SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy Igor V. Stiopkin, 1,2 Champika Weeraman, 1,3 Piotr A. Pieniazek, 4 Fadel Y. Shalhout, 1,5 James L. Skinner, 4 and Alexander V. Benderskii1 1,5* 1 Department of Chemistry, Wayne State University, Detroit, MI Current address: Department of Chemistry, University of Wisconsin-Madison, Madison, WI Current address: Steacie Institute for Molecular Sciences, National Research Council, Ottawa, ON, Canada 4 Department of Chemistry, University of Wisconsin-Madison, Madison, WI Current address: Department of Chemistry, University of Southern California, Los Angeles, CA 989 * Corresponding author. alex.benderskii@usc.edu 1. Experimental Details: HD-SFG We use the broad-band SFG scheme, where a femtosecond (broad-band) infrared (IR) pulse excites the vibrational coherence and a picosecond (narrow-band) visible pulse up-converts it into the SFG signal. 1,2 Using another recent technical development, a 35 fs time-delay was introduced between the IR and visible pulses in order to maximize the SFG signal and at the same time improve spectral resolution and reduce the nonresonant background. 3 While the conventional homodyne detection directly measures the intensity of the SFG signal emitted by the sample, the HD-SFG technique records an interference pattern of the SFG optical field and a reference beam (the so-called local oscillator, LO). The amplitude and phase of the SFG signal are obtained using broad-band spectral 1

2 interferometry (SI), 4,5 by setting a 2.5 ps time delay between the SFG signal and LO pulses which are made collinear and passed through a monochromator. This produces a fringe pattern in the frequency domain, recorded by a CCD detector. HD-SFG interferograms were recorded using 1 min. acquisition time. The phase drift between the signal and LO pulses was measured to be less than λ/1 over 1 min, so that phase fluctuations did not affect the contrast of the inteference fringes. Standard SI analysis including inverse and forward Fourier transforms as well as filtering in the time domain was implemented to recover phase and amplitude of the SFG spectrum. 4,5 All recorded spectra were all phased with respect to a single selected reference, the 1% H 2 O spectrum, using the fringes in the off-resonant part of the interferogram above 28 cm. 5 After phasing, 2-5 interferograms were averaged for each isotopic dilution (Fig. 2). The spectral phase of all SFG signals was then set such that the imaginary part of the SFG spectrum is zero in the off-resonance part of the spectrum, around 282 cm. This part of the spectrum agrees with the phase-sensitive SFG measurements by Tian and Shen 6 where the imaginary part of χ (2) for the air/water interface of 1% to 33% O:H 2 O solutions were measured to be close to zero around 28 cm. Additionally, this is also consistent in that the frequency-independent nonresonant background term is purely real in the spectral curve fitting. We note that the peak amplitudes and frequencies of the free OD in HOD and O extracted from the fitting are practically insensitive to the value of the absolute phase of the SFG spectrum. 2

3 SSP PPP 2 1 HOD O 1% 2 HOD O 1% Amplitude, a.u. 1 75% 5% Amplitude, a.u % 5% 25% 25% Frequency, cm Frequency, cm Figure 2. Heterodyne-detected vibrational SFG spectra of the free OD stretch at the air/water interface of isotopic mixtures H 2 O:HOD: O. The D/H mole fraction is indicated in each spectrum. Left panel shows spectra recorded for SSP polarization combination of SFG-vis-IR beams; Right panel shows PPP spectra. Solid blue and red lines are the experimentally measured real and imaginary parts of the SFG signal. Dashed lines represent the fitting to a sum of Lorentzian terms and a nonresonant background, B (2) NR j i j ( IR ) ANRe j ( IR j) i as described in the text; The components of the resonant j part of the response used in the fitting are shown as shaded Lorentzian peaks. The two narrow peaks with interchanging amplitudes (shaded orange and yellow) are assigned, respectively, to the free OD of O and HOD molecules at the interface, as detailed in the text. 3

4 The uncertainty in determining absolute frequencies, δω= 2 cm, is due to the SFG spectrometer calibration (performed using the liquid DMSO/air interface as the frequency standard) and curve fitting. The estimated uncertainty in the reported value of the shift between the free OD of HOD and O, δδ= 1.5 cm is somewhat smaller due to cancellation of the frequency calibration error. Peak Frequency, cm Peak Area, a.u SSP cm HOD/ O Fraction 4 A. B. Peak Frequency, cm Peak Area, a.u C. D PPP E. F. cm HOD/ O Fraction Figure 3. A, B: Peak areas from spectral fitting (Lorentzian B j Γ j ) of the free OD of DOD peak (blue squares), and free OD of HOD peak (red squares), as a function of isotopic dilution. The scaling expected based on isotopic scrambling, taking into account that O has two potential free ODs while HOD has one, is shown in solid lines (right axis). C, D: Peaks frequencies (Ω j from Lorentzian fit) of the free OD of DOD peak, blue circles, and free OD of HOD peak, red circles, as a function of isotopic dilution. E, F: Line widths (Γ j from Lorentzian fit) of the free OD of DOD peak, blue diamonds, and free OD of HOD peak, red diamonds, as a function of isotopic dilution. Left panel shows the fitting results for SSP spectra, right - for PPP spectra. The lines between experimental points are to guide the eye only. 4

5 2. MD simulations and spectral calculations. We simulated slabs of 512 SPC/E H 2 O and O molecules for 2 ns. The former trajectory was directly used to study dilute HOD in H 2 O. Box dimensions were 25Å x 25Å x 8Å and the temperature was maintained at 3K. The simulated slab has two surfaces, and the contributions to the sum-frequency spectrum from each surface have equal magnitude but opposite sign. Therefore, a spectral calculation for the full slab produces no signal. To compare with experiment we need to calculate the signal from a single interface, and to do this, we need to assign molecules to the upper or lower parts of the slab. In this work we follow the usual convention of doing this by oxygen position: 8,9 If the oxygen atom of a water molecule is in the upper half-slab, then the entire molecule is assigned to that slab. A more extensive discussion of this partitioning issue is presented elsewhere. 7 Spectral simulations were performed using the mixed quantum/classical approach. The O-H (D) oscillators are treated quantum mechanically, while the rest of the system is treated as a classical bath. The resulting time-correlation function expressions for the susceptibility have been given elsewhere. 8,9 Within our ES/MD (electronic structure/molecular dynamics) approach the required polarizabilites, transition dipoles, frequencies, and intramolecular couplings are obtained from a limited number of ab initio calculations on clusters from bulk water simulations. 1 To make extensive calculations possible these are hence expressed as linear or quadratic functions of the electric field on hydrogen atoms, referred to as spectroscopic maps. Intermolecular coupling is represented within the transition dipole moment model. In particular, the electric field map of the intramolecular coupling in O obtained from ab initio calculations on water clusters combined with the MD simulations was used to evaluate 5

6 the intramolecular coupling between the free OD and the other OD stretch on the same O molecule at the interface, γ S ~48 cm (Fig. 4E), scaled down from the gas-phase value of γ 6 cm (23, 26) due to the local interfacial environment. P(ω ij ) E. FreeOD -intra FreeOD -inter Bulk - inter intra Gas-phase -intra ω ij, cm ij Figure 4. E. Distribution of the coupling strengths: intramolecular coupling in surface O molecules that have a free OD, i.e. coupling between the free OD and the other OD (γ S, black line); intermolecular coupling between OD stretches of bulk-phase water molecules (blue); intermolecular coupling of the free OD to OD stretches on other waters (red); intramolecular coupling in the gas-phase O molecule, 6 cm (yellow). The following criteria were used for identifying the free OD molecules: (1) ODstretch frequency is above 268 cm ; (2) molecule is positioned within 6 Å of the Gibbs dividing surface; (3) the angle between the free OD vector and the vector from D to the nearest oxygen of another water molecule is larger than 9 o. The spectrum calculated using only OD oscillators tagged as free according to this definition coincides with the spectrum calculated for the whole system above 268 cm. Analysis of the MD trajectories yields 23% of water molecules at the air/water interface having free OD, in agreement with earlier MD simulations 11 and experiments Spectral feature at 268 cm The experimentally measured SSP spectra of pure O show a broad shoulder with positive imaginary part at ~268 cm (Γ~5 cm ) (indicated by black arrow in Fig. 6

7 4B,C). This feature decreases with isotopic dilution (Fig. 2), suggesting that it is a result of vibrational coupling between the OD chromophores. It is not observed in the PPP spectra at any isotopic dilution (Fig. 2). Im[ (2) ] (a.u.) SSP B. C. HOD DOD IR frequency (cm ) 1 Im[ (2) ] (a.u.) SSP DOD HOD Frequency, cm Figure 4. B. Experimentally recorded Im[χ (2) ] SSP spectra of the air/water interface of pure O (blue) and 25%:75% O:H 2 O mixture (red). C. Theoretically calculated Im[χ (2) ] SSP spectra for free OD of isolated surface HOD molecule in H 2 O (red) and O molecule in pure O (blue). The simulations faithfully reproduce this feature, including its isotopic dilution and polarization dependence. Fig. 4C shows the calculated SSP spectra, which correspond to a single tensor element of the second order nonlinear susceptibility, χ (2) XXZ. Fig. 5 shows all calculated elements of the χ (2) tensor. Note that the PPP spectrum includes several tensor elements, but is dominated by the ZZZ element, whereas the SSP spectrum contains only the XXZ element. 7

8 Frequency, cm Figure 5. Calculated χ (2) tensor elements for the coupled (dashed lines) and uncoupled (solid lines) cases. Note that the 268 cm shoulder is present only for the XXZ element and only in the coupled case. Selectively turning off inter- vs. intramolecular coupling in the simulations suggests the intramolecular coupling as the origin of this feature. Analysis of the MD trajectories by the hydrogen bond classes 13 shows that this 268 cm feature is due to O molecules with 2 donor and 1 acceptor hydrogen bonds. While these molecules are on-average oriented with both hydrogens down, the intramolecular coupling in O switches on an antisymmetric linear combination of the two local modes which has the higher frequency. Its transition dipole moment is an upward pointing vector difference, giving positive contribution to Im[ (2) ]. Thus, the 268 cm peak can be thought of as the manifestation of the asymmetric stretch character of O, with the caveat that the intermolecular coupling (which is relatively strong for these bulk-like molecules) 8

9 delocalizes the excitations over several molecules and thus renders the asymmetric/symmetric designation meaningless. References 1. L. J. Richter, T. P. Petralli-Mallow, J. C. Stephenson, Opt. Lett. 23, 1594 (1998). 2. A. N. Bordenyuk, A. V. Benderskii, J. Chem. Phys. 122, (25). 3. I. V. Stiopkin, H. D. Jayathilake, C. Weeraman, A. V. Benderskii, J. Chem. Phys. 132, (21). 4. L. Lepetit, G. Cheriaux, M. Joffre, J. Opt. Soc. Am. B 12, 2467 (1995). 5. I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk, A. V. Benderskii, J. Am. Chem. Soc. 13, 2271 (28). 6. C. S. Tian, Y. R. Shen, J. Am. Chem. Soc. 131, 279 (29). 7. P. A. Pieniazek, C. J. Tainter, and J. L. Skinner, Interpretation of the water surface vibrational sum-frequency spectrum, submitted for publication (211). 8. Auer, B. M. & Skinner, J. L. Vibrational sum-frequency spectroscopy of the liquid/vapor interface for dilute HOD in O. J. Chem. Phys. 129, (28). 9. Auer, B. M. & Skinner, J. L. Vibrational Sum-Frequency Spectroscopy of the Water Liquid/Vapor Interface. J. Phys. Chem. B 113, (29). 1. Corcelli, S. A., Lawrence, C. P. & Skinner, J. L. Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H 2 O and O. J. Chem. Phys. 12, (24). 11. Morita, A. & Hynes, J. T. A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem. Phys. 258, (2). 12. Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational Spectroscopy of Water at the Vapor Water Interface. Phys. Rev. Lett. 7, (1993). 9

Dave S. Walker and Geraldine L. Richmond*

Dave S. Walker and Geraldine L. Richmond* J. Phys. Chem. C 2007, 111, 8321-8330 8321 Understanding the Effects of Hydrogen Bonding at the Vapor-Water Interface: Vibrational Sum Frequency Spectroscopy of H 2 O/HOD/D 2 O Mixtures Studied Using Molecular

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

Water and ice are remarkable substances owing to the

Water and ice are remarkable substances owing to the This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation

More information

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the

Insights on Interfacial Structure, Dynamics and. Proton Transfer from Ultrafast Vibrational Sum. Frequency Generation Spectroscopy of the Insights on Interfacial Structure, Dynamics and Proton Transfer from Ultrafast Vibrational Sum Frequency Generation Spectroscopy of the Alumina(0001)/Water Interface Aashish Tuladhar, Stefan M. Piontek,

More information

Matthias Lütgens, Frank Friedriszik, and Stefan Lochbrunner* 1 Concentration dependent CARS and Raman spectra of acetic acid in carbon tetrachloride

Matthias Lütgens, Frank Friedriszik, and Stefan Lochbrunner* 1 Concentration dependent CARS and Raman spectra of acetic acid in carbon tetrachloride Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 SUPPORTING INFORMATION Direct observation of the cyclic dimer in liquid acetic

More information

requency generation spectroscopy Rahul N

requency generation spectroscopy Rahul N requency generation spectroscopy Rahul N 2-11-2013 Sum frequency generation spectroscopy Sum frequency generation spectroscopy (SFG) is a technique used to analyze surfaces and interfaces. SFG was first

More information

Vibrational Sum Frequency Spectroscopy and Molecular Dynamics Simulation of the Carbon Tetrachloride-Water and 1,2-Dichloroethane-Water Interfaces

Vibrational Sum Frequency Spectroscopy and Molecular Dynamics Simulation of the Carbon Tetrachloride-Water and 1,2-Dichloroethane-Water Interfaces J. Phys. Chem. C 2007, 111, 6103-6112 6103 Vibrational Sum Frequency Spectroscopy and Molecular Dynamics Simulation of the Carbon Tetrachloride-Water and 1,2-Dichloroethane-Water Interfaces Dave S. Walker,

More information

Chiral Sum Frequency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces

Chiral Sum Frequency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces Supporting Information for Chiral Sum Freuency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces Li Fu, Deuan Xiao, Zhuguang Wang, Victor S. Batista *, and Elsa C. Y.

More information

Supplementary Figure 1. Additional SFG data. Comparison of an SFS spectrum of water droplets in a hydrophobic liquid (black line, 1%v.

Supplementary Figure 1. Additional SFG data. Comparison of an SFS spectrum of water droplets in a hydrophobic liquid (black line, 1%v. Supplementary Figure 1. Additional SFG data. Comparison of an SFS spectrum of water droplets in a hydrophobic liquid (black line, 1%v. D 2O in 5 mm Span80 in d 34-hexadecane) with SFG reflection spectra

More information

Supplementary Figures

Supplementary Figures Supplementary Figures iso ( =2900 cm -1 ) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 pump cm -1 3450 cm -1 cm -1 cm -1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 delay [ps] Supplementary Figure 1: Raw infrared pump-probe traces.

More information

Molecular Modeling and Assignment of IR Spectra of the Hydrated Excess Proton in Isotopically Dilute Water

Molecular Modeling and Assignment of IR Spectra of the Hydrated Excess Proton in Isotopically Dilute Water Molecular Modeling and Assignment of IR Spectra of the Hydrated Excess Proton in Isotopically Dilute Water Rajib Biswas, William Carpenter, Gregory A Voth * and Andrei Tokmakoff * Department of Chemistry,

More information

Solvent Isotopic Effects on a Surfactant Headgroup at the Air-Liquid Interface

Solvent Isotopic Effects on a Surfactant Headgroup at the Air-Liquid Interface S1 SUPPORTING INFORMATION Solvent Isotopic Effects on a Surfactant Headgroup at the Air-Liquid Interface Uvinduni I. Premadasa, a Negar Moradighadi, b Kondalarao Kotturi, a Jeeranan Nonkumwong, a,c Md.

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water

Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water 1498 Chem. Rev. 2010, 110, 1498 1517 Vibrational Spectroscopy as a Probe of Structure and Dynamics in Liquid Water H. J. Bakker*, and J. L. Skinner*, FOM Institute for Atomic and Molecular Physics, Kruislaan

More information

Supporting Materials

Supporting Materials Supporting Materials Figure S1 Experimental Setup Page Figure S (a) (b) (c) Feynman Diagrams Page 3-6 Figure S3 D IR Spectra Page 7 Figure S4 Kinetic Model Page 8 Figure S5 Van t Hoff Plots Page 9 1 k

More information

Interference effects in IR photon echo spectroscopy of liquid water Yeremenko, S; Pshenitchnikov, Maxim; Wiersma, DA; Pshenitchnikov, Maxim

Interference effects in IR photon echo spectroscopy of liquid water Yeremenko, S; Pshenitchnikov, Maxim; Wiersma, DA; Pshenitchnikov, Maxim University of Groningen Interference effects in IR photon echo spectroscopy of liquid water Yeremenko, S; Pshenitchnikov, Maxim; Wiersma, DA; Pshenitchnikov, Maxim Published in: Physical Review A DOI:

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Microscopic Structure and Dynamics of Air/Water Interface by Computer Simulations and Comparison with Sum-Frequency Generation Experiments

Microscopic Structure and Dynamics of Air/Water Interface by Computer Simulations and Comparison with Sum-Frequency Generation Experiments 107 Chapter 5 Microscopic Structure and Dynamics of Air/Water Interface by Computer Simulations and Comparison with Sum-Frequency Generation Experiments The hydrogen (H) bonded structure of water at the

More information

Simulations of the Infrared, Raman, and 2D-IR Photon Echo Spectra of Water in Nanoscale Silica Pores Paul C. Burris, 1 Damien Laage, 2, a) 1, b)

Simulations of the Infrared, Raman, and 2D-IR Photon Echo Spectra of Water in Nanoscale Silica Pores Paul C. Burris, 1 Damien Laage, 2, a) 1, b) Simulations of the Infrared, Raman, and 2D-IR Photon Echo Spectra of Water in Nanoscale Silica Pores Paul C. Burris, 1 Damien Laage, 2, a) 1, b) and Ward H. Thompson 1) Department of Chemistry, University

More information

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://dare.uva.nl/document/351205 File ID 351205 Filename 5: Vibrational dynamics of the bending mode of water

More information

Interfaces play important roles in many disciplines of science.

Interfaces play important roles in many disciplines of science. Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy Yicun Ni, Scott M. Gruenbaum, and James L. Skinner 1 Theoretical Chemistry

More information

Molecular Interactions between Graphene and Biological Molecules

Molecular Interactions between Graphene and Biological Molecules Supporting Information: Molecular Interactions between Graphene and Biological Molecules Xinguan Zou, *,1 Shuai Wei, *,1 Joshua Jasensky, 1 Minyu Xiao, 1 Qiuming Wang, 1 Charles L. Brooks III **,1,2 and

More information

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Sunghwan Shin, Hani Kang, Daeheum Cho, Jin Yong Lee, *, and Heon Kang *, Department

More information

Ultrafast Processes at Liquid Interfaces Investigated with Time-Resolved Sum Frequency Generation

Ultrafast Processes at Liquid Interfaces Investigated with Time-Resolved Sum Frequency Generation 10 Ultrafast Processes at Liquid Interfaces Investigated with Time-Resolved Sum Frequency Generation Yi Rao, Benjamin Doughty, Nicholas J. Turro, and Kenneth B. Eisenthal Q1 Contents 10.1 Introduction...305

More information

Testing the Core/Shell Model of Nanoconfined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy

Testing the Core/Shell Model of Nanoconfined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy J. Phys. Chem. A 2006, 110, 4985-4999 4985 Testing the Core/Shell Model of Nanoconfined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy Ivan R. Piletic, David E. Moilanen, D. B. Spry,

More information

Ethylenediamine at Air/Liquid and Air/Silica Interfaces: Protonation. Versus Hydrogen Bonding Investigated by Sum Frequency Generation.

Ethylenediamine at Air/Liquid and Air/Silica Interfaces: Protonation. Versus Hydrogen Bonding Investigated by Sum Frequency Generation. Supporting Information Ethylenediamine at Air/Liquid and Air/Silica Interfaces: Protonation Versus Hydrogen Bonding Investigated by Sum Frequency Generation Spectroscopy MAN XU, DINGFANG LIU, AND HEATHER

More information

The thermal reorganization of DNA immobilized at. the silica/buffer interface: a vibrational sum

The thermal reorganization of DNA immobilized at. the silica/buffer interface: a vibrational sum Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 015 [Supporting Information to accompany Manuscript] The thermal reorganization of DNA

More information

Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy

Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy THE JOURNAL OF CHEMICAL PHYSICS 13, 164301 005 Accidental vibrational degeneracy in vibrational excited states observed with ultrafast two-dimensional IR vibrational echo spectroscopy Junrong Zheng, Kyungwon

More information

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS

PHOTO-DISSOCIATION OF CO 2 GAS BY USING TWO LASERS Proceedings of the 3rd Annual ISC Research Symposium ISCRS 9 April 14, 9, Rolla, Missouri PHOTO-DISSOCIATION OF CO GAS BY USING TWO LASERS Zhi Liang MAE department/zlch5@mst.edu Dr. Hai-Lung Tsai MAE department/tsai@mst.edu

More information

FEMTOSECOND MID-INFRARED SPECTROSCOPY OF HYDROGEN-BONDED LIQUIDS

FEMTOSECOND MID-INFRARED SPECTROSCOPY OF HYDROGEN-BONDED LIQUIDS Laser Chem., 1999, Vol. 19, pp. 83-90 Reprints available directly from the publisher Photocopying permitted by license only (C) 1999 OPA (Overseas Publishers Association) N.V. Published by license under

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride

Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride pubs.acs.org/jpcb Dynamics of Dihydrogen Bonding in Aqueous Solutions of Sodium Borohydride Chiara H. Giammanco, Patrick L. Kramer, and Michael D. Fayer* Department of Chemistry, Stanford University, Stanford,

More information

Water Structure at Air/Acetonitrile Aqueous Solution Interfaces

Water Structure at Air/Acetonitrile Aqueous Solution Interfaces 14384 J. Phys. Chem. C 2009, 113, 14384 14389 Water Structure at Air/Acetonitrile Aqueous Solution Interfaces Yi Rao, Nicholas J. Turro, and Kenneth B. Eisenthal* Department of Chemistry, 3000 Broadway,

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing

Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing 106 J. Phys. Chem. A 1999, 103, 106-1036 Control and Characterization of Intramolecular Dynamics with Chirped Femtosecond Three-Pulse Four-Wave Mixing Igor Pastirk, Vadim V. Lozovoy, Bruna I. Grimberg,

More information

Supporting Information: Molecular Insight into. the Slipperiness of Ice

Supporting Information: Molecular Insight into. the Slipperiness of Ice Supporting Information: Molecular Insight into the Slipperiness of Ice Bart Weber,,, Yuki Nagata,, Stefania Ketzetzi, Fujie Tang, Wilbert J. Smit, Huib J. Bakker, Ellen H. G. Backus, Mischa Bonn, and Daniel

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS)

Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS) Vibrational imaging and microspectroscopies based on coherent anti-stokes Raman scattering (CARS) by Andreas Volkmer Universität Stuttgart 3 rd Institute of Physics, University of Stuttgart, Pfaffenwaldring

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

FEATURE ARTICLE. Water DynamicssThe Effects of Ions and Nanoconfinement. Sungnam Park, David E. Moilanen, and M. D. Fayer*

FEATURE ARTICLE. Water DynamicssThe Effects of Ions and Nanoconfinement. Sungnam Park, David E. Moilanen, and M. D. Fayer* J. Phys. Chem. B 2008, 112, 5279-5290 5279 FEATURE ARTICLE Water DynamicssThe Effects of Ions and Nanoconfinement Sungnam Park, David E. Moilanen, and M. D. Fayer* Department of Chemistry Stanford UniVersity,

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes Supplemental Material L. Shi, T. K. Hakala, H. T. Rekola, J. -P.

More information

Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy

Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy J. Phys. Chem. B 2003, 107, 6343-6349 6343 Surface Studies of Aqueous Methanol Solutions by ibrational Broad Bandwidth Sum Frequency Generation Spectroscopy Gang Ma and Heather C. Allen* Department of

More information

Effect of Hydrogen-Bond Strength on the Vibrational Relaxation of Interfacial Water

Effect of Hydrogen-Bond Strength on the Vibrational Relaxation of Interfacial Water Published on Web 02/25/2010 Effect of Hydrogen-Bond Strength on the Vibrational Relaxation of Interfacial Water Ali Eftekhari-Bafrooei and Eric Borguet* Department of Chemistry, Temple UniVersity, Philadelphia,

More information

Phase Reference in Phase-Sensitive Sum-Frequency Vibrational Spectroscopy

Phase Reference in Phase-Sensitive Sum-Frequency Vibrational Spectroscopy 1 1 1 1 1 1 1 1 0 1 0 1 Phase Reference in Phase-Sensitive Sum-Frequency Vibrational Spectroscopy Shumei Sun 1, Rongda Liang 1, Xiaofan Xu 1, Heyuan Zhu, Y. Ron Shen 1, and Chuanshan Tian 1, 1 Department

More information

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting information for the manuscript Excited state structural evolution during

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Correlation spectroscopy

Correlation spectroscopy 1 TWO-DIMENSIONAL SPECTROSCOPY Correlation spectroscopy What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral features. Our examination

More information

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations

SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations SUPPLEMENTARY INFORMATION An Empirical IR Frequency Map for Ester C=O Stretching Vibrations Sean C. Edington, Jennifer C. Flanagan, Carlos R. Baiz* Department of Chemistry, University of Texas at Austin

More information

arxiv:cond-mat/ v1 [cond-mat.other] 24 Aug 2005

arxiv:cond-mat/ v1 [cond-mat.other] 24 Aug 2005 Polarization and Experimental Configuration Analysis of Sum Frequency Generation Vibrational Spectra of Air/Water Interface arxiv:cond-mat/58568v1 [cond-mat.other] 24 Aug 25 Wei Gan, Dan Wu, Zhen Zhang,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Schematic diagram of the RF magneton sputtering system used to deposit a thin SiO2 film on CaF2 surface. 1 Supplementary Figure 2. A Li + DEC complex structure.

More information

Theory of selective excitation in stimulated Raman scattering

Theory of selective excitation in stimulated Raman scattering Theory of selective excitation in stimulated Raman scattering S. A. Malinovskaya, P. H. Bucksbaum, and P. R. Berman Michigan Center for Theoretical Physics, FOCUS Center, and Department of Physics, University

More information

dots) and max max without energies

dots) and max max without energies Supplementary Figure 1 Light-polarization-dependent the crystal b-axis. Scale bar, 25 m. (b) Polarization-dependent absorption spectra of bilayer ReS 2. (c) Corresponding spectral weights of Lorentzian

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

Ultraviolet-Visible and Infrared Spectrophotometry

Ultraviolet-Visible and Infrared Spectrophotometry Ultraviolet-Visible and Infrared Spectrophotometry Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Supplementary Figure 1. Crystal packing of pentacene.

Supplementary Figure 1. Crystal packing of pentacene. t 3 t 4 t 1 t 2 Supplementary Figure 1. Crystal packing of pentacene. The largestholecharge transfer integrals are shown in red:t 1 = 75 mev, t 2 = 32 mev, t 3 = 20 mev, t 4 = 6 mev. Note that IRactive

More information

1.1. IR is part of electromagnetic spectrum between visible and microwave

1.1. IR is part of electromagnetic spectrum between visible and microwave CH2SWK 44/6416 IR Spectroscopy 2013Feb5 1 1. Theory and properties 1.1. IR is part of electromagnetic spectrum between visible and microwave 1.2. 4000 to 400 cm -1 (wave numbers) most interesting to organic

More information

Supporting Information

Supporting Information Supporting Information Aggregated States of Chalcogenorhodamine Dyes on Nanocrystalline Titania Revealed by Doubly-Resonant Sum Frequency Spectroscopy Sanghamitra Sengupta, Leander Bromley III and Luis

More information

Michael D. Fayer Department of Chemistry Stanford University, Stanford, CA

Michael D. Fayer Department of Chemistry Stanford University, Stanford, CA Ultrafast Multi-dimensional Infrared Spectroscopy of Gases at Low and High Pressures AFOSR Grant # F49620-01-1-0018 12/01/2000-11/30/2004 Michael D. Fayer Department of Chemistry Stanford University, Stanford,

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Advanced Pharmaceutical Analysis

Advanced Pharmaceutical Analysis Lecture 2 Advanced Pharmaceutical Analysis IR spectroscopy Dr. Baraa Ramzi Infrared Spectroscopy It is a powerful tool for identifying pure organic and inorganic compounds. Every molecular compound has

More information

1 Recent Space Group Publications

1 Recent Space Group Publications 1/224 1 Recent Space Group Publications This pdf files contains our publications from the last 5 years at USF including two that are currently accepted for publication, and our Chemical Reviews article

More information

Using ultrafast infrared multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments

Using ultrafast infrared multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments Chemical Physics Letters 381 (2003) 139 146 www.elsevier.com/locate/cplett Using ultrafast infrared multidimensional correlation spectroscopy to aid in vibrational spectral peak assignments John B. Asbury,

More information

New Perspective on structure and bonding in water using XAS and XRS

New Perspective on structure and bonding in water using XAS and XRS New Perspective on structure and bonding in water using XAS and XRS Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University, Sweden R. Ludwig Angew. Chem. 40, 1808 (2001)

More information

Theoretical Photochemistry WiSe 2016/17

Theoretical Photochemistry WiSe 2016/17 Theoretical Photochemistry WiSe 2016/17 Lecture 8 Irene Burghardt burghardt@chemie.uni-frankfurt.de) http://www.theochem.uni-frankfurt.de/teaching/ Theoretical Photochemistry 1 Topics 1. Photophysical

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Two-Color three-pulse Photon Echoes

Two-Color three-pulse Photon Echoes Two-Color three-pulse Photon Echoes Intensity (normalized) 1 0.8 0.6 0.4 0.2 IR144 in Methanol 0 600 650 700 750 800 850 900 Wavelength (nm) 1 Intensity (normalized) 0.8 0.6 0.4 0.2 DTTCI in Methanol 0

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

STRUCTURE AND BONDING OF MOLECULES

STRUCTURE AND BONDING OF MOLECULES Annu. Rev. Phys. Chem. 2001. 52:357 89 Copyright c 2001 by Annual Reviews. All rights reserved STRUCTURE AND BONDING OF MOLECULES AT AQUEOUS SURFACES GL Richmond Department of Chemistry, University of

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

Graphene for THz technology

Graphene for THz technology Graphene for THz technology J. Mangeney1, J. Maysonnave1, S. Huppert1, F. Wang1, S. Maero1, C. Berger2,3, W. de Heer2, T.B. Norris4, L.A. De Vaulchier1, S. Dhillon1, J. Tignon1 and R. Ferreira1 1 Laboratoire

More information

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces Supplementary Information to Role of coherence and delocalization in photo-induced electron transfer at organic interfaces V. Abramavicius,, V. Pranckevičius, A. Melianas, O. Inganäs, V. Gulbinas, D. Abramavicius

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information

Supporting Information for. Hydrogen Bonding Structure at Zwitterionic. Lipid/Water Interface

Supporting Information for. Hydrogen Bonding Structure at Zwitterionic. Lipid/Water Interface Supporting Information for Hydrogen Bonding Structure at Zwitterionic Lipid/Water Interface Tatsuya Ishiyama,, Daichi Terada, and Akihiro Morita,, Department of Applied Chemistry, Graduate School of Science

More information

Molecular alignment, wavepacket interference and Isotope separation

Molecular alignment, wavepacket interference and Isotope separation Molecular alignment, wavepacket interference and Isotope separation Sharly Fleischer, Ilya Averbukh and Yehiam Prior Chemical Physics, Weizmann Institute Yehiam.prior@weizmann.ac.il Frisno-8, Ein Bokek,

More information

Two-color Transient Grating Spectroscopy of a Two-level System

Two-color Transient Grating Spectroscopy of a Two-level System Two-color Transient Grating Spectroscopy Bull. Korean Chem. Soc. 23, Vol. 24, No. 8 69 Two-color Transient Grating Spectroscopy of a Two-level System Kyungwon Kwak, Minhaeng Cho, * Graham R. Fleming, *,

More information

Final Report AFOSR Grant # FA Michael D. Fayer Ultrafast Multidimensional Infrared Vibrational Echo Spectroscopy of Gases and Liquids

Final Report AFOSR Grant # FA Michael D. Fayer Ultrafast Multidimensional Infrared Vibrational Echo Spectroscopy of Gases and Liquids Final Report FOSR Grant # F9550-05-1-0116 Michael D. Fayer Ultrafast Multidimensional Infrared Vibrational Echo Spectroscopy of Gases and Liquids During the grant period 01/12/2004-30/11/2007, we have

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/92677

More information

Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic

Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic Supplementary Figure 1. Vector presentation example for two dipoles μ(1) and μ(2) placed in the asymmetric unit of a crystal with orthorhombic symmetry and their projections on the A, B and C axes. For

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Observation of the waveform of accumulated photon echoes in a dye-doped polymer film by use of an interferometer

Observation of the waveform of accumulated photon echoes in a dye-doped polymer film by use of an interferometer 1768 J. Opt. Soc. Am. B/Vol. 16, No. 10/October 1999 Yoda et al. Observation of the waveform of accumulated photon echoes in a dye-doped polymer film by use of an interferometer Takuya Yoda, Takao Fuji,

More information

Diffuse reflection BBSFG optical layout

Diffuse reflection BBSFG optical layout Diffuse reflection BBSFG optical layout Figure 1 shows the optical layout of the broad bandwidth sum frequency generation (BBSFG) system. A Nd:YVO 4 laser (a, Spectra-Physics MillenniaVs) pumps the Ti:Sapphire

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

1901 Application of Spectrophotometry

1901 Application of Spectrophotometry 1901 Application of Spectrophotometry Chemical Analysis Problem: 1 Application of Spectroscopy Organic Compounds Organic compounds with single bonds absorb in the UV region because electrons from single

More information

Dangling OD Confined in a Langmuir Monolayer

Dangling OD Confined in a Langmuir Monolayer Published on Web 10/20/2007 Dangling OD Confined in a Langmuir Monolayer Gang Ma, Xiangke Chen, and Heather C. Allen* Contribution from the Department of Chemistry, The Ohio State UniVersity, 100 West

More information

2.1 Experimental and theoretical studies

2.1 Experimental and theoretical studies Chapter 2 NiO As stated before, the first-row transition-metal oxides are among the most interesting series of materials, exhibiting wide variations in physical properties related to electronic structure.

More information

Using Molecular Dynamics to Compute Properties CHEM 430

Using Molecular Dynamics to Compute Properties CHEM 430 Using Molecular Dynamics to Compute Properties CHEM 43 Heat Capacity and Energy Fluctuations Running an MD Simulation Equilibration Phase Before data-collection and results can be analyzed the system

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy / Journal Homepage / Table of Contents for this issue INVITED ARTICLE www.rsc.org/pccp Physical Chemistry Chemical Physics Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

k n (ω 01 ) k 2 (ω 01 ) k 3 (ω 01 ) k 1 (ω 01 )

k n (ω 01 ) k 2 (ω 01 ) k 3 (ω 01 ) k 1 (ω 01 ) e (ω 01 ) n (ω 01 ) 3 (ω 01 ) 01 (ω 01 ) 1 (ω 01 ) (ω 01 ) 3 (ω 01 ) 1 (ω 01 ) 1 0 t 3 T w τ Rephasing R 1 R e = 1 + + 3 Nonrephasing n = 1 + 3 e (ω 1-1+1 ) n (ω 1-1+1 ) 3 (ω 1-1+1 ) (ω 01 ) t 1+1 1 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature9829 Supplementary Information S1: Movie of the photo-induced phase transition: Figures 2b-e show four selected XUV ARPES snapshots illustrating the most pronounced changes in the course

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Sum-Frequency Generation Spectra of Thin Organic Films on Silver Enhanced Due to Surface Plasmon Excitation

Sum-Frequency Generation Spectra of Thin Organic Films on Silver Enhanced Due to Surface Plasmon Excitation E. V. Alieva et al.: Sum-Frequency Generation Spectra of Thin Organic Films on Ag 109 phys. stat. sol. (a) 175, 109 (1999) Subject classification: 78.30.Jw; 73.20.Mf; 78.66.Qn; S12 Sum-Frequency Generation

More information

Water in confinement : ultrafast dynamics of water in reverse micelles Dokter, A.M.

Water in confinement : ultrafast dynamics of water in reverse micelles Dokter, A.M. UvA-DARE (Digital Academic Repository) Water in confinement : ultrafast dynamics of water in reverse micelles Dokter, A.M. Link to publication Citation for published version (APA): Dokter, A. M. (2008).

More information