A phenyl ketone HCl 25

26 A Mechanism for Friedel-Crafts Acylation (1) Generation of the Electrophile :O: R-C-Cl: = Acid chloride (Lewis base) AlCl 3 Lewis acid :O: R-C-Cl = - AlCl 3 R-C=O R-C O: AlCl 4 - Acylium ion Acylium ions are generally thought to be the electrophilic intermediates in Friedel-Crafts acylation reactions. As shown, these ions have two contributing resonance structures. 26

27 (2) Electrophilic Attack R-C=O slow step H C R :O: = etc. Arenium ion (3) Deprotonation and Re-aromatization H O C R - C-R :Cl-AlCl 3 HCl AlCl 3 :O: = = Aryl ketone 27

28 Limitations of the Friedel-Crafts Reactions (1) Rearrangements during Alkylations Whenever carbocation intermediates are formed, they are subject to rearrangements that produce more stable species. Example: During the Friedel-Crafts reaction of benzene with butyl bromide a 1,2-hydride shift, possibly concurrent with dissociation, produces some of the more stable sec-butyl carbocation. A mixture of products results. Br AlCl 3 - Br AlCl 3 - BrAlCl - Complex 3 H Butylbenzene (32-36%) sec-butylbenzene (64-68%) 28

29 Substituent Effects on Benzene Ring 29

30 Inductive effect Inductive effects stem from the electronegativity of the atoms in the substituent and the polarizability of the substituent group. Atoms more electronegative than carbon including N, O, and X pull electron density away from carbon and thus exhibit an electron-withdrawing inductive effect. Polarizable alkyl groups donate electron density, and thus exhibit an electron-donating inductive effect. 30

31 Resonance effect Resonance effects are only observed with substituents containing lone pairs or π bonds. Withdraw electron density O O O O O O O O N N N N Donate electron density NH 2 NH 2 NH 2 NH 2 31

32 Electrophilic Aromatic Substitution of Substituted Benzenes A substituent affects two aspects of electrophilic aromatic substitution: The rate of reaction: A substituted benzene reacts faster or slower than benzene itself. The orientation: The new group is located either ortho, meta, or para to the existing substituent. The identity of the first substituent determines the position of the second substituent. 32

33 Toluene Toluene reacts faster than benzene in all substitution reactions. Thus, its electron-donating CH 3 group activates the benzene ring to electrophilic attack. Although three products are possible compounds with the new group ortho or para to the CH 3 group predominate. The CH 3 group is therefore called an ortho, para director. CH 3 called activating group which causes the rate of electrophilic aromatic substitition to be higher than benzene. 33

34 Nitrobenzene Nitrobenzene reacts more slowly than benzene in all substitution reactions. Thus, its electron withdrawing NO 2 group deactivates the benzene ring to electrophilic attack. Although three products are possible, the compound with the new group meta to the NO 2 group predominates. The NO 2 group is called a meta director. NO 2 call deactivating group causes the rate of electrophilic aromatic substitition to be lower than benzene 34

35 Three Types of Substituents 1. Ortho, para directors and activators Substituents that activate a benzene ring and direct substitution ortho and para. 2. Ortho, para deactivators Substituents that deactivate a benzene ring and direct substitution ortho and para. 35

36 Three Types of Substituents 3. Meta directors - Substituents that direct substitution meta. - All meta directors deactivate the ring. 36

37 The CH 3 Group An ortho, para Director The CH 3 group directs electrophilic attack ortho and para to itself because an 37 electron-donating inductive effect stabilizes the carbocation intermediate.

38 The NH 2 Group An ortho, para Director The NH 2 group directs electrophilic attack ortho and para to itself because 38 the carbocation intermediate has additional resonance stabilization.

39 The NO 2 Group A meta Director With the NO 2 group (and all meta directors), meta attack occurs because attack at the ortho or para position gives a destabilized carbocation intermediate.. 39

40 Quiz 40

41 Halogenation of Activated Benzenes Benzene rings activated by strong electron donating groups OH and NH 2 undergo polyhalogenation when treated with X 2 and FeX 3. For example, aniline (C 6 H 5 NH 2 ) and phenol (C 6 H 5 OH) both give a tribromo derivative when treated with Br 2 and FeBr 3. Substitution occurs at all hydrogen atoms ortho and para to the NH 2 and OH groups. 41

42 What happens in electrophilic aromatic substitution when a disubstituted benzene ring is used as starting material? Rule 1: When the directing effects of two groups reinforce, the new substituent is located on the position directed by both groups. 42

43 Rule 2 : If the directing effects of two groups oppose each other, the more powerful activator "wins out." 43

44 Rule 3: No substitution occurs between two meta substituents because of crowding. 44

45 Quiz 45

46 Oxidation of Substituted Benzenes Arenes containing at least one benzylic C-H bond are oxidized with KMnO 4 to benzoic acid, a carboxylic acid with the carboxy group (COOH) bonded directly to the benzene ring. With some alkyl benzenes, this also results in the cleavage of carbon-carbon bonds, so the product has fewer carbon atoms than the starting material. 46

47 Substrates with more than one alkyl group are oxidized to dicarboxylic acids. Compounds without a benzylic C - H bond are inert to oxidation. 47

48 Reduction of Substituted Benzenes 48

49 49

50 Example: The nitration and side-chain oxidation of toluene CH 3 Toluene (1) KMnO 4, HO -, heat HNO 3 H 2 SO 4 (2) H 3 O COOH HNO 3 H 2 SO 4 CH 3 CH 3 NO 2 COOH NO 2 m-nitrobenzoic acid All three possible positional isomers of nitrobenzoic acid may be synthesized by careful synthetic design. (1) KMnO 4, HO - heat (2) H 3 O COOH NO 2 ortho NO 2 (1) KMnO 4, HO - heat (2) H 3 O COOH NO 2 para 50

51 Reduction of Nitro Groups A nitro group (NO 2 ) is easily introduced on a benzene ring by nitration with strong acid. This process is useful because the nitro group is readily reduced to an amino group (NH 2 ) under a variety of conditions. The most common methods use H 2 and a catalyst, or a metal (such as Fe or Sn) and a strong acid like HCl. 51

52 Quiz 52

53 Quiz Draw the three contributing resonance structures of the arenium ion intermediate produced in the addition of an electrophile, E, to benzene. H E E H E H E 53

54 Quiz Draw the complex formed between bromine (Br 2 ) and FeBr 3 that is believed to be involved in the electrophilic bromination of benzene and other aromatics. Show the polarization of charge in the complex. :Br-Br: FeBr 3 :Br: - :Br-Br-Fe-Br: :Br: : : 54

55 Quiz 15.03a Draw the Lewis structure of the nitronium ion, NO 2, a strong electrophile. Solution NO 2 is a 16 valence electron system. The proper Lewis structure must conform to the Octet Rule and have formal charge(s) indicated, so the answer is: O=N=O 55

56 Quiz 15.03b Draw the resonance structures of the arenium ion intermediate formed from electrophilic attack of the nitronium ion on benzene. Note: Disregard resonance structures of the nitro group. - :O: - - :O: :O: O=N=O N=O N=O N=O H H H : : : 56

57 Quiz Draw the contributing resonance structures of the acylium ion produced in the reaction below. : O: R-C-Cl = AlCl 3 R-C=O R-C O : 57

58 Quiz Predict the major products (ortho/para or meta) from the nitration of the following substituted benzenes. CH 3 I II O CCH 3 = Cl HNO 3 H 2 SO 4 HNO 3 H 2 SO 4 ortho/para meta HNO 3 ortho/para H 2 SO 4 III What is the order of reactivity of the three substituted benzenes in the nitration reaction? I III II > > 58

59 Quiz Draw the contributing resonance structures for the arenium ion intermediates formed from para and meta addition of Br to toluene. δ CH 3 δ δ H Br CH 3 H Br CH 3 H Br CH 3 H Br δ CH 3 δ δ Br H CH 3 Br H CH 3 Br H CH 3 Br H 59

60 Quiz Draw the structure of the major monosubstitution product from each of these reactions. CH 3 Br HNO 3 H 2 SO 4 CH 3 Br NO 2 COOH CH 3 Br 2 Fe COOH CH 3 Br 60

61 Quiz 61

62 Quiz 62

63 63

64 Quiz 64

65 65

66 Phenol OH OH pka = 17 pka = 10 Phenols are stronger acids than alcohols H O O O O Resonance Stabilised Phenoxide anion 66

67 Synthesis of Phenols The only widely used laboratory synthesis of phenols is that from the corresponding anilines through a process called diazotization. This route from benzenoid compounds to phenols starts with the nitration reaction, followed by reduction of the nitro group ( NO 2 ) to an amino group ( NH 2 ), diazotization of the amine to a diazonium ion ( N 2 ), and finally displacement of the diazonium group by the hydroxyl group ( OH) upon heating in water: 67

68 Electrophilic Aromatic Substitution of Phenols very strong activator AlCl 3 / FeBr 3 68

69 O-Alkylation of Phenols (Williamson Ether Synthesis) Because phenols are acidic and can be converted easily into their phenoxide anions, it is very easy to form phenyl alkyl ethers via the Williamson ether synthesis of ethers usually brought about using methyl iodide for convenience. The methyl group can be readily removed by a typical ether cleavage. 69

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution . 13 hapter 13 eactions of Arenes lectrophilic Aromatic ubstitution lectrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. ecall: 3 4 Y 1 4 2 1 δ

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION 1. Consider carefully the mechanism of the following electrophilic aromatic substitution reaction and indicate which of

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

Chapter 17: Reactions of Aromatic Compounds

Chapter 17: Reactions of Aromatic Compounds 1 Chapter 17: Reactions of Aromatic Compounds I. Introduction to Electrophilic Aromatic Substitution (EAS) A. General Mechanism II. Reactions of Electrophilic Aromatic Substitution A. Halogenation (E =

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2.

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2. Electrophilic Aromatic Substitution (Aromatic compounds) Ar- = aromatic compound 1. Nitration Ar- + NO 3, 2 SO 4 Ar- + 2 O 2. Sulfonation Ar- + 2 SO 4, SO 3 Ar-SO 3 + 2 O 3. alogenation Ar- + X 2, Fe Ar-X

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

Chapter 17 Aromati ti S u stit tit t u i tion Reactions Chapter 17 Aromatic Substitution Reactions 1 17.1 Mechanism for Electricphilic Aromatic Substitution Arenium ion resonance stabilization 2 Example 1. Example 2. 3 Example 2. Mechanism of the nitration

More information

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives Arenium ion from addition of tert-butyl cation to benzene (blue is δ+and red δ-) Note: Problems with italicized numbers

More information

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds 9.5 Polycyclic Aromatic Compounds The general concept of aromaticity can be extended to include polycyclic aromatic compounds Benzo[a]pyrene is one of the cancer-causing substances found in tobacco smoke

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, Orlando,

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Lecture 12 Electrophilic Aromatic Substitution E E February 22, 2018 Electrophilic Aromatic Substitution Electrophilic aromatic substitution: a reaction in which a hydrogen atom on an aromatic ring is

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

BENZENE & AROMATIC COMPOUNDS

BENZENE & AROMATIC COMPOUNDS BENZENE & AROMATIC COMPOUNDS Dr. Zainab M Almarhoon 2 Learning Objectives By the end of chapter four the students will: Understand the resonance description of structure of benzene Understand the hybridization

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

Chapter 16- Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16- Chemistry of Benzene: Electrophilic Aromatic Substitution Chapter 16- Chemistry of Benzene: Electrophilic Aromatic Substitution Ashley Piekarski, Ph.D. Substitution Reactions of Benzene and Its Derivatives Benzene is aroma%c What does aromatic mean? Reac9ons

More information

Learning Guide for Chapter 18 - Aromatic Compounds II

Learning Guide for Chapter 18 - Aromatic Compounds II Learning Guide for Chapter 18 Aromatic Compounds. lectrophilic aromatic substitution ntroduction Mechanism Reagents and Products lectrophiles ffects of stituents FriedelCrafts alkylation and acylation

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages.

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Chemistry 52 Exam #1 Name: 22 January 2003 This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Please check before beginning to make sure no questions are missing. 65 minutes

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

Chapter 19: Aromatic Substitution Reactions

Chapter 19: Aromatic Substitution Reactions Chem A225 Notes Page 52 Chapter 19: Aromatic Substitution Reactions Topic One: lectrophilic Aromatic Substitution I. Introduction to lectrophilic Aromatic Substitution (AS) A. eneral Reaction Pattern B.

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

Organic Mechanisms 1

Organic Mechanisms 1 Organic Mechanisms 1 Concepts The key ideas required to understand this section are: Concept Book page Chemical properties of alkanes 314 Chemical properties of alkenes 318 Bonding in alkenes 320 Bonding

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ]

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ] Chapter 19: Benzene and Aromatic Substitution eactions [Sections: 18.2, 18.6; 19.1-19.12] omenclature of Substituted Benzenes i. Monosubstituted Benzenes C 2 C 3 ii. Disubstituted Benzenes X X X Y Y Y

More information

Lecture 27 Organic Chemistry 1

Lecture 27 Organic Chemistry 1 CHEM 232 rganic Chemistry I at Chicago Lecture 27 rganic Chemistry 1 Professor Duncan Wardrop April 20, 2010 1 Self Test Question Nitrosonium (not nitronium) cations can be generated by treating sodium

More information

Frost Circles a Great Trick

Frost Circles a Great Trick Aromatics Frost Circles a Great Trick Inscribe a polygon of the same number of sides as the ring to be examined such that one of the vertices is at the bottom of the ring The relative energies of the MOs

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution o General reaction - an electrophile replaces a hydrogen Electrons of pi system attack strong electrophile, generating resonancestabilized

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems.

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems. Subject Chemistry Paper No and Title Paper-5, Organic Chemistry-II Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para Module Tag CHE_P5_M29 TABLE OF CONTENTS 1. Learning Outcomes

More information

Chapter 4 Part I. Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis

Chapter 4 Part I. Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis Chapter 4 Part I Aromatic Hydrocarbons Nomenclature, Structure, Properties, and an Introduction to Synthesis The discovery of benzene In 1825, Michael Faraday isolated a pure compound of boiling point

More information

Aryl Halides. Structure

Aryl Halides. Structure Aryl Halides Structure Aryl halides are compounds containing halogen attached directly to an aromatic ring. They have the general formula ArX, where Ar is phenyl, substituted phenyl. X= F,Cl,Br,I An aryl

More information

Class XII: Chemistry Chapter 13: Amines Top concepts

Class XII: Chemistry Chapter 13: Amines Top concepts Class XII: Chemistry Chapter 13: Amines Top concepts 1. Amines are regarded as derivatives of ammonia in which one, two or all three hydrogen atoms are replaced by alkyl or aryl group 2. Classification

More information

SURVEY ON ARYL COMPOUNDS

SURVEY ON ARYL COMPOUNDS Journal of Plastic and Polymer Technology (JPPT) Vol. 1, Issue 1, Jun 2015, 111-132 TJPRC Pvt. Ltd SURVEY ON ARYL COMPOUNDS NAGHAM MAHMOOD ALJAMALI Organic Chemistry, Department of Chemistry, College of

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution E δ δ E Y Y E δ δ E Y Y Electrophilic aromatic substitutions include: Nitration Sulfonation alogenation Friedel-Crafts Alkylation Friedel-Crafts Acylation Nitration

More information

Chapter 7: Alcohols, Phenols and Thiols

Chapter 7: Alcohols, Phenols and Thiols Chapter 7: Alcohols, Phenols and Thiols 45 -Alcohols have the general formula R-OH and are characterized by the presence of a hydroxyl group, -OH. -Phenols have a hydroxyl group attached directly to an

More information

March 08 Dr. Abdullah Saleh

March 08 Dr. Abdullah Saleh March 08 Dr. Abdullah Saleh 1 Effects of Substituents on Reactivity and Orientation The nature of groups already on an aromatic ring affect both the reactivity and orientation of future substitution Activating

More information

Aromatic Hydrocarbons / Arenes

Aromatic Hydrocarbons / Arenes Aromatic ydrocarbons / Arenes There are two major classes of organic chemicals aliphatic : straight or branched chain organic substances aromatic or arene: includes one or more ring of six carbon atoms

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Seminar_3. 1. Substituded derivatives of benzene and their nomenclature

Seminar_3. 1. Substituded derivatives of benzene and their nomenclature 1. Substituded derivatives of benzene and their nomenclature 2. Reactions of arenes. Electrophilic aromatic substitutions 3. Activating substituents. Orientation in the aromatic ring Seminar_3 TEST - Aromatic

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

Chapter 16: Aromatic Compounds

Chapter 16: Aromatic Compounds Chamras Chemistry 106 Lecture otes xamination 2 Materials Chapter 16: Aromatic Compounds Benzene, the Most Commonly Known Aromatic Compound: The aromatic nature of benzene stabilizes it 36 kcal.mol 1.

More information

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base eactions 1 eactions 2 2. limination Alkyl halide is treated with a base B: 2. limination ften competes with nucleophilic substitution LIMINATIN Nu: SUBSTITUTIN Nu Bimolecular B: limination B * * 3 Kinetics

More information

24.4: Acidity of Phenols. Phenols are more acidic than aliphatic alcohols. + Electron-withdrawing groups make an O

24.4: Acidity of Phenols. Phenols are more acidic than aliphatic alcohols. + Electron-withdrawing groups make an O Chapter 24: Phenols. Alcohols contain an group bonded to an sp 3 -hybridized carbon. Phenols contain an group bonded to an sp 2 -hybridized carbon of a benzene ring 24.1: Nomenclature (please read) 24.2:

More information

15.10 Effect of Substituents on Reactivity and Orientation

15.10 Effect of Substituents on Reactivity and Orientation 15.10 ffect of Substituents on Reactivity and Orientation Z NO 3 2 SO 4 Z Z Z + + o- p- m- Z O Me CN o(%) 40 59 30 6 17 p(%) 60 37 69

More information

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition

Chapter 24. Amines. Based on McMurry s Organic Chemistry, 7 th edition Chapter 24. Amines Based on McMurry s Organic Chemistry, 7 th edition Amines Organic Nitrogen Compounds Organic derivatives of ammonia, NH 3, Nitrogen atom with a lone pair of electrons, making amines

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Chemistry 391 10/14/02 Lecture 5 Diazonium Salts OH NH 2 NaNO 2 aq. HCl N N Cl H 2 O HCl Cl + H 3 O + Chemistry 391 10/16/02 Diazonium Salts The -N + 2 group of an arenediazonium

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Chapter 22 Amines. Nomenclature Amines are classified according to the degree of substitution at nitrogen.

Chapter 22 Amines. Nomenclature Amines are classified according to the degree of substitution at nitrogen. CH. 22 Chapter 22 Amines Amines are very important in biological chemistry. Most of the bases in biological acid-base reactions are amines. They are also very important nucleophiles in biochemical reactions.

More information

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced.

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced. Chem 263 ct. 10, 2013 The strongest donating group determines where new substituents are introduced. N 2 N 3 2 S 4 + N 3 N 2 2 S 4 N 2 N 2 + 2 N N 2 N 3 2 S 4 N 2 2 N N 2 2,4,6-trinitrophenol picric acid

More information

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O 432 CAPTER 19 Solutions 19.1. Base 19.2. S S - S 3 S S S CAPTER 19 433 19.3. D S D S 3 D D D D D 19.4. S - 2 nitronium ion 2 2 2 2 19.5. c) + 434 CAPTER 19 19.6. Al 3 Al 3 Al 3 Al 3 Al 3 Al 3 CAPTER 19

More information

ZAHID IQBAL WARRAICH

ZAHID IQBAL WARRAICH Q1 (a) State the reagents and conditions needed to convert benzene into (i) chlorobenzene, (ii) bromobenzene, (iii) nitrobenzene....[4] (b) The nitration of benzene is a two-step reaction that can be represented

More information

Chemistry Questions ans Answers BASED ON HIGH ORDER THINKING SKILL (HOTS) UNIT- 13 ORGANIC COMPOUNDS CONTAINING NITROGEN

Chemistry Questions ans Answers BASED ON HIGH ORDER THINKING SKILL (HOTS) UNIT- 13 ORGANIC COMPOUNDS CONTAINING NITROGEN Chemistry Questions ans Answers BASED N HIGH RDER THINKING SKILL (HTS) UNIT- 13 RGANIC CMPUNDS CNTAINING NITRGEN 1 MARK QUESTINS Q. 1. Why the presence of a base is essential in the ammonolysis of alkyl

More information

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular

Elimination. S N 2 in synthesis. S N 2 and E2. Kinetics. Mechanism bimolecular bimolecular B: limination B * 1 Kinetics 2 ate determining step involves both reactants rate = k [base] [-] Second order kinetics 2 B + 2 = limination, 2 nd order 2 3 2 4 Zaitsev s ule In some cases a

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

Chem 263 Oct. 4, 2016

Chem 263 Oct. 4, 2016 Chem 263 ct. 4, 2016 ow to determine position and reactivity: Examples The strongest donating group wins: 2 3 2 S 4 + 3 2 2 S 4 2 2 + 2 2 3 2 S 4 2 2 2 2,4,6-trinitrophenol picric acid This reactivity

More information

2. Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction? A) NO 2

2. Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction? A) NO 2 Name: CHEM 226 Practice Quiz 3 Chapter 4-Aromatic Compounds and Chapter 7- Alcohols, Phenols and Thiols Attempt all questions showing your answers and work clearly for full and partial credits 1. Which

More information

Downloaded from

Downloaded from Page 1 of 6 AMINES Amines are derivatives of ammonia (NH3), obtained by replacement of 1, 2 or all the 3 hydrogen atoms by alkyl and/or aryl groups. In nature amines are present in - proteins, vitamins,

More information