Atomic and Molecular Data Activities at NIFS in

Size: px
Start display at page:

Download "Atomic and Molecular Data Activities at NIFS in"

Transcription

1 nd DCN meeting, IAEA, Sep. 4-6, 011 Atomic and Molecular Data Activities at NIFS in Izumi Murakami Atomic and Molecular Processes Section, Fusion Systems Research Division, Department of Helical Plasma Research, N ti l IInstitute tit t for f Fusion F i Science, S i National Oroshi cho 3 6, Toki, Gifu , Japan 1

2 Outline NIFS database Satellite databases Research activities related to AM data NIFS DATA publications Domestic collaborations related to AM data in NIFS Concluding remarks

3 1. NIFS database Retrievable numerical database for collision processes Recent changes Show a list of papers of which data are newly included. Data D update d mainly i l for f AMDIS (e impact excitation & recombination) and MOL (molecular processes) Update tables on species which data are stored in AMDIS EXC, ION AMOL and ION, d CMOL CMOL. ORNL bibliographic data received in 011 were up to 009. No N further f h data. d 3

4 AM and PWI Numerical Database ( DB Name AMDIS Contents EXC Electron impact excitation of atoms ION Electron impact ionization of atoms DIO Electron impact dissociation of simple molecules REC Electron recombination of atoms CHART AMDIS MOL (AMOL) CHART MOL (CMOL) Charge exchange of ion ion-atom atom collision Period Records Aug. 6, , (463,59 ( (Aug. 011)) )) , ,96 Electron collision with molecules Heavy particle collision with molecules (3,765) SPUTY Sputtering yield of solid ,41 BACKS Reflection coefficient of solid surface ,097 (AM Bibliographic database) ORNL Bibliography on atomic collisions collected at ORNL, USA (77,714)4

5 Change of number of data recodes in the database Number of Data in the Database AMDIS CHART MOL SPUTY BACKS ORNL Number of Data as of Aug. 6, 013 AMDIS 671,97 * CHART 7,054 User interface revise of AMDIS REC (007-8) MOL 3,96 * SPUTY 1,41 NO registration (007) BACKS 396 User interface revise of AMDIS EXC (006) ORNL 78,097 * Rate coefficients in AMDIS (003) IAEA GENIE (00) MOL (001) Data Update Working Group (000-) AMDIS Recombination (1998) WWW (1997)

6 Access counts to the database (query counts) query counts AMDIS CHART SPUTY BACKS MOL counts FY1998 FY1999 FY000 FY001 FY00 FY003 FY004 FY005 FY006 FY007 FY008 FY009 FY010 FY011 FY AMDIS Recombination (1999) Data update working group (000 -) MOL (001) GENIE (001) Rate coefficients (003) No registration (007) User interface revise AMDIS EXC (006) User interface revise AMDIS REC (007-8) 6

7 Access count to AMDIS (ION/EXC/REC) Search count for AMDIS GENIE/AMDIS AMDIS GENIE/AMDIS F FY01 FY011 FY010 FY009 FY008 FY007 6 FY006 FY005 FY00 04 FY0 003 FY0 00 FY 001 FY ~7% of queries are via GENIE * Lack of statistical data for FY011 (1 month) and FY01 (7 months) lack of connections? 7

8 Example of data in AMOL (electron collisions) htt //d if j / t / l ht l target Data sets target Data sets target Data sets target Data sets target Data sets H 375 CH4 37 NH3 4 NH3 4 D3O DBr 305 CH 30 GeH4 4 GeH4 4 CH3Cl O 131 NO 8 HDO 3 HDO 3 CHCl4 C3H8 107 c-c C4F8 6 CD 3 CD 3 CH3Cl3 HO 104 SF6 18 CD 3 CD 3 CH4Cl CH4 74 SiH6 13 CD3 3 CD3 3 H 1 CO 7 BCl3 1 H3O H3O H+ 1 CH6 65 CH 11 HS HS H3O+ 1 CO 50 CH3 11 HCl HCl HBr 1 D 45 CH3 10 HI HI BF 1 N 39 CH5 10 D3 D3 BF collision systems (as of Jan. 013)

9 Example of data in CMOL (heavy particle collisions) nifs ac jp/amdata/cmol html Proje ctile targe t Data sets Proje ctile targe t Data sets Proje ctile targe t Data sets H H 805 Ar C3H4 16 C C3H8 9 H H 19 Kr CO 15 C CO 9 He H 63 C CH6 14 H CH6 8 T H 45 H D 13 H H 8 He CH4 31 H CO 1 H He 8 He CO C H 1 Ar (CH)3 8 He O 1 H Kr 11 Ar CH4 8 He CO 0 O N 11 Ar CH 8 H CO 17 H Xe 10 Ar CH4 8 H CH4 16 Ne C3H4 10 Ar CH6 8 H3 H 16 H Ar 9 Ar C3H6 8 C CH4 16 D H 9 A Ar C3H collision systems (as of Jan. 013)

10 Examples p of new data: AMDIS AMDIS REC Fe11+ recombination rate coefficients Experimental data for DR (merged beam) -> fit to analytic form By Novotny et al. al (01) AMDIS EXC Excitation rate coefficients Fe9+ (3s 3p5 P1/ 3s 3p4 (3P) 3d D3/ ) Aggarwal et al. (005) Dirac R-matrix Mewe et al (1980) Pelan et al. (001) Breit-Pauli R-matrix Del Zanna et al. (01) Breit-Pauli distorted wave DR + RR Arnaud &Raymond (199) 10

11 Examples p of new data: CMOL H+ + CH4 H new new 11

12 . Satellite databases Links to web pages of pdf files of IPPJ-AM reports and NIFS-DATA reports Various small databases are linked at the database top page, such h as rate coefficients of electron dissociative attachment to molecular hydrogen. Hayashi s bibliographic database on collision cross sections. 1

13 Hayashi s database of bibliography and cross sections for atoms and molecules Bibliography and cross section data p and evaluation for 677 atoms compilation and molecules for electron impact processes were done by Prof. M. Hayashi. Bibliographic data on publications in 0th century t for f 17 atoms t and d molecules l l were published as NIFS DATA series in NIFS DATA 7 NIFS DATA 7 (Ar), NIFS DATA 74 (CO), NIFS DATA 76 (SF6), NIFS DATA 77 (N), NIFS DATA (X ) NIFS DATA 79 (Xe), NIFS DATA 80 (F, Cl, Br, I), NIFS DATA 81 (water vapour), NIFS DATA 8 (H), NIFS DATA 8 NIFS DATA 83 (HF, HCl, HBr, HI), NIFS DATA 87 (NH3, PH3), NIFS DATA 90 (CH4) b bl h d b Many bibliographic database were not published. opened as web database CH4 13 (from NIFS-DATA-90)

14 Hayashi s bibliographic database http //dpc nifs ac jp/ha ashi/ 14

15 3. Research Resea c act activities v t es related e ated to AM data Experimental and theoretical study on tungsten ions h have b been carried i d out. EUV and visible spectra of Tungsten ions measured with Tokyo EBIT, y, CoBIT,, and LHD Atomic structure calculations for Tungsten ions CR model for Tungsten ions Sputtering experiments for Tungsten target EUV spectra measurements of rare earth elements such as Nd (Z=60), Gd (Z=64), Tb (Z=65), and Dy (Z=66) with LHD for next EUV light source for lithography. This year we plan to measure Yb (Z=70), (Z 70) Sm (Z=6), (Z 6) and Er (Z=68). 15

16 Spectroscopic measurements by using LHD and CoBIT Large Helical Device (LHD) can hold plasma stably with impurity input by pellets/tespels. pellets/tespels Electron temperature and density can be measured independently. Compact EBIT (CoBIT) produces plasma with low 10cm-3)). electron density y (~10 ( CoBIT can control charge state distribution by electron beam energy (00eV kev). kev) It is easy to identify spectral 16 lines.

17 EUV Spectra of W measured byy CoBIT Identify of HCI charge state IP(+ -> 3+)=643eV W XXVII W XXXV W XXVI W XXXIV W XXV W XXXIII IP(3+ -> 4+)=690eV Peak B W XXIV Peak A W XXXII W XXIII W XXXI W XXII W XXX W XXI W XXIX W XX W XXVIII 17

18 Peak wavelengths Shifted with charge Sakaue et al. APiP (011) 5f-4d W8+ 5g-4f 6g-4f inner shell excitation Measured peak wavelengths agree with ones calculated with a collisional radiative model which is constructed with atomic data collisional-radiative calculated by the HULLAC code in configuration mode (configuration averaged energy and total angular momentum J for energy levels). levels) 18

19 CoBIT spectrum 6g-4f transition 5g-4f t transition iti CoBIT spectrum p 5f-4d transition 5p-4d transition W4~8+ W8~3+ W4~8+ W8~33+ LHD Plasma spectrum 19

20 Visible spectra of W ions measured by CoBIT Komatsu et al. (Plasma Fusion Res. 7, , 01) M1 visible i ibl ttransitions iti among th the ground d state t t ffor W6+ [4f-]4 - [[4f-]5/[4f]7/] nm (MCDF), 389.4nm (exp) Ding et al. J. Phys. B 44 (011)

21 1D visible spectral measurements for W ions for LHD plasma with W- TESPEL injection p j Spectral sampling time of 140 ms at every 50 ms. Before After t=3.8s kev t 4.05s t=4.05s 0.3keV t=3.85s 1.5keV Te profiles t=3.93s 0.7keV t=3.9s 0.9keV D. Kato et al, HCI01@Heidelberg t=4.1s 0.0keV CCD images of line emissions in a visible range obtained in three successive sampling time frames before and after the TESPEL injection.

22 Observation of tungsten M1 line at the LHD <- A spectrum of emission lines from highly charged tungsten ions observed at LHD ( h t #108785). (shot #108785) The Th scale l on the th right i ht hand h d side of the top panel shows photon counts per pixel of the CCD detector. Measured wavelengths (nm) and references. Numbers in p parentheses are uncertainties. a. b. c. CoBIT, A.Komatsu et al. Phys.Scr. T144 (011) Tokyo-EBIT, H. Watanabe et al. Can.J.Phys. 90 (01) 497. graspk, X.-B.Ding et al. JPB 44 (011) D. Kato et al, HCI01@Heidelberg

23 Radial intensity profile of W44+ ions in LHD plasma Radial profile of W44+ as 6.09nm line was measured using a space resolved EUV spectrometer in LHD. The absolute intensity was determined and the local emissivity profile was calculated using Abel inversion technique. technique Obtained profile was compared with the transport calculation and agreed only at the core plasma. Estimated E ti t d ion i density: d it n(w (W44+)/n )/ e~ , nw/n / e~ Estimated total radiation loss with average ion model is ~4MW, which roughly 4 agrees with the measurement.

24 Collisional radiative model for W ions Synthesized spectra for Te= 1keV and 530eV in ionization equilbrium Ion abundance in equilibrium W ion 1.00E A Abundance E E Te (ev) Sasaki and Murakami, J. Phys B 46 (013) f 4d 4d 4p ne=1019 m 3 6g 4f, 5g 4f 5f 4d etc. measurement Main M i charge h states are (1keV) (1k V) andd 6 (530eV) (530 V) UTA at 4 6nm and features at -3nm by n=4-5 and 4-6 transitions are roughly reproduced by the model. Special distributions of plasma temperature and density are to be considered. Murakami, J. Plasma Fusion Res., 89 (013), 314 (in Japanese). 5

25 For more systematic understandings on spectra due to 4f 4d/4p 4d transitions with different Z: Spectral appearance in LHD depending on Te and Z High Te Sn (Z=50) Low Te UTA Discrete lines Gd (Z=64) W (Z=74) Bi (Z=83) Not yet measured d 6

26 4. NIFS DATA publications ( ) NIFS DATA 114 T. Ono, M. Ono, K. Shibata, T. Kenmotsu, Z. Li, T. Kawamura Calculation of Sputtering Yield with Obliquely Incident Light Ions (H+, D+,, T+,, He+,) and its Representation by an Extended Semi empirical Formula Apr. 13, 01 NIFS DATA 113 P. Jönsson, P. Bengtsson, J. Ekman, S. Gustafsson, L.B. Karlsson, G. Gaigalas, C. Froese Fischer, D. Kato, I. Murakami, H.A. Sakaue, H. Hara, T. Watanabe, N. Nakamura, N. Yamamoto Relativistic CI Calculations of Spectroscopic Data for the p6 and p53l C fi Configurations i iin Ne like N lik Ions I between b Mg M III and d Kr K XXVII Oct. 04, 011 7

27 5. Domestic collaborations related to AM data in NIFS Measurements of absolute cross sections for electron capture processes off low l energy multiply lti l charged h d heavy h metal t l ions i in i diverter di t region (K. Soejima et al.) (Wq+ + He; q=6 and 7; Wq+ + H) Kinetic and Potential Energy gy of Excited Atoms and Molecules on Wall Surfaces Bombarded with Light Ions (K. Motohashi, Y. Sakai et al.) Atomic and Molecular Database of Hydrogen isotopes and Hydrocarbons (M. (M Kitajima et al.) al ) Atomic and Molecular database of Light Elements (M. Kitajima et al.) Spectroscopy ions using p py of highly g y charged g tungsten g g Electron Beam Ion Trap (N. Nakamura et al.) Spectroscopic measurements and database development for highly charged rare earth elements (F. (F Koike et al.) al ) 8

28 6 C 6. Concluding l di remarks k A&M database activities: Small reorganization in NIFS (establishing Division for Information and Communication Systems) would help our database activities. activities Collaboration with VAMDC will start. A & M data related activities: LHD experimental group on AM processes continues to measure various spectra especially W ions and activate our AM related research. Basic cross section measurements on charge exchange processes of W ions and H are to start. start 9

Atomic and Molecular Data Activities at NIFS in

Atomic and Molecular Data Activities at NIFS in 21 th DCN meeting, IAEA, Sep. 7-9, 2011 Atomic and Molecular Data Activities at NIFS in 2009 2011 Izumi Murakami Atomic and Molecular Processes Section, Fusion Systems Research Division, Department of

More information

Atomic and Molecular Databases and Data Evaluation Activities at NIFS

Atomic and Molecular Databases and Data Evaluation Activities at NIFS Joint IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma Material Interaction Processes in Fusion Daejon, 4-7 Sep., 2012 Atomic and Molecular Databases and Data Evaluation

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

EUV spectra from the NIST EBIT

EUV spectra from the NIST EBIT EUV spectra from the NIST EBIT D. Kilbane and G. O Sullivan Atomic and Molecular Plasma Physics group, UCD, Ireland J. D. Gillaspy, Yu. Ralchenko and J. Reader National Institute of Standards and Technology,

More information

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION Number 64 October 2005 Contributors: M. E. Bannister, J. Bretagne, J. Fuhr, H. B. Gilbody, C. C. Havener,T. Kato, P. S. Krstic, Yu. V. Martynenko,

More information

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak

Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak Technical Meeting on Uncertainty Assessment and Benchmark Experiments for Atomic and Molecular Data for Fusion Applications, 19-21 December 2016, Vienna, Austria Application of atomic data to quantitative

More information

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION Number 70 November 2016 Contributors: M. Imai, A. Kramida, D.-H. Kwon, A. Lasa Esquisabel, H. Lee, W.-W. Lee, K.-M. Lim, I. Murakami, M.-Y.

More information

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION Number 66 August 2007 Contributors: M. E. Bannister, J. Bretagne, J. Fuhr, H. B. Gilbody, C. C. Havener, T. Kato, A. Kramida, P. S. Krstic,

More information

Lecture 3 Numerical Data

Lecture 3 Numerical Data Atomic, molecular and particle-surface interaction web databases and data exchange Lecture 3 Numerical Data ICTP Workshop on Atomic and Molecular Data for Fusion Energy Research Trieste, 20-30 April 2009

More information

NIST Atomic Data Program: Update and Prospects

NIST Atomic Data Program: Update and Prospects NIST Atomic Data Program: Update and Prospects Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD 20899, USA DCN Meeting, IAEA, Vienna, 2013 Plan Staff Atomic Spectra Database

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

Plasma-Related Atomic Physics with an Electron Beam Ion Trap

Plasma-Related Atomic Physics with an Electron Beam Ion Trap Plasma-Related Atomic Physics with an Electron Beam Ion Trap Nobuyuki NAKAMURA Institute for Laser Science, The University of Electro-Communications, Tokyo 182-8585, Japan (Received 20 May 2013 / Accepted

More information

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR FOR FUSION

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR FOR FUSION INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION Number 69 January 2013 Contributors: J. J. Curry, J. Fuhr, A. Kramida, L. I. Podobedova, Yu. Ralchenko, J. Reader, E. B. Saloman, J. E. Sansonetti

More information

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten

NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten NIST Research on Spectroscopy and Collisional-Radiative Modeling of Highly-Charged Ions of Tungsten Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, USA Vienna, Austria, Dec

More information

Aspects and prospects of

Aspects and prospects of Equation 23 of Radiative Transfer rd Meeting of the Atomic and Molecular Data Centres Network Aspects and prospects of KAERI atomic data center Duck-Hee Kwon and Kil-Byoung Chai Nuclear Data Center Korea

More information

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency "Technical Aspects of Atomic and Molecular Data Processing and Exchange" (20th Meeting of the Atomic and Molecular Data Centres and ALADDIN Network), 7-9 September 2009, IAEA HQ, Vienna, Austria Atomic

More information

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography

Plasma EUV source has been studied to achieve 180W of power at λ=13.5nm, which is required for the next generation microlithography Acknowledgement K. Nishihara, H. Nishimura, S. Fujioka Institute for Laser Engineering, Osaka University A. Sunahara, H. Furukawa Institute for Laser Technology T. Nishikawa, Okayama University F. Koike,

More information

Database and Knowledge Base developments at IAEA A+M Unit

Database and Knowledge Base developments at IAEA A+M Unit Database and Knowledge Base developments at A+M Unit B. J. Braams, H.-K. Chung, K. Sheikh Nuclear Data Section, Division of Physical and Chemical Sciences June 22 nd 2010 2nd RCM on Characterization of

More information

1 of 5 14/10/ :21

1 of 5 14/10/ :21 X-ray absorption s, characteristic X-ray lines... 4.2.1 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 4 Atomic and nuclear physics Section: 4.2 Absorption

More information

CONTRIBUTION FUNCTION OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL AND LABORATORY PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE

CONTRIBUTION FUNCTION OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL AND LABORATORY PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE COTRIBUTIO FUCTIO OF MOLYBDEUM ATOM AD IOS I ASTROPHYSICAL AD LABORATORY PLASMA AS A FUCTIO OF ELECTRO TEMPERATURE A.. Jadhav Department of Electronics, Yeshwant Mahavidyalaya, anded. Affiliated to Swami

More information

Line analysis of EUV Spectra from Molybdenum and Tungsten Injected with Impurity Pellets in LHD

Line analysis of EUV Spectra from Molybdenum and Tungsten Injected with Impurity Pellets in LHD Line analysis of EUV Spectra from Molybdenum and Tungsten Injected with Impurity Pellets in LHD Malay Bikas CHOWDHURI, Shigeru MORITA 1),Motoshi GOTO 1), Hiroaki NISHIMURA 2),Keiji NAGAI and Shinsuke FUJIOKA

More information

Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium

Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium atoms Article Identification and Plasma Diagnostics Study of Extreme Ultraviolet Transitions in Highly Charged Yttrium Roshani Silwal 1,2,, Endre Takacs 1,2, Joan M. Dreiling 2, John D. Gillaspy 2,3 and

More information

Observation of Tungsten Line Emissions in Wavelength Range of Å in Large Helical Device )

Observation of Tungsten Line Emissions in Wavelength Range of Å in Large Helical Device ) Observation of Tungsten Line Emissions in Wavelength Range of 10-500 Å in Large Helical Device ) Yang LIU 1), Shigeru MORITA 1,2), Tetsutarou OISHI 1,2), Motoshi GOTO 1,2) and Xianli HUANG 2) 1) Department

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

The CHIANTI Atomic Database

The CHIANTI Atomic Database The CHIANTI Atomic Database An Overview of Data, Software and Applications Dr Peter Young George Mason University, USA NASA Goddard Space Flight Center, USA Overview 1. Quick guide 2. History of project

More information

arxiv: v1 [physics.atom-ph] 2 Dec 2015

arxiv: v1 [physics.atom-ph] 2 Dec 2015 J. Phys. B: At. Mol. Opt. Phys. arxiv:1512.657v1 [physics.atom-ph] 2 Dec 215 Theoretical investigation of spectroscopic properties of W 26+ in EBIT plasma V. Jonauskas, A. Kynienė, P. Rynkun, S. Kučas,

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms

Electron-loss and capture cross sections of W and its ions colliding with H and He atoms Electron-loss and capture cross sections of W and its ions colliding with H and He atoms I.Yu. Tolstikhina and V.P. Shevelko P.N. Lebedev Physical Institute, Moscow September 5, 2012 In collaboration with:

More information

Investigation of M1 transitions of the ground-state configuration of In-like Tungsten

Investigation of M1 transitions of the ground-state configuration of In-like Tungsten Investigation of M1 transitions of the ground-state configuration of In-like Tungsten W Li 1,2,3, J Xiao 1,2, Z Shi 1,2a, Z Fei 1,2b, R Zhao 1,2c, T Brage 3, S Huldt, R Hutton 1, 2 * and Y Zou 1,2 * 1

More information

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University Joint IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes

More information

URL: Publisher: Elsevier. This document has been downloaded from MUEP (

URL:   Publisher: Elsevier. This document has been downloaded from MUEP ( This is an author produced version of a paper published in Atomic Data and Nuclear Data Tables. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 Chemistry Standard level Paper 1 Thursday 12 May 2016 (morning) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions. For each question,

More information

Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet

Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet LLNL-JRNL-400639 Measurement and Modeling of Density-Sensitive Lines of Fe XIII in the Extreme Ultraviolet N. Yamamoto, T. Kato, P. Beiersdorfer, J. K. Lepson January 22, 2008 Astrophysical Journal Disclaimer

More information

Spectroscopic studies of impurities in the LHD plasmas

Spectroscopic studies of impurities in the LHD plasmas Spectroscopic studies of impurities in the LHD plasmas Visitor: Zhenwei Wu (the institute of plasma physics, CAS -ASIPP) Host: Shigeru Morita (the national institute for fusion science -NIFS) Content 1.

More information

Progresses of AMODS Database in KAERI and Electron Impact Ionization Cross Sections

Progresses of AMODS Database in KAERI and Electron Impact Ionization Cross Sections Progresses of AMODS Database in KAERI and Electron Impact Ionization Cross Sections Yongjoo RHEE Laboratory for Quantum Optics, Korea Atomic Energy Research Institute P.O.BOX 105 Yuseong, Daejeon 305-600

More information

プラズマ光源関連イオンの EBIT による分光

プラズマ光源関連イオンの EBIT による分光 プラズマ光源関連イオンの EBIT による分光 Emission spectroscopy of multiply charged ions related to plasma light sources with an EBIT 大橋隼人, 八釼純治, 坂上裕之 *, 中村信行 レーザー新世代研究センター, 電気通信大学 * 核融合科学研究所 2012 年度原子分子データ応用フォーラムセミナー 2012

More information

Extension of Wavelength Range in Absolute Intensity Calibration of Space-Resolved EUV Spectrometer for LHD Diagnostics )

Extension of Wavelength Range in Absolute Intensity Calibration of Space-Resolved EUV Spectrometer for LHD Diagnostics ) Extension of Wavelength Range in Absolute Intensity Calibration of Space-Resolved EUV Spectrometer for LHD Diagnostics ) Chunfeng DONG 1), Shigeru MORITA 1,2), Motoshi GOTO 1,2) and Erhui WANG 2) 1) National

More information

Experimental evaluation of nonlinear collision effect on the beam slowing-down process

Experimental evaluation of nonlinear collision effect on the beam slowing-down process P-2 Experimental evaluation of nonlinear collision effect on the beam slowing-down process H. Nuga R. Seki,2 S. Kamio M. Osakabe,2 M. Yokoyama,2 M. Isobe,2 K. Ogawa,2 National Institute for Fusion Science,

More information

PROOF/ÉPREUVE ISO INTERNATIONAL STANDARD. Space environment (natural and artificial) Galactic cosmic ray model

PROOF/ÉPREUVE ISO INTERNATIONAL STANDARD. Space environment (natural and artificial) Galactic cosmic ray model INTERNATIONAL STANDARD ISO 15390 First edition 2004-##-## Space environment (natural and artificial) Galactic cosmic ray model Environnement spatial (naturel et artificiel) Modèle de rayonnement cosmique

More information

X-ray Spectroscopy on Fusion Plasmas

X-ray Spectroscopy on Fusion Plasmas X-ray Spectroscopy on s An ongoing discussion between the two Manfreds Manfred von Hellermann for CXRS Manfred Bitter for x-ray spectroscopy G. Bertschinger for many contributers (Bitter, Kunze, Weinheimer,

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK

The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK Electron interactions pervade many areas of science and technology Atmospheric physics and planetary atmospheres

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS Useful Constants and equations: K = o C + 273 Avogadro's number = 6.022 x 10 23 d = density = mass/volume R H = 2.178 x 10-18 J c = E = h = hc/ h = 6.626 x 10-34 J s c = 2.998 x 10 8 m/s E n = -R H Z 2

More information

INDC International Nuclear Data Committee

INDC International Nuclear Data Committee INDC(NDS)-0673 Distr. LP,NE,SK INDC International Nuclear Data Committee Spectroscopic and Collisional Data for Tungsten from 1 ev to 20 kev Summary Report of the Final Research Coordination Meeting IAEA

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

Direct Observation of the M1 Transition between the Ground Term Fine Structure Levels of W VIII

Direct Observation of the M1 Transition between the Ground Term Fine Structure Levels of W VIII Article Direct Observation of the M1 Transition between the Ground Term Fine Structure Levels of W VIII Momoe Mita 1, Hiroyuki A. Sakaue 2, Daiji Kato 2,3, Izumi Murakami 2,3 and Nobuyuki Nakamura 1, *

More information

INDC International Nuclear Data Committee

INDC International Nuclear Data Committee International Atomic Energy Agency INDC(NDS)- 0620 Distr. LP,NE,SK INDC International Nuclear Data Committee Spectroscopic and Collisional Data for Tungsten from 1 ev to 20 kev Summary Report of the First

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data January 2012 2327-4 Joint ICTP- Workshop on Fusion Plasma Modelling using Atomic and Molecular Data 23-27 January 2012 Atomic Processes Modeling in Plasmas Modeling Spectroscopic Observables from Plasmas Hyun-Kyung

More information

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD 1 TH/P6-38 Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD S. Murakami 1, H. Yamaguchi 1, A. Sakai 1, K. Nagaoka 2, H. Takahashi 2, H. Nakano 2, M. Osakabe 2, K. Ida 2, M. Yoshinuma

More information

Experimental analysis and predictive simulation of heat transport using TASK3D code

Experimental analysis and predictive simulation of heat transport using TASK3D code Experimental analysis and predictive simulation of heat transport using TASK3D code A. Wakasa 1, A. Fukuyama 2, S. Murakami 2, N. Takeda 2, and, M. Yokoyama 3 1 Research Organization for Information Science

More information

The LANL atomic kinetics modeling effort and its application to W plasmas

The LANL atomic kinetics modeling effort and its application to W plasmas The LANL atomic kinetics modeling effort and its application to W plasmas James Colgan, Joseph Abdallah, Jr., Christopher Fontes, Honglin Zhang Los Alamos National Laboratory IAEA CRP December 2010 jcolgan@lanl.gov

More information

HANDOUT SET GENERAL CHEMISTRY II

HANDOUT SET GENERAL CHEMISTRY II HANDOUT SET GENERAL CHEMISTRY II Periodic Table of the Elements 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 IA VIIIA 1 2 H He 1.00794 IIA IIIA IVA VA VIA VIIA 4.00262 3 Li 6.941 11 Na 22.9898

More information

Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT C. Biedermann, R. Radtke, G. Fussmann, F.I. Allen Institut für Physik der Humboldt-Universität zu Berlin, Lehrstuhl Plasmaphysik,

More information

Integrated Particle Transport Simulation of NBI Plasmas in LHD )

Integrated Particle Transport Simulation of NBI Plasmas in LHD ) Integrated Particle Transport Simulation of NBI Plasmas in LHD Akira SAKAI, Sadayoshi MURAKAMI, Hiroyuki YAMAGUCHI, Arimitsu WAKASA, Atsushi FUKUYAMA, Kenichi NAGAOKA 1, Hiroyuki TAKAHASHI 1, Hirohisa

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

CHEM 107 (Spring-2005) Exam 3 (100 pts)

CHEM 107 (Spring-2005) Exam 3 (100 pts) CHEM 107 (Spring-2005) Exam 3 (100 pts) Name: ------------------------------------------------------------------------, Clid # ------------------------------ LAST NAME, First (Circle the alphabet segment

More information

Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics

Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics Physics of heavy multiply-charged ions: Studies on the borderile of atomic and nuclear physics Andrey Surzhykov Technische Universität Braunschweig Physikalisch-Technische Bundesanstalt (PTB) Lecture 1

More information

Academic Editor: Joseph Reader Received: 25 November 2016; Accepted: 6 January 2017; Published: 12 January 2017

Academic Editor: Joseph Reader Received: 25 November 2016; Accepted: 6 January 2017; Published: 12 January 2017 atoms Article Combining Multiconfiguration and Perturbation Methods: Perturbative Estimates of Core Core Electron Correlation Contributions to Excitation Energies in Mg-Like Iron Stefan Gustafsson 1, Per

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina

CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina CHARGE EXCHANGE IN SLOW COLLISIONS OF IONS WITH HYDROGEN ISOTOPES. ADIABATIC APPROACH Inga Yu. Tolstikhina P.N.Lebedev Physical Institute, Russian Academy of Sciences Moscow, Russia Theoretical approaches

More information

Calculating Radiative Recombination Continuum From a Hot Plasma

Calculating Radiative Recombination Continuum From a Hot Plasma Calculating Radiative Recombination Continuum From a Hot Plasma Randall Smith August 2, 2008 When an electron collides with an atom or ion, it may excite the atom/ion (I + e I + e) ionize the atom/ion

More information

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M11/4/CHEMI/SPM/ENG/TZ2/XX CHEMISTRY STANDARD LEVEL PAPER 1. Monday 9 May 2011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M11/4/CHEMI/SPM/ENG/TZ/XX 116116 CHEMISTRY STANDARD LEVEL PAPER 1 Monday 9 May 011 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source Eric Gullikson Lawrence Berkeley National Laboratory 1 Reflectometry and Scattering Beamline (ALS 6.3.2) Commissioned Fall 1994

More information

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U

Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-60U 1 EX/P4-25 Impurity accumulation in the main plasma and radiation processes in the divetor plasma of JT-6U T. Nakano, H. Kubo, N. Asakura, K. Shimizu and S. Higashijima Japan Atomic Energy Agency, Naka,

More information

CHEM 10123/10125, Exam 2

CHEM 10123/10125, Exam 2 CHEM 10123/10125, Exam 2 March 7, 2012 (50 minutes) Name (please print) Please box your answers, and remember that significant figures, phases (for chemical equations), and units do count! 1. (13 points)

More information

Collisional-Radiative Model of Molecular Hydrogen

Collisional-Radiative Model of Molecular Hydrogen 016.3 IAEA Collisional-Radiative Model of Molecular Hydrogen Keiji Sawada and Shinichi Hidaka Shinshu University, Japan Motoshi Goto NIFS, Japan Introduction : Our models elastic collision Collisional

More information

CHEM 130 Exp. 8: Molecular Models

CHEM 130 Exp. 8: Molecular Models CHEM 130 Exp. 8: Molecular Models In this lab, we will learn and practice predicting molecular structures from molecular formulas. The Periodic Table of the Elements IA 1 H IIA IIIA IVA VA VIA VIIA 3 5

More information

(C) Pavel Sedach and Prep101 1

(C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 1 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 2 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach and Prep101 3 (C) Pavel Sedach

More information

CHEM 172 EXAMINATION 1. January 15, 2009

CHEM 172 EXAMINATION 1. January 15, 2009 CHEM 17 EXAMINATION 1 January 15, 009 Dr. Kimberly M. Broekemeier NAME: Circle lecture time: 9:00 11:00 Constants: c = 3.00 X 10 8 m/s h = 6.63 X 10-34 J x s J = kg x m /s Rydberg Constant = 1.096776 x

More information

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr

02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Chemistry 05 B First Letter of PLEASE PRINT YOUR NAME IN BLOCK LETTERS Exam last Name Name: 02/05/09 Last 4 Digits of USC ID: Dr. Jessica Parr Lab TA s Name: Question Points Score Grader 2 2 9 3 9 4 2

More information

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry Atomic Structure Atomic Emission Spectra and Flame Tests Flame Tests Sodium potassium lithium When electrons are excited they bump up to a higher energy level. As they bounce back down they release energy

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase

B. X : in phase; Y: out of phase C. X : out of phase; Y: in phase D. X : out of phase; Y: out of phase 2015 April 24 Exam 3 Physics 106 Circle the letter of the single best answer. Each question is worth 1 point Physical Constants: proton charge = e = 1.60 10 19 C proton mass = m p = 1.67 10 27 kg electron

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

Monte Carlo Simulator to Study High Mass X-ray Binary System

Monte Carlo Simulator to Study High Mass X-ray Binary System SLAC-PUB-11350 Monte Carlo Simulator to Study High Mass X-ray Binary System S. Watanabe, F. Nagase, T. Takahashi ISAS/JAXA, Sagamihara, Kanagawa 229-8510, Japan M. Sako, S.M. Kahn KIPAC/Stanford, Stanford,

More information

Plasmas occur over a vast range of conditions Temperature. Spectroscopy of Dense Plasmas. Population Kinetics Models

Plasmas occur over a vast range of conditions Temperature. Spectroscopy of Dense Plasmas. Population Kinetics Models Spectroscopy of Dense Plasmas H.-K. Chung Atomic and Molecular Data Unit Nuclear Data Section Joint ICTP- Advanced School on Modern Methods in Plasma Spectroscopy Trieste, Italy 19 March 15 International

More information

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M10/4/CHEMI/SPM/ENG/TZ2/XX+ CHEMISTRY. Wednesday 12 May 2010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M10/4/CHEMI/SPM/ENG/TZ/XX+ 106116 CHEMISTRY standard level Paper 1 Wednesday 1 May 010 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Peculiarities of Modeling LPP Source at 6.X nm

Peculiarities of Modeling LPP Source at 6.X nm V.Novikov, V.Ivanov, K.Koshelev, V.Krivtsun, A.Grushin, R.Kildiyarova, A.Solomyannaya Peculiarities of Modeling LPP Source at 6.X nm Outline Theoretical base Optimal plasma parameters Band position Scaling

More information

Review of CRP and Meeting Objectives

Review of CRP and Meeting Objectives Review of CRP and Meeting Objectives Hyun-Kyung Chung, Atomic and Molecular Data Unit, Nuclear Data Section CRP F43023 on Data for Atomic Processes of Neutral Beams in Fusion Plasma IAEA A&M Data Unit

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD 1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,

More information

The Extreme Ultraviolet Emissions of W 23+ (4f 5 )

The Extreme Ultraviolet Emissions of W 23+ (4f 5 ) The Extreme Ultraviolet Emissions of W 23+ (4f 5 ) T Pütterich, V. Jonauskas, R Neu, R Dux and ASDEX Upgrade Team Max Planck Institut für Plasmaphysik, EURATOM Association, D 85748 Garching, Germany Institute

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Collisional radiative model

Collisional radiative model Lenka Dosoudilová Lenka Dosoudilová 1 / 14 Motivation Equations Approximative models Emission coefficient Particles J ij = 1 4π n j A ij hν ij, atoms in ground state atoms in excited states resonance metastable

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

CHEM 251 (Fall-2003) Final Exam (100 pts)

CHEM 251 (Fall-2003) Final Exam (100 pts) CEM 251 (Fall-2003) Final Exam (100 pts) Name: -------------------------------------------------------------------------------, SSN -------------------------------- LAST NAME, First (Circle the alphabet

More information

Progress in LPP EUV Source Development by Japan MEXT Project

Progress in LPP EUV Source Development by Japan MEXT Project Progress in LPP EUV Source Development by Japan MEXT Project Y. Izawa, N. Miyanaga, H. Nishimura, S. Fujioka, T. Aota, K. Nagai, T. Norimatsu,K. Nishihara, M. Murakami, Y. -G. Kang, M. Nakatsuka, H. Fujita,

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

Main activities of NFRI(DCPP)

Main activities of NFRI(DCPP) Main activities of NFRI(DCPP) 01. Plasma Properties Information System - with KISTI (Korea Institute of Science, Technology and Information) - A+M DB for Industrial Plasma Applications 12. Launch of DCPP

More information

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section CHEM 1215 Exam III John III. Gelder November 10, 1999 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 7 different pages. The last page includes a periodic table and

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data

Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data RRC Kurchatov Institute, Moscow, Russia Radiative-collisional processes in electron-tungsten ions collisions: quasiclassical calculations and data Valery S. Lisitsa First Research Coordination Meeting

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

Nucleus. Electron Cloud

Nucleus. Electron Cloud Atomic Structure I. Picture of an Atom Nucleus Electron Cloud II. Subatomic particles Particle Symbol Charge Relative Mass (amu) protons p + +1 1.0073 neutrons n 0 1.0087 electrons e - -1 0.00054858 Compare

More information

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start. Name: Lab Day and Time: Instructions 1. Do not open the exam until you are told to start. 2. This exam is closed note and closed book. You are not allowed to use any outside material while taking this

More information

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5 BROOKLYN COLLEGE Department of Chemistry Chemistry 1 Second Lecture Exam Nov. 27, 2002 Name Page 1 of 5 Circle the name of your lab instructor Kobrak, Zhou, Girotto, Hussey, Du Before you begin the exam,

More information