FST 123 Problem Set 3 Spring, V o at [S] 0 = 10 mm (mm/min)

Size: px
Start display at page:

Download "FST 123 Problem Set 3 Spring, V o at [S] 0 = 10 mm (mm/min)"

Transcription

1 FST 23 Problem Set 3 Spring, 2009 Name. A student needed to know the activity versus ph profile for an enzyme that he was going to use in a later application. He collected the appropriate data and determined K M and Vmax at ph 6.8. They were about 0.mM and 800mM/min, respectively. He then measured V o at [S] 0 = 0.002mM and at [S] 0 = 0mM, and obtained the data given in the table below. ph V o at [S] 0 = 0 mm (mm/min) V o at [S] 0 = mm (mm/min) 2 precipitated precipitated a. Graph the data so that you can interpret how the velocity changes with ph. The optimum ph is around 7, so divide the data in each column by the value at ph 7. Then, plot the result (V ph /V opt ) vs ph. This is a normalized plot of V vs. ph. b. Interpret the data in terms of ionizations of the various forms of the enzyme that alter binding or catalysis. At high [S], there is an acid transition, so it must correspond to a decrease in V max the catalytic step. At low [S], there is an acid transition, which we already know corresponds to a decrease in V max and an alkaline transition, which must correspond to an increase in K M, because the rate at low [S] is (V max /K M )[S] and since V max is approximately constant in the alkaline region.

2 So, you could make a diagram like this: EH 2 + S EH 2 S X EH 2 + P EH - + S EHS - EH - + P E -2 + S X ES -2 E -2 + P c. What are the pk a s involved? Look at the midpoint of the transition or plot as described in lecture: ph vs (V/(-V)) for the acid transition or ((-V/V) for the alkaline transition, where V is the fraction in part A (i.e., V ph /V opt ). Plot Log of this vs ph. You should get a slope of.000, and the line should cross the X-axis at ph = pk a. Slope Y-intercept X-intrcept Acid side Alkaline side So, the pka s are 4.79 and c. What other situations other than effects on K M and V max could give rise to similar observations? I can think of three possibilities:. There is an ionization of the substrate that causes the change 2. There is an ionization of the buffer or some other component that causes the change 3. The enzyme denatures at the acid side (probably not the basic side, because the enzyme seems to work there, as long as there s enough substrate.

3 d. Indicate how you could rule out each of the possibilities you listed in part c (or, find that it, rather than an ionization in the active site, controlled the behavior).. Look up the pka of the substrate 2. Look up the pka of the buffer or 3. Carry out a preincubation experiment in which the enzyme is incubated at the test ph for a fixed time. The enzyme is assayed at the ph optimum or other ph at which it is apparently stable. If the activity vs. ph of-incubation profile looks like the ph vs. activity profile, then instability contributes to the apparent activity profile. e. The ΔHionization was found to be 0.2 kcal/mole for the acidic ionization and 0 kcal/mole for the basic ionization observed for the enzyme. Suggest what groups on the enzyme are the most likely to be responsible for the ph behavior. The acid side sounds like a carboxylate: Asp, Glu, or the C-terminus The alkaline one sounds like a primary amine: the N-terminus or a Lys sidechain. 2. One of the major biochemical discoveries of the 990s was that the inorganic molecule NO is important in the regulation of many biological processes. NO was declared the Molecule of the Year by the American Chemical Society, and three scientists were awarded a shared Nobel Prize in 998 for elucidating its function. But, NO gas has been known for many years. It can be formed at high temperature by the reaction N 2 (g) + O 2 (g) 2NO(g) The equilibrium constant for this reaction is 4.08 x 0-4 at 2000K and 2.5 x 0-3 at 2400K. Yeah, I said high temperature. a. From this information, calculate ΔG o, ΔΗ o and ΔS o for the reaction under these conditions (use 2000K if the parameter is dependent on temperature). ΔG = -RTln K eq. ΔG = -.98 cal/mole K 2000K ln 4.08 x 0-4. ΔG = 30.9 kcal/mole The slope of ln K eq vs /T equals ΔH/R, so you can ) do the plot, or 2) pretend to do the plot by calculating the slope based on rise over run, (ln K T2 ln K T )/ ( T 2 " T ) = ΔH/R, or or 3) plug the data into the equation derived from differentiation and integration (vant Hoff equation), ln K eq2 = - "H K eq R [T -T 2 ] T T 2 which turns out to be the same as doing 2). All approaches give ΔH = 43.2kcal/mole (remember to multiply the slope by minus R) ΔS = (ΔH - ΔG )/T = (43,60 cal/mole 30,900 cal/mole)/2000k = 6.cal/mole K b. Calculate the value of the equilibrium constant at 2500K.

4 The direct relation is between DG and K eq, but, unfortunately, we don t know DG at 2500K. So, we ll have to go back to vant Hoff: ln K eq2 K eq = - "H R [T -T 2 T T 2 ], We ll let T 2 be 2500K, and we ll solve for K 2, knowing the DH we got in part a. T could be either 2000 or 2400K since we knoe Keq at both temperatures. Let s use 2000K and its respective K eq of 4.08 x 0-4. ln K eq "0 = "03 cal /mole #4.98 cal/mole K [ 2000 " ] = 2.8, K eq "0 #4 = 8.85, so K eq2 = 3.6 x At saturating levels of substrate, an enzyme-catalyzed reaction was found to be 3.6 times faster at 30 C than at 20 C. a. Assuming ln k is linear with /T in this temperature range, calculate E a for the reaction. The assumption means that denaturation is not an issue and the temperature dependence arises from the activation energy, only. k = A 0 e -Ea/RT ln k = ln A 0 - Ea RT So, the slope of ln k vs /T is E a /R, and the slope can be written ln(k2)! ln(k)! T 2 T But, you don t know absolute rate constants, so, it would be convenient to write the slope in a different form, so that you can plug in the ratio of rate constants. Actually, you don t have rate constants, just ratios of rates, but taking ratios causes the concentration terms in the rate equation to cancel out. V max is k 2 E T, so taking ratios of V max s obtained at different temperatures with the same enzyme concentration is equal to the ratio of k 2 s: ln( k2 ) T 2 k! T = ln(3.6) 303 " 293 = - Ea R E a = -R ln(3.6) 303 " 293 E a = -R.28 =.35 kcal/mole "4 ".3x0 b. Calculate Q 0 for the reaction. 20 C and 30 C are 0 apart, so we just need to take the ratio of the rates, which is 3.6 c. Calculate ΔH for the reaction. According to Eyring theory.

5 k = k T B h e("#h +T#S )/ RT or ln k T = ln k B h - "H RT + "S R The slope of ln(k/t ) vs. /T ought to be ΔH /R. The slope is rise/run: (ln k 2 - ln k # )/ " & % ( = ln k 2T # / " & % ( T 2 T $ T 2 T ' k T 2 $ T 2 T ' # 3.6" 293& # ln% (/ $ 303 ' 303 " & % ( = -.07 x 0 3 $ 293' ΔH =.07 x 0 3 R = 2.9 kcal/mole 4. Describe three distinctly different ways that a change in temperature can alter the velocity of an enzyme-catalyzed reaction. a) Increase in T causes increase in rate according to the Arrhenius equation. b) K M could change. If the enzyme is not saturated with substrate, the rate would also change. c) Instability of the enzyme at high temperature could decrease the rate with time. d) Temperature-dependent change in the pka of a group on the enzyme whose protonation state affects KM or the catalytic step

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

A. One-Substrate Reactions (1) Kinetic concepts

A. One-Substrate Reactions (1) Kinetic concepts A. One-Substrate Reactions (1) Kinetic concepts (2) Kinetic analysis (a) Briggs-Haldane steady-state treatment (b) Michaelis constant (K m ) (c) Specificity constant (3) Graphical analysis (4) Practical

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C.

shown by line A. The net effect of temperature on an enzyme-catalyzed reaction is given by line C. Experiment 8 EFFECT OF TEMPERATURE ON ENZYME ACTIVITY Temperature affects the stability of an enzyme as well as the binding of substrate and its transformation to product. Line B of Fig. 8-l shows the

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Lecture 3: ph and Buffers

Lecture 3: ph and Buffers Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2017 Lecture 3: ph and Buffers Tuesday, 16 Jan. 2017 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu A Special Measure

More information

CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE

CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE OVERVIEW OF CHAPTER Here we report the substrate specificity and enzyme kinetics of Polyphenol oxidase enzyme of A. paeoniifolius.

More information

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Full file at https://fratstock.eu

Full file at https://fratstock.eu Chapter 03 1. a. DG=DH-TDS Δ G = 80 kj ( 98 K) 0.790 kj = 44.6 kj K b. ΔG = 0 @ T m. Unfolding will be favorable at temperatures above the T m. Δ G =Δ H TΔ S 0 kj kj 80 ( xk) 0.790 K 0 Δ G = = 354.4 K

More information

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will:

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will: As we wrap up kinetics we will: Lecture 22: The Arrhenius Equation and reaction mechanisms. Briefly summarize the differential and integrated rate law equations for 0, 1 and 2 order reaction Learn how

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Previous Class. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements. Today

Previous Class. Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements. Today Previous Class Reasons for analyzing pre-steady state conditions Methods for pre-steady state measurements Today Spectrophotometry Spectrofluorimetry Radioactive Procedures ph dependency Spectrophotometry

More information

Chemistry 102 Spring 2016 Discussion #12, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f

Chemistry 102 Spring 2016 Discussion #12, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f Chemistry 10 Spring 016 Discussion #1, Chapter 17 Student name TA name Section Things you should know when you leave Discussion today: 1. ΔS sys = Δ r S = Σ [n i (S )] product - Σ [n j (S )] reactants.

More information

Chapter 6: Energy and Metabolism

Chapter 6: Energy and Metabolism Chapter 6: Energy and Metabolism Student: 1. Oxidation and reduction reactions are chemical processes that result in a gain or loss in A) atoms. B) neutrons. C) electrons. D) molecules. E) protons. 2.

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

11/2/ and the not so familiar. Chemical kinetics is the study of how fast reactions take place. Familiar Kinetics...and the not so familiar Reaction Rates Chemical kinetics is the study of how fast reactions take place. Some happen almost instantaneously, while others can take millions of years.

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 3 ENZYMES AS BIOCATALYSTS * CATALYTIC EFFICIENCY *SPECIFICITY Having discussed

More information

General Chemistry revisited

General Chemistry revisited General Chemistry revisited A(g) + B(g) C(g) + D(g) We said that G = H TS where, eg, H = f H(C) + f H(D) - f H(A) - f H(B) G < 0 implied spontaneous to right G > 0 implied spontaneous to left In a very

More information

Chapter Chemical Kinetics

Chapter Chemical Kinetics CHM 51 Chapter 13.5-13.7 Chemical Kinetics Graphical Determination of the Rate Law for A Product Plots of [A] versus time, ln[a] versus time, and 1/[A] versus time allow determination of whether a reaction

More information

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013 Lecture 10. Biochemical Transformations II. Phosphoryl transfer and the kinetics and thermodynamics of energy currency in the cell: ATP and GTP.

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

BIBC 102, Metabolic Biochemistry Problem Set 1 Fall 2002

BIBC 102, Metabolic Biochemistry Problem Set 1 Fall 2002 Enzymology problems 1)The sweet taste of fresh corn is due to the high level of sugar in the kernal. Storebought corn that has been sitting around for a few days is not as sweet because about 50% of the

More information

Lecture 2: Biological Thermodynamics [PDF] Key Concepts

Lecture 2: Biological Thermodynamics [PDF] Key Concepts Lecture 2: Biological Thermodynamics [PDF] Reading: Berg, Tymoczko & Stryer: pp. 11-14; pp. 208-210 problems in textbook: chapter 1, pp. 23-24, #4; and thermodynamics practice problems [PDF] Updated on:

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Effect of adding an ideal inert gas, M

Effect of adding an ideal inert gas, M Effect of adding an ideal inert gas, M Add gas M If there is no change in volume, then the partial pressures of each of the ideal gas components remains unchanged by the addition of M. If the reaction

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

it is assumed that only EH and ESH are catalytically active Michaelis-Menten equation for this model is:

it is assumed that only EH and ESH are catalytically active Michaelis-Menten equation for this model is: initial rates for many enzymatic reactions exhibit bell-shaped curves as a function of ph curves reflect the ionizations of certain amino acid residues that must be in a specific ionization state for enzyme

More information

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics

Chemical Kinetics. What quantities do we study regarding chemical reactions? 15 Chemical Kinetics Chemical Kinetics Chemical kinetics: the study of reaction rate, a quantity conditions affecting it, the molecular events during a chemical reaction (mechanism), and presence of other components (catalysis).

More information

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria

Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria Chemical Equilibria & the Application of Le Châtelier s Principle to General Equilibria CHEM 102! T. Hughbanks! Example of Equilibrium N 2 (g) + 3H 2 (g) 2 NH 3 (g) Reactions can occur, in principle, in

More information

2. Which of the following are nucleophiles and which are electrophiles?

2. Which of the following are nucleophiles and which are electrophiles? Life Sciences 1a ractice roblems 7 1. a) ow many intermediates are there in the reaction? b) ow many transition states are there? c) What is the fastest step in the reaction? d) Which is more stable, A

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Concept review: Binding equilibria

Concept review: Binding equilibria Concept review: Binding equilibria 1 Binding equilibria and association/dissociation constants 2 The binding of a protein to a ligand at equilibrium can be written as: P + L PL And so the equilibrium constant

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction.

3. Based on how energy is stored in the molecules, explain why ΔG is independent of the path of the reaction. B. Thermodynamics 1. What is "free energy"? 2. Where is this energy stored? We say that ΔG is a thermodynamic property, meaning that it is independent of the way that the conversion of reactants to products

More information

Lecture 4 STEADY STATE KINETICS

Lecture 4 STEADY STATE KINETICS Lecture 4 STEADY STATE KINETICS The equations of enzyme kinetics are the conceptual tools that allow us to interpret quantitative measures of enzyme activity. The object of this lecture is to thoroughly

More information

Chapter 9 in Chang Text

Chapter 9 in Chang Text Section 8.0: CHEMICAL EQUILIBRIUM Chapter 9 in Chang Text ..the direction of spontaneous change at constant T and P is towards lower values of Gibbs Energy (G). this also applies to chemical reactions

More information

CHEMICAL KINETICS. LECTURE Introduction

CHEMICAL KINETICS. LECTURE Introduction LECTURE-2. 2. Introduction CHEMICAL KINETICS 09//03 We have shown in the previous chapter that upon listing of the plausible reaction stoichiometries we can calculate the composition of the system in its

More information

The equation to estimate G using the coalescence temperature is: T c G = at log where a = x 10-3 for units of kcal/mol

The equation to estimate G using the coalescence temperature is: T c G = at log where a = x 10-3 for units of kcal/mol Determining the Energy of Activation Parameters from Dynamic NMR Experiments: -Dr. Rich Shoemaker (Source: Dynamic NMR Spectroscopy by J. Sandstöm, and me) The results contained in this document have been

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology

Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology Review: Garrett and Grisham, Enzyme Specificity and Regulation (Chapt. 13) and Mechanisms of Enzyme

More information

Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes.

Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes. Geology 560, Prof. Thomas Johnson Unit IV, Part 2: Activation energies and the responses of reaction rates to temperature and compositional changes. eading: White, Chapter 5; Walther, Chapter 13 Excellent

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f

Chemistry 102 Spring 2017 Discussion #13, Chapter 17 Student name TA name Section. Things you should know when you leave Discussion today: ( G o f Chemistry 0 Spring 07 Discussion #3, Chapter 7 Student name TA name Section Things you should know when you leave Discussion today:. ΔSsys = ΔrS = Σ [ni (S )]product - Σ [nj (S )]reactants. ΔGº = -T ΔSnet

More information

Enzyme Kinetics: How they do it

Enzyme Kinetics: How they do it Enzyme Kinetics: How they do it (R1) Formation of Enzyme-Substrate complex: (R2) Formation of Product (i.e. reaction): E + S ES ES -> E + P (R3) Desorption (decoupling/unbinding) of product is usually

More information

Modeling More Complex Systems ABE 5646 Week 6, Spring 2010

Modeling More Complex Systems ABE 5646 Week 6, Spring 2010 Modeling More Complex Systems ABE 5646 Week 6, Spring 2010 Week Description Reading Material 6 Modeling Temperature Effects on Biological Systems Effects on chemical reaction rates Effects on biological

More information

Chemistry 304B, Spring 99 Lecture 2 1

Chemistry 304B, Spring 99 Lecture 2 1 Chemistry 04B, Spring 99 Lecture 2 1 Consider Acidity and Basicity Recall carboxylic acids and amines (base). Jones: p 27-8; 149, 291, 822-826, 1086-1090, 958-96, 878-882 General terms: Lewis acid: capable

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 5 Alkene: Introduction Thermodynamics and Kinetics Midterm 2... Grades will be posted on Tuesday, Feb. 27 th.

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

The energy of oxidation of 11 g glucose = kj = kg/m 2 s 2

The energy of oxidation of 11 g glucose = kj = kg/m 2 s 2 Chem 350 thermo problems Key 1. How many meters of stairway could a 70kg man climb if all the energy available in metabolizing an 11 g spoonful of sugar to carbon dioxide and water could be converted to

More information

Reaction Thermodynamics

Reaction Thermodynamics Reaction Thermodynamics Thermodynamics reflects the degree to which a reaction is favored or disfavored Recall: G = Gibbs free energy = the energy available to do work ΔG = change in G of the system as

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme. Section 8 Enzyme Kinetics Pre-Activity Assignment 1. Produce a reading log for the sections in your text that discuss the Michaelis-Menten equation and including kcat. 2. Focus on the derivation of the

More information

BSc and MSc Degree Examinations

BSc and MSc Degree Examinations Examination Candidate Number: Desk Number: BSc and MSc Degree Examinations 2018-9 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes Marking

More information

1. Use the Data for RNAse to estimate:

1. Use the Data for RNAse to estimate: Chem 78 - - Spr 1 03/14/01 Assignment 4 - Answers Thermodynamic Analysis of RNAseA Denaturation by UV- Vis Difference Absorption Spectroscopy (and Differential Scanning Calorimetry). The accompanying excel

More information

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name Key 1) [10 points] In RNA, G commonly forms a wobble pair with U. a) Draw a G-U wobble base pair, include riboses and 5 phosphates. b) Label the major groove and the minor groove. c) Label the atoms of

More information

MEDICINAL CHEMISTRY Homework 2 - ANSWERS

MEDICINAL CHEMISTRY Homework 2 - ANSWERS MEDICIAL CEMISTY omework 2 - ASWES 1. eceptor binding curves. Make a plot of %drug-bound versus -log[drug] for a drug whose K D is 5 x 10-6 M. Make a plot of %drug-bound vs [drug] for this same system.

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter 3 Chemical Kinetics: Reactions in the Atmosphere Chemistry, 5 th Edition Copyright 207, W. W. Norton & Company Chapter Outline 3.4 Reaction

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Chem Lecture 4 Enzymes Part 2

Chem Lecture 4 Enzymes Part 2 Chem 452 - Lecture 4 Enzymes Part 2 Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour? Thermodynamics I think that enzymes are molecules

More information

Reaction Coordinates. Activation Energy. Catalysis

Reaction Coordinates. Activation Energy. Catalysis Today Reaction Coordinates Activation Energy Catalysis We have a balloon with H2 and O2 why is not reacting? 2H2(g) + O2(g) 2H2O(g) We have a balloon with H2 and O2 why is not reacting? 2H2(g) + O2(g)

More information

Thermodynamics of Reactive Systems The Equilibrium Constant

Thermodynamics of Reactive Systems The Equilibrium Constant Lecture 27 Thermodynamics of Reactive Systems The Equilibrium Constant A. K. M. B. Rashid rofessor, Department of MME BUET, Dhaka Today s Topics The Equilibrium Constant Free Energy and Equilibrium Constant

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase

Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase Chapter 17.3 Entropy and Spontaneity Objectives Define entropy and examine its statistical nature Predict the sign of entropy changes for phase changes Apply the second law of thermodynamics to chemical

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

CHM 112 Chapter 16 Thermodynamics Study Guide

CHM 112 Chapter 16 Thermodynamics Study Guide CHM 112 Chapter 16 Thermodynamics Study Guide Remember from Chapter 5: Thermodynamics deals with energy relationships in chemical reactions Know the definitions of system, surroundings, exothermic process,

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Thermodynamics. Gibbs Free Energy 9/15/2009. Entropy Laws. 1 st law finite amount of energy in the universe

Thermodynamics. Gibbs Free Energy 9/15/2009. Entropy Laws. 1 st law finite amount of energy in the universe Thermodynamics 1 st law finite amount of energy in the universe Many forms of energy are possible. 2 nd law Entropy always increases for spontaneous reactions. Couple your reactions an entropy lowering

More information

c. doubling the volume of the assay by adding buffer (assume you are using a spectrophotometric assay)

c. doubling the volume of the assay by adding buffer (assume you are using a spectrophotometric assay) FST 123 1st Midterm Examination May 1, 2012 Name Key 1. We have discussed enzyme kinetics under the limiting conditions of very high and very low substrate concentrations. Under each of these conditions

More information

a) Write the reaction that occurs (pay attention to and label ends correctly) 5 AGCTG CAGCT > 5 AGCTG 3 3 TCGAC 5

a) Write the reaction that occurs (pay attention to and label ends correctly) 5 AGCTG CAGCT > 5 AGCTG 3 3 TCGAC 5 Chem 315 Applications Practice Problem Set 1.As you learned in Chem 315, DNA higher order structure formation is a two step process. The first step, nucleation, is entropically the least favorable. The

More information

Chem Lecture 4 Enzymes Part 1

Chem Lecture 4 Enzymes Part 1 Chem 452 - Lecture 4 Enzymes Part 1 Question of the Day: Enzymes are biological catalysts. Based on your general understanding of catalysts, what does this statement imply about enzymes? Introduction Enzymes

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Thermodynamics of Borax Dissolution

Thermodynamics of Borax Dissolution Thermodynamics of Borax Dissolution Introduction In this experiment, you will determine the values of H, G and S for the reaction which occurs when borax (sodium tetraborate octahydrate) dissolves in water.

More information

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs. Experimental data: the concentration of a reactant or product measured as a function of time Graph of conc. vs. time Is graph a straigh t line? No Graph of ln[conc.] vs. time Yes System is zero order Is

More information

B. Activation Energy: Ea

B. Activation Energy: Ea B. Activation Energy: Ea a) Example reaction: the burning of charcoal in the BBQ C (s) + O 2(g) CO 2 (remember, burning is VERY exothermic) Question: Will charcoal in your BBQ spontaneously catch fire?

More information

TWO ENZYME CATALYSIS OVERVIEW OBJECTIVES INTRODUCTION

TWO ENZYME CATALYSIS OVERVIEW OBJECTIVES INTRODUCTION TWO ENZYME CATALYSS OVERVEW n this lab you will: 1. observe the conversion of hydrogen peroxide (H 2 0 2 ) to water and oxygen gas by the enzyme catalase, and 2. measure the amount of oxygen generated

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14

Principles of Bioenergetics. Lehninger 3 rd ed. Chapter 14 1 Principles of Bioenergetics Lehninger 3 rd ed. Chapter 14 2 Metabolism A highly coordinated cellular activity aimed at achieving the following goals: Obtain chemical energy. Convert nutrient molecules

More information

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system.

Gibb s Free Energy. This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. Gibb s Free Energy 1. What is Gibb s free energy? What is its symbol? This value represents the maximum amount of useful work (non PV-work) that can be obtained by a system. It is symbolized by G. We only

More information

The first assumption we will put into our theory of kinetics is that two molecules must collide for a reaction to occur between them.

The first assumption we will put into our theory of kinetics is that two molecules must collide for a reaction to occur between them. Chapter 18 Chemical Kinetics: Mechanisms In the last chapter we went through the mechanics of how you extract rate constants and order parameters from experimental data. In this chapter we will ge tthe

More information

Supporting Information

Supporting Information Supporting Information Boehr et al. 10.1073/pnas.0914163107 SI Text Materials and Methods. R 2 relaxation dispersion experiments. 15 NR 2 relaxation dispersion data measured at 1 H Larmor frequencies of

More information

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins Enzymes We must be able to enhance the rates of many physical and chemical processes to remain alive and healthy. Support for that assertion: Maladies of genetic origin. Examples: Sickle-cell anemia (physical)

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic.

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic. CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION A Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information