Assignment 3 Due Tuesday, March 30, 2010

Size: px
Start display at page:

Download "Assignment 3 Due Tuesday, March 30, 2010"

Transcription

1 Assignment 3 Due Tuesday, March 30, 2010 Download and read the Math_techniques.pdf file from the Handouts section of the class web page. Do problems 1, 2, and 4 following section C (for problem 1, you do the S = 1 case). Do problems 1, 2, 6 and 7 after section D. Additional Problems (1) (a) An F center (Farbcentrum) is an electron bound to an anion vacancy and can be introduced into alkali halide and alkali hydride crystals by treating the stoichiometric salt with alkali metal vapor at elevated temperatures. Thus, when NaH is treated with sodium vapor, a doped (Na1H1 x) crystal results. The EPR spectrum shown below is for an F center in NaH. EPR of Na1H1 x. Explain the spectrum (do you see all the lines you would theoretically expect?). (b) According to the table given in Drago s book, for a free Na atom the measured isotropic hyperfine coupling is 886 MHz. Convert this to gauss (G) using the appropriate conversion factor and compare this with the 26.5 G value supplied with this spectrum. What does this seem to imply concerning the location of the unpaired electron? (To what extent is the electron really in the vacancy?) (2) The figure at right is a room-temperature EPR spectrum of a Cr 3+ impurity in MgO (rocksalt structure). Examine the table, Properties of Selected Nuclei, taken from Drago and provide an interpretation of the observed spectral features. (3) The chart below shows various square pyramidal vanadyl, (V IV =O) 2+, complexes for which EPR spectra have been measured and provides a guide to many of the macrocyclic ligand acronyms you see in Table 1. Other ligands are more generally known. For example, salen = N,N - ethylenebis (salicylideneaminato) 2 ; tsalen = N,N - ethylenebis (thiosalicylideneaminato) 2 ; tsalpn = N,N -propane-1,3-diyl (thiosalicylideneaminato) 2. (Thanks to Roxanne Jenkins.) EPR of Cr 3+ impurity in MgO

2 [(bme-daco)(v=o)] [(bme-dach)(v=o)] salenh2 [(V=O)(CGC)] 2- [(V=O)(ema)] 2- [(V=O)(ema) Table 1. EPR Parameters for Oxovanadium(IV) Complexes. a Complex Donor set gz gx gy Az Ax Ay [(bme-daco)(v=o)], 1 N2S [(bme-dach)(v=o)], 2 N2S (Et4N)2[(V=O)(ema)], 3 N2S (K)2[(V=O)(CGC)], 4 N2S [(V=O)(ema) (CH2)3], 5b N2S VO(tsalen) c N2S [VO(tsatln)] c N2S [VO(tsalphen)] c N2S [VO(mp)2] 2- d,e O2S [VO(mmppt)] f,g O2S [VO(salen)] h N2O [VO(pycac)] i,j N3O VO(PAIS) k,l N3O a In frozen DMF. b In frozen MeCN. c Reference 25. d Measured in frozen CH2Cl2/DMF. e Reference 46. f Measured in frozen CH2Cl2/DMF. gf Reference 47. h Reference 48. i Reference 31. j Measured in chloroform at 120 K. k Measured in frozen DMF/ /EtOH. l Reference 32. (a) Are any of these systems rigorously axial? Explain your answer. (b) Give a qualitative discussion of the relative magnitudes of the hyperfine constants (see the malonate radical example from lecture.) (c) Draw a d-orbital splitting diagram for a VOL4 complex; for simplicity, assume L is just a σ donor. (d) Use the g-value information for VO(tsalen) to determine as many of the d-orbital energy splittings as you can from the information given assuming the orbitals have pure d-character (for V 4+, ζ = 248 cm 1 ).

3 (e) From the trends in the g-values, what can you conclude concerning the donor strengths of the complexes 1 5 versus the other systems in the table? Can you provide a chemical bonding rationalization for your conclusions? (f) Consider the effects of covalence in the calculation of the g-values for VO(tsalen) and discuss how the important ligand bonding effects should influence both g and g. (4) A graduate student (in physics, no doubt) measured EPR spectra of a nitrogen-doped diamond with the applied magnetic field aligned along 3 different directions with respect to the crystallographic axes: the [111], [100], and [110] directions. Unfortunately, the student forgot to label the spectra! Supply the correct H-direction labels to the spectra and fully explain your choices. (Hint: Look at slides 37-9 in the first set of EPR notes and look at the diamond structure using Crystalmaker I suggest that you align each of the directions with the vertical axis in turn and slowly autorotate the structure about the vertical axis. The relative intensities in the spectra are important!) If you cheat and find a literature source for these spectra, you should acknowledge your source and a full explanation for the answer must still be provided.

4 (5) The following EPR data on a series of high-spin octahedral metal hexafluoride complexes are taken from Proc. Roy. Soc. (London), 236, 535 (1956). Complex g Ametal AF Imetal Temp cm cm 1 MnF6 4 gx = gy = gz = Mn: 5 /2 300 K CoF6 4 gx = 2.6 Ax = 43 Ax = Co: 5 /2 20 K gy = 6.05 Ay = 217 Ay = 32 gz = 4.1 Az = 67 Az = 21 CrF6 3 A = 2.00 A = 16.2 A = 3 53 Cr: 3 /2 300 K (a) Explain why the CrF6 3 and MnF6 4 g-values are isotropic and close to ge (2.0023) while the CoF6 4 g-values are highly anisotropic and deviate markedly from ge. (b) Why are the magnitudes of the fluoride hyperfine coupling constants for CoF6 4 and MnF6 4 much larger than those for CrF6 3? (6) A solution of [Rh(py)4Cl2]Cl in acetonitrile and 0.1 M (TBA)Cl was electrochemically reduced and the EPR spectrum measured (Inorg. Chem. 28, 3905 (1989)) for the product is shown below (py = pyridine, TBA = tetrabutylammonium).

5 (a) The stereochemistry of the complex (cis- or trans-) is not explicitly indicated. What is it? (Why?) Has the symmetry changed in the reduced complex? (b) What are the g-value(s)? (g = ± for DPPH) (c) How do the g-value(s) enable you to predict which orbital the unpaired resides in? (Give a concise, but complete, explanation.) (d) Draw a d-orbital splitting diagram and use the g-value information to determine as many of the d-orbital energy splittings as you can from the information given (for Rh 2+, ζ = 1220 cm 1 ). Indicate whether the value you calculate this way is likely to be correct if not, is it likely to be too large or too small? (Why?) (e) The hyperfine splitting pattern has unusual intensities. Explain what is likely to be responsible for this (Hints: Notice that the outer two lines might best be described as barely split into doublets.) (f) Compute estimates for the relevant hyperfine coupling parameter(s) properly label these as you hopefully did for the g-values.

Assignment 3 Due Tuesday, March 31, 2009

Assignment 3 Due Tuesday, March 31, 2009 Assignment 3 Due Tuesday, March 31, 2009 Download and read the Math_techniques.pdf file from the Handouts section of the class web page. Do problems 1, 2, and 4 following section C (for problem 1, you

More information

Reading. What is EPR (ESR)? Spectroscopy: The Big Picture. Electron Paramagnetic Resonance: Hyperfine Interactions. Chem 634 T.

Reading. What is EPR (ESR)? Spectroscopy: The Big Picture. Electron Paramagnetic Resonance: Hyperfine Interactions. Chem 634 T. Electron Paramagnetic Resonance: yperfine Interactions hem 63 T. ughbanks Reading Drago s Physical Methods for hemists is still a good text for this section; it s available by download (zipped, password

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

Chem 673, Problem Sets 4 & 5 Due Tuesday, December 3, Problems from Carter: Chapter 6: 6.1, 6.3, 6.7, 6.9 Chapter 7: 7.2a,b,e,g,i,j, 7.

Chem 673, Problem Sets 4 & 5 Due Tuesday, December 3, Problems from Carter: Chapter 6: 6.1, 6.3, 6.7, 6.9 Chapter 7: 7.2a,b,e,g,i,j, 7. Chem 673, Problem Sets 4 & 5 Due Tuesday, December 3, 2013 Problems from Carter: Chapter 6: 6.1, 6.3, 6.7, 6.9 Chapter 7: 7.2a,b,e,g,i,j, 7.6, (1) Use the angular overlap table given on the back page of

More information

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments

Nuclear Quadrupole Resonance Spectroscopy. Some examples of nuclear quadrupole moments Nuclear Quadrupole Resonance Spectroscopy Review nuclear quadrupole moments, Q A negative value for Q denotes a distribution of charge that is "football-shaped", i.e. a sphere elongated at the poles; a

More information

Appendix II - 1. Figure 1: The splitting of the spin states of an unpaired electron

Appendix II - 1. Figure 1: The splitting of the spin states of an unpaired electron Appendix II - 1 May 2017 Appendix II: Introduction to EPR Spectroscopy There are several general texts on this topic, and this appendix is only intended to give you a brief outline of the Electron Spin

More information

EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals

EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals EPR Studies of Cu 2+ in dl-aspartic Acid Single Crystals B. Karabulut, R. Tapramaz, and A. Bulut Ondokuz Mayis University, Faculty of Art and Sciences, Department of Physics, 55139 Samsun, Turkey Z. Naturforsch.

More information

Spectrum simulation using the Bruker program Simfonia

Spectrum simulation using the Bruker program Simfonia Spectrum simulation using the Bruker program Simfonia This is the start screen: To load an experimental spectrum, click on : and it will enable simulation of fluid solution (i.e. isotropic) spectra.

More information

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3)

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3) Chemistry 126 Molecular Spectra & Molecular Structure Week # 7 Electron Spin Resonance Spectroscopy, Supplement Like the hydrogen nucleus, an unpaired electron in a sample has a spin of I=1/2. The magnetic

More information

OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe

OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe R540 Philips Res. Repts 20, 206-212, 1965 OBSERVATION OF Se 77 SUPERHYPERFINE STRUCTURE ON THE ELECTRON-PARAMAGNETIC RESONANCE OF Fe3+ (3d S ) IN CUBIC ZnSe by J. DIELEMAN Abstract The electron-paramagnetic-resonance

More information

Hour Examination # 4

Hour Examination # 4 CHEM 346 Organic Chemistry I Fall 2014 Exam # 4 Solutions Key Page 1 of 12 CHEM 346 Organic Chemistry I Fall 2014 Instructor: Paul Bracher Hour Examination # 4 Wednesday, December 3 rd, 2014 6:00 8:00

More information

EPR of photochromic Mo 3+ in SrTiO 3

EPR of photochromic Mo 3+ in SrTiO 3 EPR of photochromic Mo 3+ in SrTiO 3 Th. W. Kool Van t Hoff Institute for Molecular Sciences, University of Amsterdam NL 1018 WV Amsterdam, the Netherlands March 2010 Abstract In single crystals of SrTiO

More information

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports I II III IV V VI VII VIII IX X Total This exam consists of several problems. Rough point values

More information

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond.

Mo 2+, Mo 2+, Cr electrons. Mo-Mo quadruple bond. Problem 1 (2 points) 1. Consider the MoMoCr heterotrimetallic complex shown below (Berry, et. al. Inorganica Chimica Acta 2015, p. 241). Metal-metal bonds are not drawn. The ligand framework distorts this

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

EPR Study of the Dynamic Jahn-Teller Effect of Cu2+ in CdBa(HC00) 4-2H 2 0 Single Crystals

EPR Study of the Dynamic Jahn-Teller Effect of Cu2+ in CdBa(HC00) 4-2H 2 0 Single Crystals EPR Study of the Dynamic Jahn-Teller Effect of Cu2+ in CdBa(HC00) 4-2H 2 0 Single Crystals Hüseyin Kalkan, Sehriman Atalay, and Ismet Senel Department of Physics, Faculty of Arts and Sciences, Ondokuz

More information

Chm 363. Spring 2017, Exercise Set 3 Transition Metal Bonding and Spectra. Mr. Linck. Version 1.5 March 9, 2017

Chm 363. Spring 2017, Exercise Set 3 Transition Metal Bonding and Spectra. Mr. Linck. Version 1.5 March 9, 2017 Chm 363 Spring 2017, Exercise Set 3 Transition Metal Bonding and Spectra Mr. Linck Version 1.5 March 9, 2017 3.1 Transition Metal Bonding in Octahedral Compounds How do the metal 3d, 4s, and 4p orbitals

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information

Chem 1C Midterm 2 Practice Test 1

Chem 1C Midterm 2 Practice Test 1 Chem 1C Midterm 2 Practice Test 1 First initial of last name Name Perm Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or missing units. Calculators

More information

2. Which of the following salts form coloured solutions when dissolved in water? I. Atomic radius II. Melting point III.

2. Which of the following salts form coloured solutions when dissolved in water? I. Atomic radius II. Melting point III. 1. Which pair of elements reacts most readily? A. Li + Br 2 B. Li + Cl 2 C. K + Br 2 D. K + Cl 2 2. Which of the following salts form coloured solutions when dissolved in water? I. ScCl 3 II. FeCl 3 III.

More information

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS

Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS Name CHM 4610/5620 Fall 2016 December 15 FINAL EXAMINATION SOLUTIONS I. (80 points) From the literature... A. The synthesis and properties of copper(ii) complexes with ligands containing phenanthroline

More information

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory

PAPER No. 7: Inorganic chemistry II MODULE No. 5: Molecular Orbital Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic chemistry II 5, Molecular Orbital Theory CHE_P7_M5 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Ligand Field

More information

Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts.

Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts. Scalar (contact) vs dipolar (pseudocontact) contributions to isotropic shifts. Types of paramagnetic species: organic radicals, and complexes of transition metals, lanthanides, and actinides. Simplest

More information

Proposed topics. Information content in g. Hyperfine coupling REVIEW -1. For a free electron, ge =

Proposed topics. Information content in g. Hyperfine coupling REVIEW -1. For a free electron, ge = Proposed topics pg 1-1- EPR fundamentals for an isotropic S=1/2 system, -2- hyperfine effects on S=1/2, -3- anisotropy, effects of spin-orbit coupling, and biradicals. -4- a qualitative fly-over of transition

More information

ESR spectroscopy of catalytic systems - a primer

ESR spectroscopy of catalytic systems - a primer ESR spectroscopy of catalytic systems - a primer Thomas Risse Fritz-Haber-Institute of Max-Planck Society Department of Chemical Physics Faradayweg 4-6 14195 Berlin T. Risse, 11/6/2007, 1 ESR spectroscopy

More information

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Chem 673, Problem Set 5 Due Thursday, December 1, 2005 otton, Problem 9.3 (assume D 4h symmetry) Additional Problems: hem 673, Problem Set 5 Due Thursday, December 1, 2005 (1) Infrared and Raman spectra of Benzene (a) Determine the symmetries (irreducible

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1

Problem Set 2 Due Tuesday, September 27, ; p : 0. (b) Construct a representation using five d orbitals that sit on the origin as a basis: 1 Problem Set 2 Due Tuesday, September 27, 211 Problems from Carter: Chapter 2: 2a-d,g,h,j 2.6, 2.9; Chapter 3: 1a-d,f,g 3.3, 3.6, 3.7 Additional problems: (1) Consider the D 4 point group and use a coordinate

More information

Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330

Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330 Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330 Division Physical Science and Engineering Division Course Number ChemS 330 Course Title Academic Semester Advanced Inorganic Chemistry I Fall

More information

Last Updated:

Last Updated: Last Updated: 2014 07 30 Generation of the EPR ignal MR and EPR are similar in a way that the amount of absorption energy required to for a transition between atomic or molecular states. pectroscopy generally

More information

FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL

FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL FORBIDDEN HYPERFINE TRANSITIONS IN ELECTRON SPIN RESONANCE OF Mn 2+ IN NaCl SINGLE CRYSTAL BY K. N. SHRIVASTAVA AND P'UTCHA VENKATESWARLU, F.A.Sc. (Department of Physics, Indian Institute of Technology,

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Dr. Fred O. Garces Chemistry 201

Dr. Fred O. Garces Chemistry 201 23.4 400! 500! 600! 800! The relationship between Colors, Metal Complexes and Gemstones Dr. Fred O. Garces Chemistry 201 Miramar College 1 Transition Metal Gems Gemstone owe their color from trace transition-metal

More information

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis:

Problem Set 2 Due Thursday, October 1, & & & & # % (b) Construct a representation using five d orbitals that sit on the origin as a basis: Problem Set 2 Due Thursday, October 1, 29 Problems from Cotton: Chapter 4: 4.6, 4.7; Chapter 6: 6.2, 6.4, 6.5 Additional problems: (1) Consider the D 3h point group and use a coordinate system wherein

More information

THE BONDING IN VANADYL ION COMPLEXES

THE BONDING IN VANADYL ION COMPLEXES THE BONDING IN VANADYL ION COMPLEXES Abstract This chapter describes how the degeneracy of a d ion is split in octahedral crystal field. The energy levels of a vanadyl ion water complex have further been

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

How to identify types of transition in experimental spectra

How to identify types of transition in experimental spectra 17 18 19 How to identify types of transition in experimental spectra 1. intensity 2. Band width 3. polarization Intensities are governed by how well the selection rules can be applied to the molecule under

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Magnetic Properties: NMR, EPR, Susceptibility

Magnetic Properties: NMR, EPR, Susceptibility Magnetic Properties: NMR, EPR, Susceptibility Part 3: Selected 5f 2 systems Jochen Autschbach, University at Buffalo, jochena@buffalo.edu J. Autschbach Magnetic Properties 1 Acknowledgments: Funding: Current

More information

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

UNIT-1 SOLID STATE. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion. UNIT-1 SOLID STATE 1 MARK QUESTIONS Q. 1. Name a liquefied metal which expands on solidification. Ans. Gallium (Ga) is a silvery white metal, liquid at room temp. It expands by 3.1% on solidifica-tion.

More information

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a. Transition Metals and Coordination Chemistry 1. In the transition metals section chemical similarities are found within a and across a. 2. What are 2 transition metals that have unique electron configurations?

More information

Organic Chemistry CHM 224

Organic Chemistry CHM 224 rganic Chemistry CHM 224 Exam I Review Questions This set of questions is a compilation of old exams and additional questions, and does not represent the typical length of an exam - this is WAY longer!

More information

Inorganic Spectroscopic and Structural Methods

Inorganic Spectroscopic and Structural Methods Inorganic Spectroscopic and Structural Methods Electromagnetic spectrum has enormous range of energies. Wide variety of techniques based on absorption of energy e.g. ESR and NMR: radiowaves (MHz) IR vibrations

More information

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A

Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class. Problem 1 (1 points) Part A Recommended Reading: 23, 29 (3rd edition); 22, 29 (4th edition) Ch 102 Problem Set 7 Due: Thursday, June 1 Before Class Problem 1 (1 points) Part A Kinetics experiments studying the above reaction determined

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

Synthesis and Characterization of Mn(salpn) Complexes. 1

Synthesis and Characterization of Mn(salpn) Complexes. 1 Synthesis and Characterization of Mn(salpn) Complexes. 1 The experiments that we will be performing this quarter are based upon two articles from the Journal of the American Chemical Society. You are required

More information

a Institute of Molecular Physics, Polish Academy of Sciences Smoluchowskiego 17/19, Poznań, Poland

a Institute of Molecular Physics, Polish Academy of Sciences Smoluchowskiego 17/19, Poznań, Poland Vol. 85 (1994) ACTA PHYSICA POLONICA A No. 3 EPR AND SPECTRAL STUDIES OF A MOLECULAR AND CRYSTAL STRUCTURE OF Cu(3,5-dimethylpyridine) ) 3(NO 3 2 S.K. HOFFMANN a, M.A.S. GOHER b, W. HILCZER a, J. GOSLAR

More information

Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330

Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330 Course Syllabus: Advanced Inorganic Chemistry I - ChemS 330 Division Physical Science and Engineering Division Course Number ChemS 330 Course Title Academic Semester Advanced Inorganic Chemistry I Fall

More information

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ Lecture notes Part 4: Spin-Spin Coupling F. olger Försterling October 4, 2011 So far, spins were regarded spins isolated from each other. owever, the magnetic moment of nuclear spins also have effect on

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

Chemistry 324 Final Examination

Chemistry 324 Final Examination Chem 324 Final Examination 2008 December 11, 2008 Page 1 of 8 Chemistry 324 Final Examination Thursday, December 11, 2008 Instructor: Dave Berg Answer all questions in the booklet provided; additional

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

NAME: Inorganic Chemistry 412/512 Final Exam. Please show all work, partial credit may be awarded.

NAME: Inorganic Chemistry 412/512 Final Exam. Please show all work, partial credit may be awarded. NAME: Inorganic Chemistry 412/512 inal Exam 110 minutes Please show all work, partial credit may be awarded. 1. Given the following ligand field splitting parameters (in cm 1 ): Δ (e 3+ ) = 14000 Δ T (e

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system

Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system PRAMANA c Indian Academy of Sciences Vol. 73, No. 6 journal of December 2009 physics pp. 1087 1094 Investigations of the electron paramagnetic resonance spectra of VO 2+ in CaO Al 2 O 3 SiO 2 system Q

More information

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry

Lesmahagow High School AHChemistry Inorganic and Physical Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Lesmahagow High School CfE Advanced Higher Chemistry Unit 1 Inorganic and Physical Chemistry Shapes of Molecules and Polyatomic Ions 1 Shapes of molecules Bonding and Electronegativity Revision A Covalent

More information

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20 PH575 Spring 2014 Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp. 205-214; Ch. 20 Simplified diagram of the filling of electronic band structure in various types of material,

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

IMPORTANT: Complete this section immediately.

IMPORTANT: Complete this section immediately. School of Chemistry, Durban s CHEM261: APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Duration: 2 hours Total marks: 100 External Examiner: Internal Examiner: Dr M Bala University of KwaZulu- Natal

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

You are advised to spend an equal amount of time on each question. All questions carry an equal number of marks.

You are advised to spend an equal amount of time on each question. All questions carry an equal number of marks. UNIVERSITY OF EAST ANGLIA School of Chemistry Main Series UG Examination 2014-15 INORGANIC CHEMISTRY CHE-2C32/5301B Time allowed: 2 hours Answer THREE questions. You are advised to spend an equal amount

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

!!!! Organic Chemistry CHM 224. Exam I Questions

!!!! Organic Chemistry CHM 224. Exam I Questions ld Exam I Questions - CHM 224 rganic Chemistry CHM 224 Exam I Questions This set of questions is a compilation of old exams, and does not represent the typical length of an exam - there are more examples,

More information

indicating the configuration they correspond to and predict their relative energy.

indicating the configuration they correspond to and predict their relative energy. Problem 1 (1 point) Three center four electron (3c/4e) bonds were introduced in class. John F. Berry (Dalton Trans. 2012, 41, 700-713) discusses the effect of the larger density of states for the 3c/4e

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Honors Chemistry - Unit 4 Bonding Part I

Honors Chemistry - Unit 4 Bonding Part I Honors Chemistry - Unit 4 Bonding Part I Unit 4 Packet - Page 1 of 8 Vocab Due: Quiz Date(s): Test Date: UT Quest Due: Bonding Vocabulary: see separate handout assignment OBJECTIVES: Chapters 4-8 Be able

More information

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Name: Class: Date: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Class: Date: SCH4U Chapter 4 Formative Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements about

More information

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches

A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible Molecular Photoswitches Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 A Combined Optical and EPR Spectroscopy Study: Azobenzene-Based Biradicals as Reversible

More information

FINAL EXAMINATION 12/17/93.

FINAL EXAMINATION 12/17/93. INORGANIC CHEMISTRY 413/571 FINAL EXAMINATION 12/17/93. DR. J. SHERIDAN Write all answers in the answer book. WRITE NEATLY. This will help me to understand your answers and maybe get you a few more points!

More information

COMPLEXES AND FIRST-ROW TRANSITION ELEMENTS

COMPLEXES AND FIRST-ROW TRANSITION ELEMENTS COMPLEXES AND FIRST-ROW TRANSITION ELEMENTS A Macmillan Chemistry Text Consulting Editor: Dr Peter Sykes, University of Cambridge Other Titles of Re Ia ted Interest THE HEAVY TRANSITION ELEMENTS: S. A.

More information

Chemical Bonding Basic Concepts

Chemical Bonding Basic Concepts Chemical Bonding Basic Concepts Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. Group e - configuration # of valence

More information

Chem 634, Assignment 2 Due Tuesday, February 27, 2018

Chem 634, Assignment 2 Due Tuesday, February 27, 2018 Chem 634, Assignment Due Tuesday, February 7, 018 The following two questions were given on the January 018 cumulative eam. They are not assigned here, but you should be able to fully answer them for study

More information

2011 CHEM 120: CHEMICAL REACTIVITY

2011 CHEM 120: CHEMICAL REACTIVITY 2011 CHEM 120: CHEMICAL REACTIVITY INORGANIC CHEMISTRY SECTION Lecturer: Dr. M.D. Bala Textbook by Petrucci, Harwood, Herring and Madura 15 Lectures (4/10-29/10) 3 Tutorials 1 Quiz 1 Take-home test https://chemintra.ukzn.ac.za/

More information

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9 Unit 9 COORDINATION COORDINA COMPOUNDS I. Multiple Choice Questions (Type-I) 1. Which of the following complexes formed by Cu 2+ ions is most stable? (i) Cu 2+ + 4NH 3 [Cu(NH 3 ] 2+, logk = 11.6 (ii) Cu

More information

Transition Metals. Monday 09/21/15. Monday, September 21, 15

Transition Metals. Monday 09/21/15. Monday, September 21, 15 Transition Metals Monday 09/21/15 Agenda Start Topic 13.2 - Colored Complexes Topic 13.1 - First Row Transition Elements handout (this will be classwork for Wednesday & Thursday) We will go over homework

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Anion binding vs. sulfonamide deprotonation in functionalised ureas

Anion binding vs. sulfonamide deprotonation in functionalised ureas S Anion binding vs. sulfonamide deprotonation in functionalised ureas Claudia Caltagirone, Gareth W. Bates, Philip A. Gale* and Mark E. Light Supplementary information Experimental Section General remarks:

More information

Homework for Chapter 17 Chem 2320

Homework for Chapter 17 Chem 2320 Homework for Chapter 17 Chem 2320 I. Cumulated, isolated, and conjugated dienes Name 1. Draw structures which fit the following descriptions. Use correct geometry! a conjugated diene with the formula C

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Crystalline Solids - Introduction M.P. Vaughan Overview Overview of course Crystal solids Crystal structure Crystal symmetry The reciprocal lattice Band theory

More information

Bonding Notes Types of bonds we will see:

Bonding Notes Types of bonds we will see: Bonding Notes Types of bonds we will see: 1. Ionic 2. Covalent 3. Metallic 4. Intermolecular 5. The outermost electrons are the electrons 6. The outermost electron orbital is the. 7. Bonds always form

More information

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated

π donor L L L π acceptor has empty π orbitals on ligand in to which d e- from M can be donated Name KEY D# Chemistry 350 Fall 2005 Exam #4, November 18, 2005 50 minutes CCM 100 points on 4 pages + a useful page 5 1. Consider the molecular orbital diagram shown for M N. (16 pts) a) Indicate the following:

More information

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2

Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O 2 Electronic Supplementary Information for: Reaction Landscape of a Pentadentate N5-Ligated Mn II Complex with O - and H O Includes Conversion of a Peroxomanganese(III) Adduct to a Bis(µ- O)dimanganese(III,IV)

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Mn(acetylacetonate) 3. Synthesis & Characterization

Mn(acetylacetonate) 3. Synthesis & Characterization Mn(acetylacetonate) 3 Synthesis & Characterization The acac Ligand Acetylacetonate (acac) is a bidentate anionic ligand ( 1 charge). We start with acetylacetone (or Hacac) which has the IUPAC name 2,4

More information

CHEM Inorganic Chemistry for High School Teachers II (Spring 2014)

CHEM Inorganic Chemistry for High School Teachers II (Spring 2014) CHEM 821 -- Inorganic Chemistry for High School Teachers II (Spring 2014) 3 credit hours Online Format (January 13 May 8, 2014) Instructor: Christopher L. Exstrom Office: 405C Bruner Hall of Science Phone:

More information

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Chem 324 Midterm 1 Fall 2011 Version 1 Page 1 of 9 Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Name: Answer all questions on the paper (use the back if necessary). There

More information

6.2. Introduction to Spectroscopic states and term symbols

6.2. Introduction to Spectroscopic states and term symbols Chemistry 3820 Lecture Notes Dr. M. Gerken Page62 6.2. Introduction to Spectroscopic states and term symbols From the number of absorption bands we have already seen that usually more d-d transitions are

More information

CHEMISTRY REVIEW REVIEW WORKSHEET

CHEMISTRY REVIEW REVIEW WORKSHEET The student should be able to: 1. Describe the classification of matter. 2. Describe the conservation of mass. 3. Identify products and reactions in a chemical equation. 4. Describe the structure of an

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Do Now. What are valence electrons?

Do Now. What are valence electrons? Do Now What are valence electrons? Bonding Think of an atom as a HOTEL the front desk is the nucleus. Each room can hold a maximum of 2 electron guests, or a total of 8 electrons per floor. Except the

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect 5.03, Inorganic Chemistry Prof. Daniel G. ocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect A substitution reaction is one in which an existing ligand on a metal center is replaced by

More information

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ;

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ; Chemistry 4715/8715 Physical Inorganic Chemistry Fall 2017 12:20 pm 1:10 pm MWF 121 Smith Instructor: Text: be made available). Kent Mann; 668B Kolthoff; 625-3563; krmann@umn.edu R.S. Drago, Physical Methods

More information

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet

Chemistry A: States of Matter Packet Name: Hour: Page 1. Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 1 Chemistry A States of Matter Packet Chemistry A: States of Matter Packet Name: Hour: Page 2 Worksheet #1: States of Matter In this packet we will

More information