A. Reaction Rates. Do speed analogy to understand rates in general. miles traveled. kilometers traveled

Size: px
Start display at page:

Download "A. Reaction Rates. Do speed analogy to understand rates in general. miles traveled. kilometers traveled"

Transcription

1 Chemical Kinetics On-line: 1. Chap Chapter sections (pp ) Introduction What is kinetics, and why should we care? 1. Kinetics examines how fast a rxn. proceeds. 2. You will remain alive & healthy only as long as you can control the rates of chemical (and physical) processes in your body. Two examples at the extremes of reaction rates: 1st: Formation of iron oxide from iron metal: 4 Fe(s) + 3 O2(g) 2 Fe2O3(s) 1. Formation of iron oxide is rusting. (photo from Google images) 2. It took my Datsun B-210 ~ 9 years to rust. 2 nd : A more rapid way to oxidize a car: Any thoughts about the chemical reaction type in this video? A. Reaction Rates. Do speed analogy to understand rates in general. miles traveled 0. Think about driving. Your speed is how many or (mph). If we were in Canada, it would be kilometers traveled hour hour In both cases it is the distance traveled divided by the time. How do you calculate the distance traveled? Let say the car odometer read 1557 mile at the beginning of your trip and 1598 mile at the end of your trip. The change in distance If it took 0.70 hours, your speed 1. Defining rate: change per unit time rate concentration change time change Page1

2 Chemical process A B Time 0.08 moles of B formed 10 s 0.08 moles B formed 10 sec Speed or Rate or moles B formed 1 sec Say this was in 1 Liter so (0.08 moles/l 0.08 M) 0.08 M B formed 10 s 0.08 M B formed 10 sec or M B formed 1 sec So the rate of increase in concentration of B for this reaction is M/s 2. Example: H2(g) + Cl2(g) 2 HCl(g) How could you measure the rate? a. Measure the concentration of H2, Cl2, or HCl at various times as the reaction proceeds. b. If you measure one of the reactants, H2 or Cl2, would we see an increase or decrease over time? c. If you measured HCl, a product, would you see it increase or decrease over time? In the kinetics lab, did we measure a product or reactant of the reaction? Did it increase or decrease over time? 3. Another concern is how does one measure how much reactant or product is present? One of the most desirable ways is to see a visible change. 4. Reaction used in the Kinetics lab 6 H + + IO3 + 8 I 3 I3 + 3 H2O (which has color?) So you looked at the increase in concentration of the product, I3 -, at different times by looking at its color. Let s look at some data from the kinetics lab. rate I3 formation Δ [I3 ] Δ t Note: The bracket, [ ], means the concentration of whatever is inside the bracket (usually in M). Page2

3 [I3 - ] (M) Trial #5 Time (s) Abs [I3 ] (M) E E E E E E E E E-06 Shown above are trial #5 data from Sp 05. You can get an approximate rate using the data from two time points, say 30 and 60 s. Try it. concentration time conc. final - conc. initial time final - time initial 3.09 x x 10 6 M s Now lets do it again with the data from 30 and 60 s. Change in concentration change in time Trial #5 But a) You will get a more reliable answer if you estimate Δy for all Δx of the points. 5e-6 4e-6 3e-6 b) You can do this by plotting the data [I3 ] (M) on the y-axis and time (s) on the x-axis, and using the trendline function, ie using the slope of the line. Remember, slope rate!!! The slope of the line is 2.85 x 10 8 M s & the R 2 value What does the R 2 value tell you? 2e-6 1e time (s) Page3

4 Rate Laws & Reaction Order Now that we know how to measure rates, what use are they? A. We need to relate our numerical analysis of rxn. rate to a mental picture (model) of the atoms/molecules doing the rxn. Look at Boltzmann. Boltzmann 3D How many collisions per 30 sec with: (428 K) 1. Five NO2 molecules (MW ~ 46 amu) & two CO (MW ~ 28 amu) 2. Fifty NO2 molecules & two CO molecules So what happened to the collision rate when more molecules were present in the same space? B. Consider the following general rxn.: a A + b B Products 1. You can write a general rate law for this reaction in the form: Rate k [A] m [B] n k is the rate constant specific for this rxn., temp., etc. Note: a (coefficient in the reaction) is not necessarily m & b is not necessarily n. Important: Changing the concentration of reactants changes the reaction rate as shown by the Boltzmann demo. 2. What can you do with a rate law? a) Accurately predict what will occur. (Example: How fast will a reaction occur?) b) Get an understanding of the rxn mechanism C. Reaction order (example: Rate k [A] 2 [B] 1 ) 1. Overall reaction order sum of all exponents in the rate law. (ex: reaction order ) 2. Rxn order w/ respect to specific reactant exponent for that reactant. (example: reaction order with respect to A & reaction order with respect to B ) D. If you have a balanced chemical reaction, you still don t know the rate law. Page4

5 The rate law must be determined experimentally. Experimental Determination of a Rate Law One method is to measure initial rate at different [reactant]. (The bracket here means concentration of reactant in mol/l.) Then see what exponent (remember m and n?) fits the data. Rxn.: 6 H + + IO3 + 8 I 3 I3 + 3 H2O Rate law (general form): rate k [IO3 ] m [I ] n Aside: You may be wondering what happened to the [H + ] term. Two points with respect to that: There are ways to set up the reaction conditions such that we make that term disappear (actually combine with k). A. To get m, you will compare experimental trials. Here are some data from Sp 05 (the [I ] was the same in trials #1-3 & #4-6, and the [IO3 ] was twice as high in trials #4-6 as #1-3): Relative Concentrations Rate Trials I - - IO 3 (M/s) # x 10-8 # x 10-8 # rate for # x 10 8 M/s rate for # x 10 8 M/s Make a ratio of the rate law for trials 4-6 divided by the rate law for trials 1-3. rate4-6 k [IO3 ]4-6 m [I ] n rate1-3 k [IO3 ]1-3 m [I ] n Then fill in the appropriate concentrations and rate values 2.70 x 10 8 M/s k [2] m [I ] n Can you see that the k 1.35 x 10 8 M/s k [1] m [I ] n and [I ] n cancel? 2.70 x 10-8 M/s 1.35 x 10-8 M/s [2] m [1] m 2 2 m What must m equal, for the equation to be true? 1 1 m If you can t see what m equals, just try some integer values. Page5

6 Hopefully, you will find that m That is because as the concentration doubled, the rate also doubled. If the rate quadruples (increases by a factor of 4), when the concentration doubles, then m If the rate goes up by a factor of 8, when the concentration doubles, then m The logic is based on: 2 1 2, 2 2 4, 2 3 8, etc. (Note: 2m 1 m ( 2 1 )m. That is, you can factor out the m.) B. Following this logic, you could also determine n. What reactions should we compare to accomplish this? Trials. # and #. Note: In this case we want [IO3 ] to be constant. C. Now that we know m and n, do we have enough information to determine k? Rearrange the rate law to solve for k in the space at right: Reaction Rates and the Effect of Temperature A. Some of the thoughts behind this part of kinetics started with analysis of collision rates in the gas phase. At 20 C and 1 atm, each gas molecule has about 10 9 collisions/sec. Imagine a reaction occurring with each collision. BOOM!!! This does seem consistent with the rates of explosive chemical rxns, It is not consistent with the rates of most chemical rxns. So, for most rxns, only a small % of the collisions result in a rxn. These productive collisions have appropriate energy & orientation. In the rate law, these energy and orientation aspects are collected into the rate constant, k. B. Energy input (activation energy) is required for a reaction to occur. 1. Consider the rxn.: O(g) + HCl(g) OH(g) + Cl(g) Page6

7 Remember: A reaction can only occur between two atoms/ molecules if they collide with one another. In this rxn, the H Cl bond must be broken (requires energy), and an O H bond must be formed.(think about overlap of electron clouds.) O H Cl O H Cl O H + Cl intermediate structure 2. The intermediates in a rxn (O H Cl, in this case) are usually very unstable & high in potential energy. Terms: a) activation energy (Ea) is the energy hill that must be achieved before a reaction can proceed. b) transition state (synonym: activated complex) is the highest energy point, or the top of the energy hill. (Try to relate the process of going from reactants to the transition state climbing up a mountain.) C. Reaction rates tend to increase with increasing temperature. Why is this so? The fraction of collisions with enough energy to reach E a is related to the Boltzmann Distribution. Assume for a given reaction we need a velocity greater than 1000 m/s to reach E a. a) Look at Boltzmann at 302 K for O 2 (MW 32). What % of the O 2 molecules has a velocity greater than 1000 m/s? b) Now increase the temperature to around 600 K. Does the fraction with a velocity greater than 1000 m/s increase? Page7

8 Initial temp Temp has been raised This is why increasing T increases the rxn rate. Increasing T increases k. Larger k means a faster rate. Rate k [A] m [B] n D. Appropriate orientation is required for a productive collision. Go back to our previous example of a gas phase rxn.: O(g) + HCl(g) OH(g) + Cl(g) What if O collides with the Cl side of the HCl molecule, instead of the H side H Cl O N.R. No H to O bonding occurs. Therefore, many collisions do not result in a reaction. E. Why do people investigate this stuff? 1. If you understand a reaction, you can modify it to change the rate, improve efficiency, and so on. 2. Sometimes scientists look for Page8

9 3. Enzymes are catalysts that increase the rate of reactions in living systems.. Sometimes scientists look for of an enzyme to reduce the rate of a reaction. Catalysis How we make life go. A. Catalysts work by lowering the activation energy. B. They do this by creating a different reaction pathway. Analogy: Take a 600 pound cow from the 1 st floor of the Smith Building to the 4 th floor. Think of two different pathways Another silly way? Which pathway has the lowest energy? C. Do catalysts speed up the rate of the reverse rxn too? Look at the reaction coordinate diagram. What components of the diagram relate to kinetics? Page9

Any thoughts about the chemical reaction type in this video? A. Reaction Rates. Do speed analogy to understand rates in general.

Any thoughts about the chemical reaction type in this video? A. Reaction Rates. Do speed analogy to understand rates in general. Chemical Kinetics Read Chapter 5: p160-162 Problems: 5.81, 5.85, 5.87, 5.89 We will look at: 1. numerical descriptions of how fast reactions (rxns.) occur 2. the intermediates that form during a rxn (re.

More information

Chapter 12, Chemical Kinetics

Chapter 12, Chemical Kinetics Chapter 12, Chemical Kinetics This chapter is about: 1. numerical descriptions of how fast rxns. occur 2. the intermediates that form during a rxn (re. mechanism) 3. applying thermodynamics & the kinetic

More information

Chapter 12, Chemical Kinetics

Chapter 12, Chemical Kinetics Chapter 12, Chemical Kinetics This chapter is about: 1. numerical descriptions of how fast rxns. occur 2. the intermediates that form during a rxn (re. mechanism) 3. applying thermodynamics & the kinetic

More information

General Chemistry I Concepts

General Chemistry I Concepts Chemical Kinetics Chemical Kinetics The Rate of a Reaction (14.1) The Rate Law (14.2) Relation Between Reactant Concentration and Time (14.3) Activation Energy and Temperature Dependence of Rate Constants

More information

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions 14.1 Focusing on Reaction Rate 14.2 Expressing the Reaction Rate 14.3 The Rate Law and Its Components 14.4 Integrated Rate Laws: Concentration

More information

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill Notes 1.1 Exothermic reactions give off heat 120 100 80 60 40 20 0 0 2 4 6 Heat Content Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

B. Activation Energy: Ea

B. Activation Energy: Ea B. Activation Energy: Ea a) Example reaction: the burning of charcoal in the BBQ C (s) + O 2(g) CO 2 (remember, burning is VERY exothermic) Question: Will charcoal in your BBQ spontaneously catch fire?

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

AP CHEMISTRY CHAPTER 12 KINETICS

AP CHEMISTRY CHAPTER 12 KINETICS AP CHEMISTRY CHAPTER 12 KINETICS Thermodynamics tells us if a reaction can occur. Kinetics tells us how quickly the reaction occurs. Some reactions that are thermodynamically feasible are kinetically so

More information

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions

Shroud of Turin. Chemical Kinetics. Reaction Rates. Reaction Rates. Reaction Rates. Chemical Kinetics: The Rates of Chemical Reactions Page III-12-1 / Chapter Twelve Lecture Notes Chemical Kinetics: The Rates of Chemical Reactions Chapter 12 Chemistry 222 Professor Michael Russell Shroud of Turin Shroud of Jesus?!? Fake or Real? Explored

More information

Chapter 22. Reaction Rate & Chemical Equilibrium

Chapter 22. Reaction Rate & Chemical Equilibrium Chapter 22 Reaction Rate & Chemical Equilibrium Stability of Compounds! In 2 TiO 2 Ti + O 2 n Overall energy change is (+) w does not spontaneously decompose @ room temp. n Thermodynamically Stable Stability

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Kinetics is the study of of chemical reactions and the by which they occur.

Kinetics is the study of of chemical reactions and the by which they occur. Kinetics is the study of of chemical reactions and the by which they occur. tells us if a reaction can occur while tells us how quickly the reaction occurs some reactions that are thermodynamically feasible

More information

Kinetics & Equilibrium

Kinetics & Equilibrium Kinetics & Equilibrium Name: Essential Questions How can one explain the structure, properties, and interactions of matter? Learning Objectives Explain Collision Theory Molecules must collide in order

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will:

Lecture 22: The Arrhenius Equation and reaction mechanisms. As we wrap up kinetics we will: As we wrap up kinetics we will: Lecture 22: The Arrhenius Equation and reaction mechanisms. Briefly summarize the differential and integrated rate law equations for 0, 1 and 2 order reaction Learn how

More information

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2

Ch part 2.notebook. November 30, Ch 12 Kinetics Notes part 2 Ch 12 Kinetics Notes part 2 IV. The Effect of Temperature on Reaction Rate Revisited A. According to the kinetic molecular theory of gases, the average kinetic energy of a collection of gas molecules is

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide Reaction Rates A little review from our thermodynamics unit Collision Theory Higher Temp. Higher Speeds More high-energy collisions More collisions that break bonds Faster Reaction In order for a reaction

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

DO NOT WRITE ON THIS PAGE

DO NOT WRITE ON THIS PAGE PART A: MULTIPLE CHOICE AND MATCHING (24 KU) 1. A rate of reaction is usually obtained by measuring a. the rate at which products are consumed b. the rate at which reactants are produced c. the rate at

More information

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc. Chapter 13 Lecture Lecture Presentation Chapter 13 Chemical Kinetics Sherril Soman Grand Valley State University Ectotherms Lizards, and other cold-blooded creatures, are ectotherms animals whose body

More information

CHAPTER 12 CHEMICAL KINETICS

CHAPTER 12 CHEMICAL KINETICS 5/9/202 CHAPTER 2 CHEMICAL KINETICS CHM52 GCC Kinetics Some chemical reactions occur almost instantaneously, while others are very slow. Chemical Kinetics - study of factors that affect how fast a reaction

More information

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 30. Chemical Kinetics. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 30 Chemical Kinetics 1 Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chemists have three fundamental questions in mind when they study chemical reactions: 1.) What happens?

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Thermodynamics tells us what can happen and how far towards completion a reaction will proceed. Kinetics tells us how fast the reaction will go. Study of rates of reactions

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

14.1 Expressing the Reaction Rate

14.1 Expressing the Reaction Rate 14.1 Expressing the Reaction Rate Differential Rate and Integrated Rate Laws Fred Omega Garces Chemistry 201 Miramar College 1 Expressing Reaction Rates Outline Kinetics: Intro Factors influencing Reaction

More information

Unit 1. Reaction Kinetics

Unit 1. Reaction Kinetics Unit 1. Reaction Kinetics Given: That butane takes less energy input to burn than a nacho chip; draw the graph of the reaction for both items. Reaction kinetics is the study of the rates and the factors,

More information

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2

a. rate = k[no] 2 b. rate = k([no][o 2 ] c. rate = k[no 2 ] 2 [NO] -2 [O 2 ] -1/2 d. rate = k[no] 2 [O 2 ] 2 e. rate = k([no][o 2 ]) 2 General Chemistry III 1046 E Exam 1 1. Cyclobutane, C 4 H 8, decomposes as shown: C 4 H 8 (g)! 2 C 2 H 4 (g). In the course of a study of this reaction, the rate of consumption of C 4 H 8 at a certain

More information

Calculations In Chemistry

Calculations In Chemistry Calculations In Chemistry Module 27 Kinetics: Rate Laws Module 27 Kinetics: Rate Laws...773 Lesson 27A: Kinetics Fundamentals...771 Lesson 27B: Rate Laws...778 Lesson 27C: Integrated Rate Law --Zero Order...787

More information

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Kinetics Dependence of rate on Concentration (RATE LAW) Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Mary J. Bojan Chem 112 1 A MECHANISM

More information

Chapter 14, Chemical Kinetics

Chapter 14, Chemical Kinetics Last wee we covered the following material: Review Vapor Pressure with two volatile components Chapter 14, Chemical Kinetics (continued) Quizzes next wee will be on Chap 14 through section 14.5. 13.6 Colloids

More information

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood?

Surface Area (not in book) Reality Check: What burns faster, large or small pieces of wood? Concentration Flammable materials burn faster in pure oxygen than in air because the of O 2 is greater. Hospitals must make sure that no flames are allowed near patients receiving oxygen. Surface Area

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics Chapter 14: Chemical Kinetics NOTE THIS CHAPTER IS #2 TOP TOPICS ON AP EXAM!!! NOT ONLY DO YOU NEED TO FOCUS ON THEORY (and lots of MATH) BUT YOU MUST READ THE FIGURES TOO!!! Ch 14.1 ~ Factors that Affect

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium

Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium Chapter 16, Thermodynamics: Entropy, Free Energy, and Equilibrium We have another shift in our study of chemistry in this chapter. Now we want to learn why some reactions proceed almost completely to products

More information

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License

Calculating Rates of Substances. Rates of Substances. Ch. 12: Kinetics 12/14/2017. Creative Commons License Ch. 2: Kinetics An agama lizard basks in the sun. As its body warms, the chemical reactions of its metabolism speed up. Chemistry: OpenStax Creative Commons License Images and tables in this file have

More information

Collision Theory and Rate of Reaction. Sunday, April 15, 18

Collision Theory and Rate of Reaction. Sunday, April 15, 18 Collision Theory and Rate of Reaction Collision Theory System consists of particles in constant motion at speed proportional to temperature of sample Chemical reaction must involve collisions of particles

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Controlling the Rate E a Page 1 of 18 Learning Outcomes Controlling the Rate Circle a face to show how much understanding you have

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object.

HEAT, TEMPERATURE, & THERMAL ENERGY. Work - is done when an object is moved through a distance by a force acting on the object. HEAT, TEMPERATURE, & THERMAL ENERGY Energy A property of matter describing the ability to do work. Work - is done when an object is moved through a distance by a force acting on the object. Kinetic Energy

More information

The first assumption we will put into our theory of kinetics is that two molecules must collide for a reaction to occur between them.

The first assumption we will put into our theory of kinetics is that two molecules must collide for a reaction to occur between them. Chapter 18 Chemical Kinetics: Mechanisms In the last chapter we went through the mechanics of how you extract rate constants and order parameters from experimental data. In this chapter we will ge tthe

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur?

11/9/2012 CHEMICAL REACTIONS. 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS LECTURE 11: CHEMICAL KINETICS 1. Will the reaction occur? 2. How far will the reaction proceed? 3. How fast will the reaction occur? CHEMICAL REACTIONS C(s, diamond) C(s, graphite) G

More information

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need)

Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Lecture 19: Introduction to Kinetics First a CH 302 Kinetics Study Guide (Memorize these first three pages, they are all the background you need) Reaction Rate: The most important issue in kinetics is

More information

16 Kinetics. CH 302 Kinetics Study Guide (Memorize these two pages, they are all the background you need)

16 Kinetics. CH 302 Kinetics Study Guide (Memorize these two pages, they are all the background you need) 16 Kinetics CH 302 Kinetics Study Guide (Memorize these two pages, they are all the background you need) Reaction Rate: The most important issue in kinetics is a determination of the rate of a reaction

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up)

Part One: Reaction Rates. 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) A. Chemical Kinetics deals with: CHAPTER 13: RATES OF REACTION Part One: Reaction Rates 1. Rates of chemical reactions. (how fast products are formed and/or reactants are used up) 2. Mechanisms of chemical

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

We can csalculate the MASS FRACTION of each component, then multiply the mass fraction by 56 g (the sample's actual mass) to get the mass of each

We can csalculate the MASS FRACTION of each component, then multiply the mass fraction by 56 g (the sample's actual mass) to get the mass of each 87 We can csalculate the MASS FRACTION of each component, then multiply the mass fraction by 56 g (the sample's actual mass) to get the mass of each component. 88 Commercial sulfuric acid (98% by mass)

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time.

Kinetics. Mary J. Bojan Chem Rate: change that occurs in a given interval of time. Kinetics Rates of reaction average rates instantaneous rates Dependence of rate on concentration rate constant rate laws order of the reaction Dependence of rate on time First order Second order Half-life

More information

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics A. Chemical Kinetics - chemistry of reaction rates 1. Reaction Rates a. Reaction rate- the change in concentration

More information

Chemistry 12 Unit I Reaction Kinetics Study Guide

Chemistry 12 Unit I Reaction Kinetics Study Guide Chemistry 12 Unit I Reaction Kinetics Study Guide I.1 - Introduction: Reaction kinetics is the study of rates (speeds) of chemical reactions and the factors affect them. Rates of reaction are usually expressed

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

v AB + C à AC + B Ø Bonds breaking

v AB + C à AC + B Ø Bonds breaking Chemistry Study Guide 3 v Kinetics reaction rates Ø Catalyst Ø Temperature Ø Concentration Ø Bonds Ø Surface area v Kinetics Ø Kinetic energy is directly proportional to the temperature Ø Gasses will react

More information

Chapter 14. Chemical Kinetics

Chapter 14. Chemical Kinetics Chapter 14. Chemical Kinetics Common Student Misconceptions It is possible for mathematics to get in the way of some students understanding of the chemistry of this chapter. Students often assume that

More information

CHEM Chemical Kinetics. & Transition State Theory

CHEM Chemical Kinetics. & Transition State Theory Chemical Kinetics Collision Theory Collision Theory & Transition State Theory The rate of reaction is markedly affected by temperature. k versus T Ae E a k RT Two theories were developed to explain the

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

Lecture 2. Review of Basic Concepts

Lecture 2. Review of Basic Concepts Lecture 2 Review of Basic Concepts Thermochemistry Enthalpy H heat content H Changes with all physical and chemical changes H Standard enthalpy (25 C, 1 atm) (H=O for all elements in their standard forms

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Kinetics. Reaction rates/mechanisms Collision Theory Rate Expression Activation Energy

Kinetics. Reaction rates/mechanisms Collision Theory Rate Expression Activation Energy Kinetics Reaction rates/mechanisms Collision Theory Rate Expression Activation Energy Rates of Reaction: time vs. rate - what s the difference? units of each? time - seconds rate - 1/seconds reaction rate

More information

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow.

Part One: Reaction Rates. 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically very slow. CHAPTER 13: RATES OF REACTION Part One: Reaction Rates A. Chemical Kinetics deals with: 1. 2. B. Importance: 1. Even though a reaction is thermodynamically favorable it may not occur at all if it is kinetically

More information

Unit I: Reaction Kinetics Introduction:

Unit I: Reaction Kinetics Introduction: Chemistry 12 Unit I: Reaction Kinetics Introduction: Kinetics Definition: All reactions occur at different rates Examples: Slow Reactions Fast Reactions Chemists need to understand kinetics because sometimes

More information

Rates of Chemical Reactions

Rates of Chemical Reactions Rates of Chemical Reactions Jim Birk 12-1 Questions for Consideration 1. What conditions affect reaction rates? 2. How do molecular collisions explain chemical reactions? 3. How do concentration, temperature,

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

In a forward reaction, the reactants collide to produce products and it goes from left to

In a forward reaction, the reactants collide to produce products and it goes from left to Worksheet #1 Approaching Equilibrium Read unit II your textbook. Answer all of the questions. Do not start the questions until you have completed the reading. Be prepared to discuss your answers next period.

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Balancing Equations. Reactants: Zn + I 2 Product: Zn I 2

Balancing Equations. Reactants: Zn + I 2 Product: Zn I 2 Balancing Equations 1 Reactants: Zn + I 2 Product: Zn I 2 2 Chemical Equations Their Job: Depict the kind of reactants and products and their relative amounts in a reaction. 4 Al (s) + 3 O 2 (g) ---> 2

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

The Concept of Equilibrium

The Concept of Equilibrium Chemical Equilibrium The Concept of Equilibrium Sometimes you can visually observe a certain chemical reaction. A reaction may produce a gas or a color change and you can follow the progress of the reaction

More information

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy

Thermodynamics. Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy Thermodynamics Thermodynamically favored reactions ( spontaneous ) Enthalpy Entropy Free energy 1 Thermodynamically Favored Processes Water flows downhill. Sugar dissolves in coffee. Heat flows from hot

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemical Equilibrium You may have gotten the impression that when you mix two reactants together, the ensuing reaction goes to completion. In other words, the reactants are converted completely

More information

Physics is about finding the simplest and least complicated explanation for things.

Physics is about finding the simplest and least complicated explanation for things. WHAT IS PHYSICS Physics is about finding the simplest and least complicated explanation for things. It is about observing how things work and finding the connections between cause and effect that explain

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium Chapter 10 Earlier we looked at chemical reactions and determined the amounts of substances that react and the products that form. Now we are interested in how fast

More information

and Chemical Equilibrium Reaction Rates

and Chemical Equilibrium Reaction Rates Reaction Rates and Chemical Equilibrium Chapter 10 If we know how fast a medication acts on the body, we can adjust the time over which the medication is taken. In construction, substances are added to

More information

Reaction Rates and Chemical Equilibrium. Chapter 10

Reaction Rates and Chemical Equilibrium. Chapter 10 Reaction Rates and Chemical Equilibrium Chapter 10 Earlier we looked at chemical reactions and determined the amounts of substances that react and the products that form. Now we are interested in how fast

More information

Thermochemistry, Reaction Rates, & Equillibrium

Thermochemistry, Reaction Rates, & Equillibrium Thermochemistry, Reaction Rates, & Equillibrium Reaction Rates The rate at which chemical reactions occur Reaction Rates RXN rate = rate at which reactants change into products over time. This tells you

More information

Notes: Unit 10 Kinetics and Equilibrium

Notes: Unit 10 Kinetics and Equilibrium Name: Regents Chemistry: Mr. Palermo Notes: Unit 10 Kinetics and Equilibrium Name: KEY IDEAS Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

Chapter 17. Equilibrium

Chapter 17. Equilibrium Chapter 17 Equilibrium How Chemical Reactions Occur Chemists believe molecules react by colliding with each other. If a collision is violent enough to break bonds, new bonds can form. Consider the following

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 2 Chemical Kinetics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

Formulate an operational definition of reaction rate. Include: examples of chemical reactions that occur at different rates.

Formulate an operational definition of reaction rate. Include: examples of chemical reactions that occur at different rates. Kinetics 1 UNIT 2: KINETICS OUTCOMES All important vocabulary is in Italics and bold. Formulate an operational definition of reaction rate. Include: examples of chemical reactions that occur at different

More information

10.01 Kinetics. Dr. Fred Omega Garces. What determines the speed of a reaction? Chemistry 100. Miramar College. 1 Kinetics and Equilibrium

10.01 Kinetics. Dr. Fred Omega Garces. What determines the speed of a reaction? Chemistry 100. Miramar College. 1 Kinetics and Equilibrium 10.01 Kinetics What determines the speed of a reaction? Dr. Fred Omega Garces Chemistry 100 Miramar College 1 Kinetics and Equilibrium Kinetics and Equilibrium Kinetics is a concept that address, how fast

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information