Amalendu Chandra. Department of Chemistry and Computer Centre.

Size: px
Start display at page:

Download "Amalendu Chandra. Department of Chemistry and Computer Centre."

Transcription

1 Molecular Simulations and Amalendu Chandra Department of Chemistry and Computer Centre IIT Kanpur

2

3 Computer Centre HPC Facility at CC Old machines: Two linux clusters with 146 dual-cpu compute nodes (292 cores) connected over Gigabit network. Environment - Parallel as well as sequential on open source OS New machines: An HPC facility of about 3000 cores with high speed interconnect GPU servers, high-end workstations

4 Why HPC? To solve complex problems in science and engineering Higher resolution simulations for longer time Sometimes experiments cannot be done!! Computational experiments can be used to simulate extreme conditions Vast expertise in Numerical Methods

5 Applications Hardware Basic science HPC Support Systems Visualization Numerical algorithms A large number of faculty members across various disciplines are involved in computing

6 HPC Multiscale, Adaptive Finite Element Methods using Domain Decomposition Flow Past Bodies with Complex Geometry and Corners Flow Induced Vibrations Analysis of Aircraft Structures Virtual Reality Computational Chemistry Nanoblock Self Assembly Molecular Simulation (Molecular Dynamics & Monte Carlo Methods) Statistical Thermodynamics Geometric Optimization of Large Organic Systems Electronic Structure Calculations Aggregation and Etching Quantum Simulations Thin Film Dynamics Optical / EM Field Calculations Parallel Spectral Element Methods Large Eddy Simulation of Turbulence Vortex Dominated Flows and Heat Transfer Pseudo-spectral Turbulence Simulations Geo-seismic Prospecting Enhanced Oil Recovery Stress Analysis and Composite Materials Vibration and Control Semiconductor Physics, Feynman Integrals Thermal and Hydraulic Turbomachinery Numerical Weather Prediction Turbulence Modelling through RANS Neural Networks Impurities in Anti-Ferro Magnets Raman Scattering Spin Fluctuation in Quantum Magnets Robotics Multi-Body Dynamics Computer Aided Tomography Nuclear Magnetic Resonance

7 The New HPC Setup The Main Cluster: 260 nodes Dual proc; Nehalem Quad core Smaller Test Clusters Dual proc, Nehalem Quad core Servers Nehalem Quadcore/GPU HPC Disk 100 TB storage Infiniband Network (40 Gbps) Visualization Lab High end graphics W/S

8 System Integration Connection with IITK network Linux cluster (260 nodes) GB switches compute nodes Mstr Mgmt Mgmt Mgmt Comp Comp Comp GB switch IB switch layer servers (Multi-node) Switch Smaller Test Clusters comp Comp compute nodes Comp Storage 100 TB disk 8 GB switch

9 New HPC Facility at IITK The integrated facility has a total of 372 nodes and a performance of ~ 30 TF. Ranks 369 globally DST, IITK

10 Goals: High-end research on different areas of computational science and engineering Computational Mechanics Computational Materials Computational Chemistry and Biology

11 A HUB for Collaborative Research HCRI, Alld Alld U Delhi U BHU SGPIMS, LKW AMU Aligarh HPC Centre IITK CDRI, LKW JNU IIIT, Alld MNNIT Allahabad Lucknow Univ Kanpur Univ + HBTI

12 Training and workshops Visitors program Summer schools/workshops International/national conferences HPC users meeting Future plans Academic Programs on HPC in Science and Engineering

13 Molecular lar Simulations

14 Molecular Simulations: Real System Experiment Experimental Results Test of Model Model System Simulation Essentially Exact Results for Model Test of Theory Theory Theoretical Results

15 Basic methods: Molecular l dynamics: Generate configurations from dynamical evolution of atoms Monte Carlo: Generate configurations using random numbers Molecular Dynamics How do you get V? Construct Global potential energy surface from QM calculations. If 10 points are used along each degree of freedom Total number of calculation would be ~ 10 3N!

16 Reduction of dimensionality Write the full many-body potential in the following form The one-body term can be set to zero. Ignore 3 and higher order terms. 3 2 = Pair interaction potential. Find it from quantum electronic structure calculations. For better results, 2 effective 2 Empirical pair potential

17 Pair Potential Approach Solves dimensionality bottleneck problem in constructing the global potential energy surface. But 1. Fails to describe processes where electronic degrees of freedom play active roles. 2. Same pair potential is used in all thermodynamic conditions (usually not accurate) 3. Cooperative or many-body effects can be important Systems where these are not issues Use empirical pair potentials (MM) => Classical simulations Empirical Force Fields

18 Ignores electronic degrees of freedom Calculates energy as a function of nuclear positions only Many of the molecular force fields in use today can be interpreted in terms of a relatively simple five-component picture of the intra and inter-molecular l interactions. ti V( r N ) = Bond stretching + Bond bending + Bond rotation (torsion) + Non-bonded interactions Electrostatic van der Waals Ref. A. R. Leach, Molecular Modelling, Addison Wesley Longman (1998)

19 Simple water models The simple water models use between 3-5 interaction sites and a rigid water geometry SPC SPC/E TIP3P BF TIP4P ST2 r(oh), Å HOH,deg A 10 3,, kcal Å 12 /mol C,Kcal Å 6 /mol q(o) q(h) q(m) r(om), Å Dipole moment D For another successful model see: A. Chandra and T. Ichiye, J. Chem. Phys. 111, 2701 (1999)

20 Ab initio Molecular Simulations Empirical pair potentials 1. Fail to describe processes where electronic degrees of freedom play active roles. 2. Same pair potentials are used in all thermodynamic conditions (usually not accurate) 3. Cooperative or many-body effects can be important Systems where these are significant issues, calculate the fullmany-body potential from quantum mechanical calculation by considering the system at the level of electrons, protons, neutrons (QM). Ab i iti i l ti > 10 5 ti i Ab initiosimulations => 10 5 times more expensive computationally

21 Ab initio Molecular Dynamics : Forces are calculated from electronic structure calculation that are performed on-the-fly as the MD trajectory is generated. Car-Parrinello Method: R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471 (1985)

22 Hybrid Quamtum-Classical Molecular Simulations Classical simulations using empirical pair potentials are computationally efficient But 1. Fails to describe processes where electronic degrees of freedom play active roles. 2. Same pair potential is used in all thermodynamic conditions (usually not accurate) 3. Cooperative or many-body effects can be important Where these are not issues Use classical simulations (MM) Otherwise, use ab initio simulations (QM) Systems having both issues & not issues QM + MM

23 Hybrid Quantum-Classical (QM/MM) Method S I (QM) O (MM) I-Inner subsystem, O-Outer subsystem

24 The QM/MM Energy Schemes Subtractive QM/MM scheme sub EQM / MM ( S) EMM ( S) EQM ( I L) EMM ( I L) Additive QM/MM scheme add EQM / MM EMM ( O) EQM ( I L) EQM MM ( I, O) E QM-MM ( I,O) term defines a particular QM/MM method vdw el b E ( I, O) E E E QM MM QM MM QM MM QM MM Bonding Van der Waals Electrostatic Interaction Interaction Interaction

25 Summary

26 Some Applications Hd Hydrogen bond dfluctuations in water and aqueous solutions A. Chandra and coworkers, Phys. Rev. Lett. (2000), J. Chem. Phys. (2008), J. Phys. Chem. A (2008)

27 Vibrational spectral diffusion in water Frequency vs hydrogen bond distance (pure D 2 O) B.S. Mallik, A. Semparithi and A. Chandra, J. Phys. Chem. A (2008) 16 P4 processors used for 3 months for 100 ps trajectory

28 Dynamics after hole creation: Excitation in blue/red Calculated Calculated Experiments: G.M. Gale et al PRL, 82, 1068 (1999)

29 Supercritical water, ammonia and solutions: ScH 2 O 673K/ K/ K/ K/ A.K Soper et al., JCP, 106, 249 (1996)

30 Supercritical water B.S. Mallik and A. Chandra J. Phys. Chem. A (2008)

31 Excess electrons and metal atoms in liquids and clusters consisting of water and ammonia molecules Pratihar and Chandra, J. Chem. Phys. (2007, 2008, 2010), J. Phys. Chem. A (2010).

32 Ab initio MD of excess electron in water cluster at 150K S. Pratihar and A. Chandra, J. Phys. Chem. A (2010, in press).

33 Photoelectron spectra (calculated) Experimental M. A. Johnson et. al., J. Phys. Chem. A 2005, 109, 7896

34 Metallic lithium-ammonia solutions

35 Metallic lithium-ammonia solution Calculations took 2.5 years using 16 processors at IITK and 24 processors in Bochum, Germany A. Chandra and D. Marx A. Chandra and D. Marx Angew Chemie Int Ed (2006)

36 Proton transfer in water

37 D H3 O + = 9.31x10-5 cm 2 /s Mobility of H id O + in liquid water D H2 O = 2.30x10 cm /s Mobility of OH - in liquid water D OH_ = 5.3x10-5 cm 2 /s A.Chandra, M. Tuckerman and D.Marx, Phys. Rev. Lett. (2007); Chem. Rev. (2010). Also see, M.E. Tuckerman, D.Marx and M. Parrinello, Nature, 417, 925 (2002)

38 Proton transfer in water monolayers and chains How do the mechanism and rate of proton transfer in one and two dimensions differ from those in liquid water? A. Bankura and A. Chandra (to be published)

39 Confinement induced water structures inside single walled carbon nanotubes d = 8.1 Å d = 10.8 Å d = 13.6 Å d = 16.3 Å d = 19.0 Å

40 Ab initio molecular dynamics of water-ccl 4 interface The hydrogen bonding environment of interfacial water molecules can be very different from bulk water.

41 Vibrational Power Spectrum

42 The probability distribution of the nearest H and Cl distances at interface

43 Some outstanding problems > Chemical reactions at surfaces and interfaces > Control of chemical reactions under extreme conditions Reaction pathways of heterogeneous catalytic and enzymatic reactions Quantum effects in chemical processes in large macroscopic systems Real time quantum dynamics in many-body quantum potentials at finite temperature

44 Support from: DST, CSIR, BRNS, MCIT, INSA, AvH, IITK

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials Bull. Mater. Sci., Vol. 31, No. 3, June 2008, pp. 525 532. Indian Academy of Sciences. Water structure near single and multi-layer nanoscopic hydrophobic plates of varying separation and interaction potentials

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

Reactive Empirical Force Fields

Reactive Empirical Force Fields Reactive Empirical Force Fields Jason Quenneville jasonq@lanl.gov X-1: Solid Mechanics, EOS and Materials Properties Applied Physics Division Los Alamos National Laboratory Timothy C. Germann, Los Alamos

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Interaction Induced Localisation of Protons Temperature and Superfluid Helium Solvation Effects Łukasz Walewski Ruhr-University Bochum

Interaction Induced Localisation of Protons Temperature and Superfluid Helium Solvation Effects Łukasz Walewski Ruhr-University Bochum Interaction Induced Localisation of Protons Temperature and Superfluid Helium Solvation Effects Łukasz Walewski Ruhr-University Bochum VI Workshop in Electronvolt Neutron Spectroscopy, Abingdon 2014 Interaction

More information

New Models for Aqueous Systems: Construction of Vibrational Wave Functions for use in Monte Carlo Simulations.

New Models for Aqueous Systems: Construction of Vibrational Wave Functions for use in Monte Carlo Simulations. New Models for Aqueous Systems: Construction of Vibrational Wave Functions for use in Monte Carlo Simulations. Maria A. Gomez and Lawrence R. Pratt T-12 and CNLS Theoretical Division Los Alamos National

More information

GPU Computing Activities in KISTI

GPU Computing Activities in KISTI International Advanced Research Workshop on High Performance Computing, Grids and Clouds 2010 June 21~June 25 2010, Cetraro, Italy HPC Infrastructure and GPU Computing Activities in KISTI Hongsuk Yi hsyi@kisti.re.kr

More information

Stochastic Modelling of Electron Transport on different HPC architectures

Stochastic Modelling of Electron Transport on different HPC architectures Stochastic Modelling of Electron Transport on different HPC architectures www.hp-see.eu E. Atanassov, T. Gurov, A. Karaivan ova Institute of Information and Communication Technologies Bulgarian Academy

More information

Ab-initio molecular dynamics: from the basics up to quantum effects Roberto Car Princeton University

Ab-initio molecular dynamics: from the basics up to quantum effects Roberto Car Princeton University Ab-initio molecular dynamics: from the basics up to quantum effects Roberto Car Princeton University Hands-on Tutorial Workshop on Ab-Initio Molecular Simulations, Fritz- Haber-Institut, Berlin, July 12-21,

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Water models in classical simulations

Water models in classical simulations Water models in classical simulations Maria Fyta Institut für Computerphysik, Universität Stuttgart Stuttgart, Germany Water transparent, odorless, tasteless and ubiquitous really simple: two H atoms attached

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES

MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES MOLECULAR DYNAMIC SIMULATION OF WATER VAPOR INTERACTION WITH VARIOUS TYPES OF PORES USING HYBRID COMPUTING STRUCTURES V.V. Korenkov 1,3, a, E.G. Nikonov 1, b, M. Popovičová 2, с 1 Joint Institute for Nuclear

More information

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Self-organisation on noble metal surfaces Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris Collaborations Alexandre Dmitriev, Nian Lin, Johannes Barth, Klaus Kern,... Thomas Greber, Jürg

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 09 Quantum Mechanics/Molecular Mechanics (QM/MM) Techniques Fundamentals of Sustainable Technology These notes created by David Keffer, University of Tennessee, Knoxville,

More information

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation

CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation CCSD(T) benchmarks of non-equilibrium water clusters: the importance of monomer deformation Biswajit Santra 1, Angelos Michaelides 1,2, and Matthias Scheffler 1 1 Fritz-Haber-Institut der MPG, Berlin,

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

6 Hydrophobic interactions

6 Hydrophobic interactions The Physics and Chemistry of Water 6 Hydrophobic interactions A non-polar molecule in water disrupts the H- bond structure by forcing some water molecules to give up their hydrogen bonds. As a result,

More information

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components

Quantum Chemical Calculations by Parallel Computer from Commodity PC Components Nonlinear Analysis: Modelling and Control, 2007, Vol. 12, No. 4, 461 468 Quantum Chemical Calculations by Parallel Computer from Commodity PC Components S. Bekešienė 1, S. Sėrikovienė 2 1 Institute of

More information

Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model

Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model 1154 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 8 Song Hi Lee Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model Song Hi Lee Department of Chemistry, Kyungsung University,

More information

Institute for Functional Imaging of Materials (IFIM)

Institute for Functional Imaging of Materials (IFIM) Institute for Functional Imaging of Materials (IFIM) Sergei V. Kalinin Guiding the design of materials tailored for functionality Dynamic matter: information dimension Static matter Functional matter Imaging

More information

Modelação e Simulação de Sistemas para Micro/Nano Tecnologias

Modelação e Simulação de Sistemas para Micro/Nano Tecnologias Modelação e Simulação de Sistemas para Micro/Nano Tecnologias http://gec.di.uminho.pt/mmnt/modsim/ Alberto José Proença, António Joaquim Esteves 2011/12 Mestrado em Micro/Nano Tecnologias ESCOLA DE ENGENHARIA

More information

Introduction to Benchmark Test for Multi-scale Computational Materials Software

Introduction to Benchmark Test for Multi-scale Computational Materials Software Introduction to Benchmark Test for Multi-scale Computational Materials Software Shun Xu*, Jian Zhang, Zhong Jin xushun@sccas.cn Computer Network Information Center Chinese Academy of Sciences (IPCC member)

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

A Data Communication Reliability and Trustability Study for Cluster Computing

A Data Communication Reliability and Trustability Study for Cluster Computing A Data Communication Reliability and Trustability Study for Cluster Computing Speaker: Eduardo Colmenares Midwestern State University Wichita Falls, TX HPC Introduction Relevant to a variety of sciences,

More information

Large-Scale Molecular Dynamics Simulations on Parallel Clusters

Large-Scale Molecular Dynamics Simulations on Parallel Clusters Parallel Numerics 05, 223-231 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.) Chapter 7: Systems and Simulation ISBN 961-6303-67-8 Large-Scale Molecular Dynamics Simulations on Parallel Clusters Dušanka

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Michael W. Mahoney Department of Physics, Yale University, New Haven, Connecticut 06520

Michael W. Mahoney Department of Physics, Yale University, New Haven, Connecticut 06520 JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 23 15 DECEMBER 2001 Quantum, intramolecular flexibility, and polarizability effects on the reproduction of the density anomaly of liquid water by simple potential

More information

Subject of the Lecture:

Subject of the Lecture: Subject of the Lecture: Conceptual basis for the development of force fields. Implementation/validation Water - a worked example Extensions - combining molecular mechanics and quantum mechanics (QM/MM)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy Igor V. Stiopkin, 1,2 Champika Weeraman, 1,3 Piotr A. Pieniazek, 4 Fadel Y. Shalhout, 1,5 James L. Skinner, 4 and Alexander

More information

SIMCON - Computer Simulation of Condensed Matter

SIMCON - Computer Simulation of Condensed Matter Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2017 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

A new extension of QM/MM methods: the adaptive buffered-force QM/MM method

A new extension of QM/MM methods: the adaptive buffered-force QM/MM method A new extension of QM/MM methods: the adaptive buffered-force QM/MM method Letif Mones Engineering Department, University of Cambridge lam81@cam.ac.uk Overview Basic concept of the QM/MM methods MM vs.

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Statistical Mechanics for Proteins

Statistical Mechanics for Proteins The Partition Function From Q all relevant thermodynamic properties can be obtained by differentiation of the free energy F: = kt q p E q pd d h T V Q ), ( exp 1! 1 ),, ( 3 3 3 ),, ( ln ),, ( T V Q kt

More information

Using Molecular Dynamics to Compute Properties CHEM 430

Using Molecular Dynamics to Compute Properties CHEM 430 Using Molecular Dynamics to Compute Properties CHEM 43 Heat Capacity and Energy Fluctuations Running an MD Simulation Equilibration Phase Before data-collection and results can be analyzed the system

More information

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010 All-atom Molecular Mechanics Trent E. Balius AMS 535 / CHE 535 09/27/2010 Outline Molecular models Molecular mechanics Force Fields Potential energy function functional form parameters and parameterization

More information

Ab initio molecular dynamics

Ab initio molecular dynamics Ab initio molecular dynamics Kari Laasonen, Physical Chemistry, Aalto University, Espoo, Finland (Atte Sillanpää, Jaakko Saukkoriipi, Giorgio Lanzani, University of Oulu) Computational chemistry is a field

More information

DFT modeling of novel materials for hydrogen storage

DFT modeling of novel materials for hydrogen storage DFT modeling of novel materials for hydrogen storage Tejs Vegge 1, J Voss 1,2, Q Shi 1, HS Jacobsen 1, JS Hummelshøj 1,2, AS Pedersen 1, JK Nørskov 2 1 Materials Research Department, Risø National Laboratory,

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

Benchmark of the CPMD code on CRESCO HPC Facilities for Numerical Simulation of a Magnesium Nanoparticle.

Benchmark of the CPMD code on CRESCO HPC Facilities for Numerical Simulation of a Magnesium Nanoparticle. Benchmark of the CPMD code on CRESCO HPC Facilities for Numerical Simulation of a Magnesium Nanoparticle. Simone Giusepponi a), Massimo Celino b), Salvatore Podda a), Giovanni Bracco a), Silvio Migliori

More information

Supporting Online Materials: Nature of proton. transport in a water-filled carbon nanotube and in. liquid water

Supporting Online Materials: Nature of proton. transport in a water-filled carbon nanotube and in. liquid water Supporting Online Materials: Nature of proton transport in a water-filled carbon nanotube and in liquid water Ji Chen, Xin-Zheng Li,,, Qianfan Zhang, Angelos Michaelides, and Enge Wang, ICQM and School

More information

Investigation of an Unusual Phase Transition Freezing on heating of liquid solution

Investigation of an Unusual Phase Transition Freezing on heating of liquid solution Investigation of an Unusual Phase Transition Freezing on heating of liquid solution Calin Gabriel Floare National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania Max von

More information

Muons in Chemistry Training School Dr N J Clayden School of Chemistry University of East Anglia Norwich

Muons in Chemistry Training School Dr N J Clayden School of Chemistry University of East Anglia Norwich Muons in Chemistry Training School 2014 Dr N J Clayden School of Chemistry University of East Anglia Norwich Why use muons? Extrinsic probe (Mu +, Mu, muoniated radical) Intrinsic interest Framing of the

More information

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Petr Pracna J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic, Prague ZiF Cooperation

More information

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the Insights on Interfacial Structure, Dynamics and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface Aashish Tuladhar, Stefan M. Piontek,

More information

Cleaner Car Exhausts Using Ion-Exchanged Zeolites: Insights From Atomistic Simulations

Cleaner Car Exhausts Using Ion-Exchanged Zeolites: Insights From Atomistic Simulations CLEERS conference, Ann Arbor, Michigan 20 th September 2018 Cleaner Car Exhausts Using Ion-Exchanged Zeolites: Insights From Atomistic Simulations A Combined Quasi Elastic Neutron Scattering (QENS) and

More information

JASS Modeling and visualization of molecular dynamic processes

JASS Modeling and visualization of molecular dynamic processes JASS 2009 Konstantin Shefov Modeling and visualization of molecular dynamic processes St Petersburg State University, Physics faculty, Department of Computational Physics Supervisor PhD Stepanova Margarita

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1

Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1 Fernanda C Bononi 1, Ted Hullar 2, Cort Anastasio 2, Davide Donadio 1 1 Department of Chemistry 2 Department of Air, Land and Water Resources UC Davis Ice surface in climate modeling: sea water ice polar

More information

74 these states cannot be reliably obtained from experiments. In addition, the barriers between the local minima can also not be obtained reliably fro

74 these states cannot be reliably obtained from experiments. In addition, the barriers between the local minima can also not be obtained reliably fro 73 Chapter 5 Development of Adiabatic Force Field for Polyvinyl Chloride (PVC) and Chlorinated PVC (CPVC) 5.1 Introduction Chlorinated polyvinyl chloride has become an important specialty polymer due to

More information

WRF performance tuning for the Intel Woodcrest Processor

WRF performance tuning for the Intel Woodcrest Processor WRF performance tuning for the Intel Woodcrest Processor A. Semenov, T. Kashevarova, P. Mankevich, D. Shkurko, K. Arturov, N. Panov Intel Corp., pr. ak. Lavrentieva 6/1, Novosibirsk, Russia, 630090 {alexander.l.semenov,tamara.p.kashevarova,pavel.v.mankevich,

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Investigations of Freezing Pure Water

Investigations of Freezing Pure Water Investigations of Freezing Pure Water David Meldgin Constanze Kalcher May 2, 2013 Abstract We use a the molecular simulation package LAAMPS to simulate the freezing of water. We analyze the SPC and TIP3P

More information

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy

Advanced Photon-In Photon-Out Hard X-ray Spectroscopy FLS 2010, ICFA Beam Dynamics Workshop, SLAC, Menlo Park, CA, March 2, 2010 ħω ħω e - Advanced Photon-In Photon-Out Hard X-ray Spectroscopy Uwe Bergmann Linac Coherent Light Source SLAC National Accelerator

More information

Electronic structure simulations of water solid interfaces

Electronic structure simulations of water solid interfaces Electronic structure simulations of water solid interfaces Angelos Michaelides London Centre for Nanotechnology & Department of Chemistry, University College London www.chem.ucl.ac.uk/ice Main co-workers:

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions Susan B. Sinnott Department of Materials Science and Engineering Penn State University September 16, 2016

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Theoretische Physik III, Universität Stuttgart, Germany Outline Introduction to polar molecules - quantum melting transition

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1680 On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation Stephan Thürmer, 1 Milan Ončák, 2 Niklas Ottosson, 3 Robert Seidel,

More information

The Fast Multipole Method in molecular dynamics

The Fast Multipole Method in molecular dynamics The Fast Multipole Method in molecular dynamics Berk Hess KTH Royal Institute of Technology, Stockholm, Sweden ADAC6 workshop Zurich, 20-06-2018 Slide BioExcel Slide Molecular Dynamics of biomolecules

More information

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA

Q-Chem 4.0: Expanding the Frontiers. Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem 4.0: Expanding the Frontiers Jing Kong Q-Chem Inc. Pittsburgh, PA Q-Chem: Profile Q-Chem is a high performance quantum chemistry program; Contributed by best quantum chemists from 40 universities

More information

Interaction-induced depolarized light scattering spectra of exohedral complexes of Ne and Ar with fullerenes and nanotubes

Interaction-induced depolarized light scattering spectra of exohedral complexes of Ne and Ar with fullerenes and nanotubes Materials Science-Poland, Vol. 3, No., 005 Interaction-induced depolarized light scattering spectra of exohedral complexes of Ne and Ar with fullerenes and nanotubes Z. DENDZIK *, M. KOŚMIDER, A. DAWID,

More information

MOLECULES. ENERGY LEVELS electronic vibrational rotational

MOLECULES. ENERGY LEVELS electronic vibrational rotational MOLECULES BONDS Ionic: closed shell (+) or open shell (-) Covalent: both open shells neutral ( share e) Other (skip): van der Waals (He-He) Hydrogen bonds (in DNA, proteins, etc) ENERGY LEVELS electronic

More information

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene

Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Supporting information for Polymer interactions with Reduced Graphene Oxide: Van der Waals binding energies of Benzene on defected Graphene Mohamed Hassan, Michael Walter *,,, and Michael Moseler, Freiburg

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Heat capacity of water: a signature of nuclear quantum effects. Abstract

Heat capacity of water: a signature of nuclear quantum effects. Abstract Heat capacity of water: a signature of nuclear quantum effects C. Vega a, M. M. Conde a, C. McBride a, J. L. F. Abascal a, E. G. Noya b, R. Ramirez c and L. M. Sesé d a Departamento de Química Física,

More information

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Supporting Information for Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies Shuntaro Chiba, 1* Tadaomi Furuta, 2 and Seishi

More information

Low-temperature isomers of the water hexamer

Low-temperature isomers of the water hexamer Low-temperature isomers of the water hexamer Volodymyr Babin and Francesco Paesani Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314 Hundreds of years

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Using Web-Based Computations in Organic Chemistry

Using Web-Based Computations in Organic Chemistry 10/30/2017 1 Using Web-Based Computations in Organic Chemistry John Keller UAF Department of Chemistry & Biochemistry The UAF WebMO site Practical aspects of computational chemistry theory and nomenclature

More information

Fundamental Interactions: 6 Forces

Fundamental Interactions: 6 Forces Fundamental Interactions: 6 Forces In nuclear and high-energy physics 6 fundamental forces are recognized, which describe the structure of matter. - the strong interaction - the weak interaction act inside

More information

Supporting Information

Supporting Information Supporting Information Sánchez et al. 10.1073/pnas.1612893114 SI Materials and Methods Growth of Single Crystalline Ice. The single crystal ice boule growth method is based on withdrawing a single crystalline

More information

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride - 1 - PLMMP 2016, Kyiv Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride Jadran Vrabec Tatjana Janzen, Gabriela Guevara-Carrión,

More information

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes

Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes J. At. Mol. Sci. doi: 10.4208/jams.121011.011412a Vol. 3, No. 4, pp. 367-374 November 2012 Theoretical comparative study on hydrogen storage of BC 3 and carbon nanotubes Xiu-Ying Liu a,, Li-Ying Zhang

More information

Renner-Teller Effect in Tetra-Atomic Molecules

Renner-Teller Effect in Tetra-Atomic Molecules Groupe de Chimie Théorique du MSME Renner-Teller Effect in Tetra-Atomic Molecules Laurent Jutier, G. Dhont, H. Khalil and C. Léonard jutier@univ-mlv.fr (non linear) Outline General Presentation Structure

More information

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th

Introduction The gramicidin A (ga) channel forms by head-to-head association of two monomers at their amino termini, one from each bilayer leaflet. Th Abstract When conductive, gramicidin monomers are linked by six hydrogen bonds. To understand the details of dissociation and how the channel transits from a state with 6H bonds to ones with 4H bonds or

More information

CHEM 6343 Advanced Computational Chemistry. Elfi Kraka, 231 FOSC, ext ,

CHEM 6343 Advanced Computational Chemistry. Elfi Kraka, 231 FOSC, ext , CHEM 6343 Advanced Computational Chemistry Class location: Lectures, time and location: Lab times and location: Instructor: Elfi Kraka, 231 FOSC, ext 8-2480, ekraka@smu.edu http://smu.edu/catco/ Office

More information

Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure

Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure Supporting Information for Solid-liquid Thermal Transport and its Relationship with Wettability and the Interfacial Liquid Structure Bladimir Ramos-Alvarado, Satish Kumar, and G. P. Peterson The George

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model

Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 16 OCTOBER 001 Quantum effects in liquid water: Path-integral simulations of a flexible and polarizable ab initio model Harry A. Stern and B. J. Berne Department

More information

Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base

Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base Integrating CML, FoX, Avogadro, NWChem, and EMSLHub to develop a computational chemistry knowledge and discovery base Wibe A. de Jong, David M. Brown, Andrew Walker, Marcus D. Hanwell Data is key to scientific

More information

Principles of Physical Biochemistry

Principles of Physical Biochemistry Principles of Physical Biochemistry Kensal E. van Hold e W. Curtis Johnso n P. Shing Ho Preface x i PART 1 MACROMOLECULAR STRUCTURE AND DYNAMICS 1 1 Biological Macromolecules 2 1.1 General Principles

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water 1. Molecular models 2. The Quantum Drude Oscillator

More information

Nuclear Physics from Lattice Effective Field Theory

Nuclear Physics from Lattice Effective Field Theory Nuclear Physics from Lattice Effective Field Theory Dean Lee (NCSU/Bonn) work done in collaboration with Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Ulf-G. Meißner (Bonn/Jülich) Buḡra Borasoy (now

More information

Molecular Modelling for Medicinal Chemistry (F13MMM) Room A36

Molecular Modelling for Medicinal Chemistry (F13MMM) Room A36 Molecular Modelling for Medicinal Chemistry (F13MMM) jonathan.hirst@nottingham.ac.uk Room A36 http://comp.chem.nottingham.ac.uk Assisted reading Molecular Modelling: Principles and Applications. Andrew

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

X-Ray transitions to low lying empty states

X-Ray transitions to low lying empty states X-Ray Spectra: - continuous part of the spectrum is due to decelerated electrons - the maximum frequency (minimum wavelength) of the photons generated is determined by the maximum kinetic energy of the

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Two case studies of Monte Carlo simulation on GPU

Two case studies of Monte Carlo simulation on GPU Two case studies of Monte Carlo simulation on GPU National Institute for Computational Sciences University of Tennessee Seminar series on HPC, Feb. 27, 2014 Outline 1 Introduction 2 Discrete energy lattice

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information