Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin

Size: px
Start display at page:

Download "Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin"

Transcription

1 Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin The iron in heme is the binding site for oxygen and peroxide Heme is iron protoporphyrin IX. Functional aspects in Mb O O Fe C State University O O - O O - The iron in heme is the binding site for oxygen and peroxide The iron in heme is the binding site for oxygen and peroxide Heme is iron protoporphyrin IX. Functional aspects in Mb 1. Discrimination against CO binding. O C Fe Heme is iron protoporphyrin IX. Functional aspects in Mb 1. Discrimination against CO binding. Fe 3+. O is the physiologically relevant ligand, but it can oxidize iron (autooxidation). O O - O O - O O - O O - Myoglobin The substrate of DHP binding site PDB: 1A6G SCOP Class: All α proteins Superfamily: Globin-like Family: Globins 4-iodophenol Vojetchovsky, Berendzen, Schlicting Lebioda et al., J.Biol.Chem. (000) 75, 1871

2 Catalytic activity in a hemoglobin DHP + DBQ + H O Dibromo Quinone Tribromo phenol Conformational Substates Proteins can assume a huge number of slightly different structures (conformational substates), which can be represented by nearly isoenergetic minima in an energy landscape with a typical barrier height of 10 kj/mol. What is the functional role of these substates? DHP + TPB + H O k B T Enzymatic catalysis involves lowering of the energy barrier H* H* Protein fluctuations are certainly required for catalysis. However, the important question is: How is specificity built into the catalytic mechanism? on-equilibrium relaxation Protein-substrate, protein-protein and protein-da interactions usually do not occur under equilibrium conditions in living systems. on-equilibrium relaxations from one state to another occur in many situations in biology: Ligand binding and transport Signaling Electron Transfer Enzymatic Catalysis Protein Folding MbCO The peptide backbone is shown as a ribbon that follows the a-helical structure of myoglobin. The structure shown is at equilibrium. Conformational substates are called A states. Teng, Srajer, Moffat ature Struct. Biol. (1994), 1, 701 Mb:CO The photoproduct. Iron moves out of the heme plane when CO is photolyzed. CO moves to a docking site and is parallel to the heme plane. Conformational substates are called B states.

3 Deoxy Mb The deoxy structure has no CO ligand. The protein backbone has shifted to permit a water to enter the distal pocket. This form is often referred to an S state. MbCO Mb:CO k 1 k 3 Deoxy Mb A comparison of three structures shows the changes in both proximal and distal histidines. Protein Data Bank 1A6 1AJG 1AJH Deoxy Mb Mb:CO MbCO k 3 k 1 These structures represent the three states of a kinetic scheme. Teng, Srajer, Moffat ature Struct. Biol. (1994), 1, 701

4 Absorption Spectroscopy: Introduction to Vibronic Coupling e g Porphine orbitals e g The four orbital model is used to represent the highest occupied and lowest unoccupied MOs of porphyrins a u a 1u The two highest occupied orbitals (a 1u,a u ) are nearly equal in energy. The e g orbitals are equal in energy. Transitions occur from: a 1u e g and a u e g. a u π M 1 e g π a 1u π The transitions from ground state π orbitals a 1u and a u to excited state π* orbitals e g can mix by configuration interaction Two electronic transitions are observed. One is very strong (B or Soret) and the other is weak (Q). The transition moments are: M B = M 1 + M M Q = M 1 -M 0 a u π M 1 M e g π a 1u π The porphine ring is an aromatic ring that has a fourfold symmetry axis The ring and metal can be considered separately. The ring has been succesfully modeled using the Gouterman four orbital model. In globins the iron is Fe(II) and can be either high spin or low spin. MbCO low spin Deoxy Mb - high spin

5 Four orbital model of metalloporphyrin spectra There are four excited state configurations possible in D 4h symmetry. These are denoted B (strong) and Q(weak). B y0 = 1 a ue gy + a 1u e gx Q y0 = 1 a ue gy a 1u e gx B x0 = 1 a ue gx + a 1u e gy Q x0 = 1 a ue gx a 1u e gy The absorption cross section The absorption cross section for a Franck- Condon active transition is proportional to: <i eσ f> E f E i hω iγ f Here i and f represent individual vibrational levels in each electronic manifold. The polarization can be σ = x, y, or z. The Herzberg-Teller expansion The Herzberg-Teller expansion of a particular vibronic level is given by: nv = n 0 v + Σ r Σ K r H Q K n u Q K v E n,v E r,u r u This expansion describes how electronic states n and r can mix by virtue of distortions of the molecular geometry. Vibronic matrix elements Interstate Herzberg-Teller coupling: B y0 H Q Q y 0 = a u H Q a u a 1u H Q a 1u + e gy H Q e gy e gx H Q e gx Intrastate Jahn-Teller coupling: Q y0 H Q Q y 0 = a 1u H Q a 1u + a u H Q a u + e gy H Q e gy + e gx H Q e gx = Vibronic theory of absorption The extinction coefficient is proportional to the square of the transition moment: <i eσ f> <0 v> Σ v + E fv E i0 hω iγ f FC part Transition moments in the four orbital model with configuration interaction r σ0 G eσ Q σ 0 R σ 0 G eσ B σ 0 The mixing of the B and Q states is represented by the angle α: Σ r Σ K <r H Q K f ><u Q K v><i eσ r> E f,v E r,u E fv E i0 hω iγ f <0 u> Vibronic part 0 r σ = G eσ Q σ = cos α G eσ Q σ 0 = cos α r σ0 +sin α R σ 0 R σ = G eσ B σ = cos α G eσ B σ = cos α R 0 0 σ +sin α r σ + sin α G eσ B σ 0 + sin α G eσ Q σ 0

6 The B and Q bands for B 1g and B g symmetry vibronic matrix elements = R σ 0 sin α E Q0 hω + Γ + cos α Q E B0 hω + Γ B Franck-Condon part Vibronic lineshapes as a function of angle α for B 1g vibronic modes + R σ 0 b g sin α sin α hω K cos α cos α + E 0 Q E 0 B + hω E Q1 hω + Γ Q + cos α sin α hω K sin α cos α + E 0 Q E 0 B hω E B1 hω + Γ B Herzberg-Teller part Vibronic lineshapes for B 1g modes as a function of vibronic strength (α =1 o ) Vibronic lineshapes for B 1g modes as a function of vibronic strength (α =15 o ) The B and Q bands for A g symmetry vibronic matrix elements Vibronic lineshapes for A g modes as a function of vibronic strength (α =15 o ) = R σ 0 sin α E Q0 hω + Γ + cos α Q E B0 hω + Γ B Franck-Condon part 0 + R σ a g cos α E Q0 E B0 + hω E Q1 hω + Γ Q + sin α E Q0 E B0 hω E B1 hω + Γ B Herzberg-Teller part

7 Ligand recombination is a sum of single exponential processes at room temperature S(t) =Φ ge e (k gem + k esc )t + Φ bi e k bi t His - FeP::CO The heme iron center moves out of the heme plane and the porphyrin macrocycle domes upon deligation of CO CO is photolyzed Fe displacement k escape His-FeP + CO Difference spectrum from nanosecond transient absorption spectroscopy. hν k geminate His-FeP-CO k bimolecular Planar Heme Domed Heme The ligation of CO changes the spin state of the heme iron S = 0 S = Absorption spectra for MbCO and deoxy Mb Soret Band Q Band d z d x -y d xz,d yz d xy Low spin Fe(II) d x -y d z d yz d xy d xz High spin Fe(II) Infrared Spectroscopy Structural heterogeneity in myoglobin has been proposed based on the observation of multiple CO stretching bands The bands are observed at 1966 cm -1, 1945 cm -1, and 197 cm -1. The heterogeneity has been attributed to conformational substates. Rebinding to each substate is also observed to be non-exponential. Are there many relevant tiers of substates?

8 The origin of the A states is the hydrogen bonding conformations to CO Infrared spectra of myoglobin L9 Distal V68 F43 H64 Proximal Protein Data Bank MGK Wild type Mb IR spectra show multiple bands Distal L9 V68 Mutants at the V68 position also show multiple bands Distal L9 V68 F43 H64 F43 H64 Quillin, Phillips et al. JMB 1993, 34, Proximal Proximal The H64V mutant shows a single IR band Distal L9 V68 DFT calculation of ν CO frequencies F43 H64 Proximal Multiple hydrogen bonding interactions

9 DFT calculation of ν CO frequencies DFT calculation of ν CO frequencies Single hydrogen bonding interaction o hydrogen bonding interaction DFT calculation in an applied electric field DFT calculation of ν CO frequencies F Franzen JACS (00) 14, 1371 Stark tuning rate is.4 cm -1 /(MV/cm). This is value predicted from correlations shown on right. Park and Boxer JPC 1999, 103, 9013 Franzen JACS (00) 14, 1371 At less than 10K photolyzed Mb*CO recombines by nuclear tunneling Cryogenic Spectroscopy k = Ae H BA /RT

10 Current hypothesis The iron coordinate controls the barrier to CO rebinding and explains the distribution of energy barriers. Iron relaxation hypothesis rests on the assignment of charge transfer band III Experimental observation: Mb*CO at t 1 Austin et al. Biochemistry 1975, 14, 5355 Steinbach et al. Biochemistry 1991, 30, 3988 Iron relaxation hypothesis rests on the assignment of charge transfer band III Experimental observation: Iron relaxation hypothesis rests on the assignment of charge transfer band III Experimental observation: Kinetic holeburning Mb*CO at t Mb*CO t -t 1 Steinbach et al. Biochemistry 1991, 30, 3988 Steinbach et al. Biochemistry 1991, 30, 3988 Assignment of band III The interpretation of the data depends critically on the assignment of band III. Band III has been assigned based on single crystal absorption data. However, there have been problems with the interpretation from the very earliest experiments. Interpretation of kinetic hole burning Conformational substates are correlated with the band III maximum and the enthalpy of rebinding and the rate constant distribution. Steinbach et al. Biochemistry 1991, 30, 3988 ν (cm -1 ) H (kj/mol) log(t/s)

11 Ligand dynamics, protein dynamics, and fast recombination can be monitored by ultrafast spectroscopy Ultrafast Spectroscopy d:ylf Laser Mode locked Ti:sapphire Laser Delay line Time resolution from 100 fs to nanoseconds. Regenerative amplifier BBO Frequency doubled 100 fs pulses 1000 Hz MbCO Sample Continuum ZAP! Ultrafast near-infrared spectroscopy shows that a protein relaxation follows photolysis Ultrafast mid-infrared shows CO trapping in the distal pocket Two CO orientations in infrared bands B 1 and B Spectral bands are rotamers of CO in Mb O C Mb:CO Band III at 10 ps, 10 ns, 100 ns, and 10 µs on-exponential band III decay in buffer solution η = 1cp Jackson, Lim, Anfinrud Chem. Phys. 1994, 180, C O ature structural Biology Lim, Jackson, Anfinrud, 1997, 4, 09 What is the structure origin of the viscosity dependent protein relaxation? The heme iron out-of-plane motion could change heme spectra - band III a 1u,a u dπ charge transfer band and therefore its frequency maximum is thought to depend on the heme iron position. - rebinding enthalpy H is thought to depend on the heme iron position and there is a connection between H and the position of band III (kinetic hole burning). The iron hypothesis The red shift of the Soret band and band III by the same amount ν = 140 cm -1, suggests that changes in a single coordinate affect both the Soret band and band III. We expect that the primary coordinate associated with the heme relaxation from Mb* to Mb involves heme doming, characterized by the iron out-of-plane displacement Srajer and Champion Biochemistry (1991), 30, 7390 The similarity of the deoxyheme (Soret) spectral changes to those observed for hemoglobin suggests that they correspond to a displacement of the iron relative to the heme plane that is coupled to a protein conformational change on the proximal side of the heme. Ansari, Hofrichter, Eaton et al. Science (199), 56, 1976

12 The iron hypothesis As the effective coordinate involved in the timedependent barrier (responsible for non-exponential O rebinding kinetics), we focus on the Fe-heme distance. It is, in turn, modulated by the protein relaxation. The latter is the major factor that regulates the distribution of geminate rebinding rates over a picosecond time scale at room temperature. Petrich, Karplus, and Martin Biochemistry (1991), 30, 3986 What structural feature is responsible for the relaxation? Docking site Iron An alternative view of relaxation Protein relaxation involves CO docking not the iron out-of-plane motion. 1. Iron out-of-plane motion occurs in < ps.. O recombination is biexponential. The two components are due to the rotamers of O. 3. The Soret band and band III shift couple to distal mutations, and are not coupled to proximal mutations. 4. Band III is a vibronically coupled charge transfer band! Band III is coupled exclusively to non-totally symmetric modes. 5. MCD spectra are consistent with vibronic coupling model. 6. Temperature dependent ν Fe-L mode is consistent with anharmonic coupling and not conformational substates in deoxy Mb. Ultrafast O recombination kinetics show an acceleration in rate with increasing η Picosecond kinetics of photolyzed MbO Shreve, Franzen, and Dyer JPC 1999, 103,7969 Maximum entropy method 1. Two populations. Tends towards a single population at high η FTIR data show that there are two populations of O The lower wavenumber band corresponds to a lower barrier B 1 B Photoproduct states can interconvert even at 10 K Miller, Chance et al. Biochemistry 1997, 40, 1199 Protein relaxation can be monitored by Soret band and Band III frequency shifts 50 K Band III shift Observed in 75% glycerol/buffer Comparison of time-dependent frequency shifts 90 K 50 K 50 K Soret band shift η = 30 cp at 90 K η = 300 cp at 50 K Franzen and Boxer JBC 1997, 7, 9655

13 Time-resolved absorption spectroscopy shows protein relaxation following photolysis does not depend on the proximal ligand A MbCO in 75% glycerol/buffer solution. CO rebinding progress is monitored by A. Protein relaxation monitored by ν of the absorption band. Franzen and Boxer JBC 1997, 7, 9655 ear-infrared bands of heme in deoxy myoglobin Magnetic Circular Dichroism Absorption Circular Dichroism I Band III II III IV a,c axis a axis c axis Frequency (cm -1 ) Single crystal polarized absorption spectra Eaton et al. JACS 1978, 100, 4991 ear-infrared charge transfer bands of the heme in deoxy myoglobin Eaton et al. JACS 1978, 100, 4991 Raman Spectroscopy A resonance Raman spectrum is obtained by laser light scattering Laser Lens Sample Detector Spectrograph Resonance Raman spectrum for excitation of heme Soret band Soret Band B Band Excitation Laser Q Band Raman spectrum Inelastic light scattering produces a frequency shift. There is exchange of energy between the vibrations of the molecule and the incident photon.

14 Soret (B) band Resonance Raman spectra of MbCO and Deoxy Mb B band Resonance Raman spectra of MbCO and Deoxy Mb ν 8 The cooperative R - T switch relies on iron displacement to communicate between α and β subunits Ultrafast resonance Raman spectroscopy shows that heme doming occurs in 1 ps Equilibrium HbCO Hemoglobin is composed of two α and two β subunits whose structures resemble myoglobin. Eaton et al. ature Struct. Biol. 1999, 6, 351 Difference spectra obtained by subtraction of the red spectrum from spectra obtained at the time delays shown. Franzen et al. ature Struct. Biol. (1994) 1, 30 The frequency of the iron-histidine vibration shows strain in T state The comparison of photolyzed HbCO in the R state and the equilibrium T state. Hb*CO at 10 ns Fe-His = 30 cm -1 Deoxy Hb Fe-His = 16 cm -1 The lower frequency indicates weaker bonding interaction and coupling to bending modes. λ exc = 435 nm Fe-His Hb*CO 10 ns R-state Deoxy Hb T-state The motion of the F-helix tugs on the proximal histidine and introduces strain Fe H Rstate T state The frequency lowering in the T state arises from weaker Fe-His ligation and from anharmonic coupling introduced by the bent conformation of the proximal histidine. Fe H

15 Time-resolved resonance Raman can follow the R - T structure change Strain is introduced in stages as intersubunit contacts are made. Based on the x-ray data it was proposed that the iron displacement from the heme plane is a trigger for the conformational changes. Scott and Friedman JACS 1984, 106, 5877 Time evolution Raman Shift (cm -1 ) Hb*CO 10 ns 100 ns 400 ns 1 µs 8 µs 15 µs 40 µs 60 µs 10 µs Deoxy Hb Many Peroxidases belong to the Cytochrome c Peroxidase family PDB: 1AF Cytochrome c Peroxidase (CCP) Class: All α proteins Superfamily: Heme peroxidases Family: CCP-like Goodin and McCree Scripps Institute PDB: ATJ Horseradish Peroxidase (HRP) Class: All α proteins Superfamily: Heme peroxidases Family: CCP-like Hendrickson et al. Biochemistry (1998) 37, 8054 Dehaloperoxidase is a peroxidase that belongs to the globin family Comparison of DHP and Mb Structures 比起 DHP 和 Mb 结构 PDB: 1A6G Myoglobin (Mb) Class: All α proteins Superfamily: Globin-like Family: Globins Vojetchovsky, Berendzen, Schlichting PDB: 1EW6 Dehaloperoxidase (DHP) Class: All α proteins Superfamily: Globin-like Family: Globins Lebioda et al. J.Biol.Chem (000) Mb DHP Resonance Raman spectroscopy of iron-histidine stretching mode of deoxy dehaloperoxidase Model for proximal hydrogen bonding Peroxidase Catalytic Triad Asp-His-Fe His Fe The frequency of the Fe-His mode is intermediate between that of myoglobin (HHMb) and horseradish peroxidase (HRP). Franzen et al., JACS (1998), 10, Asp This is the push In peroxidase mechanism Franzen JACS 001,13, 1578

16 Model for proximal hydrogen bonding Dehaloperoxidase Catalytic Triad C=O-His-Fe? Backbone C=O His Fe Hydrogen bond strength is intermediate between Mb and HRP/CcP. General expression for Raman scattering transition polarizability The transition polarizability involves an electric field interaction for the incident wave σ and the scattered wave ρ: α ρσ if = Σ n i eσ n n eρ f E n E f hω iγ n Franzen JACS 001,13, 1578 Raman scattering transition polarizability for vibronic bands Substituting in the H-T expansion we have for σ: α ρσ 01 = Σ v and for ρ: α ρσ 01 = Σ v i0 eσ r0 i0 eσ n0 r0 H/ Q n1 E r0 E n1 1 Q 0 n1 eρ i1 E n1 E i0 hω iγ n 0 Q 1 r1 H/ Q n0 E r1 E n0 E n0 E i0 hω iγ n r1 eρ i1 Vibronic matrix elements for B 1g and B g vibronic modes bg 0 α xy = b g R σ sin α sin α hω Κ b g R σ 0 sin α cos α sin α E B0 E Q0 hω Κ sin α cos α cos α + E B0 E Q0 + hω Κ E Q0 hω + Γ Q E Q1 hω + Γ Q sin α sin α hω Κ + cos α sin α hω Κ cos α sin α hω Κ sin α cos α sin α + E B0 E Q0 hω Κ E B0 hω + Γ B sin α cos α sin α E B0 E Q0 + hω Κ E B1 hω + Γ B Vibronic Raman excitation profile as a function of angle α for B 1g modes Vibronic Raman excitation profile for the Q band for B 1g modes Predicted Jahn-Teller enhancement

17 Vibronic Raman excitation profile as a function of vibronic strength of B 1g modes for α = 1 o Vibronic Raman excitation profile as a function of vibronic strength of B 1g modes for α = 15 o ag α xy Vibronic matrix element for A g vibronic modes = a g R σ 0 cos α sin α Vibronic Raman excitation profile as a function of vibronic strength of A g modes for α = 15 o 1/ E B0 E Q0 + hω Κ 1/ E B0 E Q0 hω Κ 1/ E B0 E Q0 hω Κ 1/ E B0 E Q0 + hω Κ E Q0 hω iγ Q + E B0 hω iγ B E Q1 hω iγ Q E B1 hω iγ B The A g modes can be easily assigned from the depolarization ratio. These modes are prediected to have ρ =. Experimentally, large ρ >> 0.75 are observed. Raman spectra for the Soret, Q, and III Q band Resonance Raman spectra Franzen et al. JACS (00) 14, 7146

18 REPs of B 1g modes REPs of A g modes ν 11 ν 19 ν 10 ν 0 ν 1 Band III resonance Raman spectra REP of high frequency band III modes ν 13 ν 11 ν 10 ν 8 ν 19 Franzen et al. JACS (00) 14, 7146 Franzen et al. JACS (00) 14, 7146 REP of high frequency band III modes B 1g modes Significance of Mb substates Conformational substates must include functional tests for specific functional states. The biological role of myoglobin is consistent with relaxation and conformational states of the distal pocket. There are specific conformational states that are important 1. The docking site (transient). The distal histidine interaction (closed form) 3. The open form Inhomogeneous broadening is a background that is always present. Franzen et al. JACS (00) 14, 7146

19 The 150 cm -1 B 1g mode is ν 18 in MbCO and a mixed ν 18, γ 16 mode in deoxy Mb The side view reveals significant out-of-plane character for ν 18 in deoxy Mb Deoxy Mb MbCO Deoxy Mb MbCO Magnetic Circular Dichroism The Perimeter Model The porphine ring has D 4h symmetry. The aromatic ring has 18 electrons. The p system approximates circular electron path. -5 m=9-4 5 m= Φ = 1 π eimφ m = 0 MCD spectra MbCO MCD spectra follow the PM ε ν = A 1 f ν ν + B 0 + C 0 k B T f ν B Q ε m ν εν = A 1µ B D 0 f ν ν f L z = A 1 D 0 Franzen, JPC Accepted The spectra are A-term MCD as shown by the derivatives of the absorption spectrum (red). The (Q MCD) = 9 x (B MCD). Franzen, JPC Accepted

20 Deoxy MCD spectra are anomalous B Q MCD spectra: Vibronic coupling in the Perimeter Model C-term 4 time larger than MbCO! A-term but with vibronic structure Franzen, JPC Accepted MCD spectra: Vibronic coupling in the Perimeter Model Metal Porphyrin Vibronic Distortions Conclusions for band III Although band III behaves as a ring-to-metal charge transfer band it is vibronically coupled to the Soret band. It is not the iron-histidine mode that is coupled to the transition, but rather in-plane non-totally symmetric modes. 1. The polarization arises from vibronic coupling to in-plane non-totally symmetric modes.. The small charge displacement results from strong mixing of III with the Soret band. 3. The temperature dependence arises from thermal population of the B 1g mode ν 18 at 150 cm -1. Temperature dependence of the H93G(Im) axial mode Anharmonic Coupling 80 K 93 K Franzen, Fritsch, Brewer JPC Accepted

21 Temperature dependence of the H93G(-Me Im) axial mode Temperature dependence of the H93G(H O) axial mode Differences in anharmonicity for axial ligands Experimental approach shows that axial ligands differ. DFT calculated mode-mode anharmonic coupling Comparison with experiment 4-Me Im -Me Im 4-Br Im,4-diMe Im Im Horse heart is closest to H93G(4-Me Im). H93G(-Me Im) is the most anharmonic. Frequency shift of axial-ligand mode calculated for displacement of iron doming mode. Only H93G(1-Me Im) excluded because of Fermi resonance. Iron-ligand stretching and doming modes Iron-ligand stretching and doming modes ν Fe-L ν Fe-doming ν Fe-L ν Fe-doming 4-Me Im Im 143 cm cm cm cm -1 1-Me Im 4-Br Im 161 cm-1 81 cm cm cm -1

22 Significance of substates Functional test is needed. In spectroscopy solvation states give rise to inhomogeneous broadening. Propose the same distinction for kinetics. on-exponential kinetics in myoglobin is due to an inhomogeneous distribution. The inhomogeneous linewidth depends on the environment and hence is not the same for all proteins. Myoglobin function depends on specific distal dynamics Prevent autooxidation: docking site Discriminate against CO binding: histidine 64 Trigger for O release: low ph form? These functional criteria are all consistent with the alternative view. They all involve dynamics on the distal side. A picture of the open and closed states of myoglobin H64 ph 7 ν CO = 1943 cm -1 ph 5 ν CO = 1967 cm Protein Data Bank 1VXC, MGK Yang and Phillips JMB 1996, 56, 76

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin. NC State University

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin. NC State University Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin NC State University The iron in heme is the binding site for oxygen and peroxide Heme is iron protoporphyrin IX. Functional aspects in

More information

Vibrational Stark Effect: Theory and Analysis. NC State University

Vibrational Stark Effect: Theory and Analysis. NC State University Vibrational Stark Effect: Theory and Analysis NC State University Vibrational Stark Effect Surface effect on bound ligands (interfacial) CO on metal surfaces Electrostatic environment in a protein (matrix)

More information

Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin

Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin J. Phys. Chem. B 2006, 110, 14483-14493 14483 Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin Stefan Franzen,*, Audrius Jasaitis,, Jennifer

More information

FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin

FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin Biochemistry 2001, 40, 15047-15056 15047 FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin Melissa R. Thomas, Derek Brown, Stefan Franzen, and Steven G. Boxer*,

More information

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy / Journal Homepage / Table of Contents for this issue INVITED ARTICLE www.rsc.org/pccp Physical Chemistry Chemical Physics Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational

More information

Specialized Raman Techniques. Strictly speaking the radiation-induced dipole moment should be expressed as

Specialized Raman Techniques. Strictly speaking the radiation-induced dipole moment should be expressed as Nonlinear effects Specialized Raman Techniques Strictly speaking the radiation-induced dipole moment should be expressed as M = E + ½E 2 + (1/6)E 3 +... Where and are the first and second hyperpolarizabilities.

More information

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy

Lecture 6: Physical Methods II. UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Lecture 6: Physical Methods II UV Vis (electronic spectroscopy) Electron Spin Resonance Mossbauer Spectroscopy Physical Methods used in bioinorganic chemistry X ray crystallography X ray absorption (XAS)

More information

Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy

Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy pubs.acs.org/jacs Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy Megan C. Thielges, Jean K. Chung, and Michael D. Fayer* Department

More information

Direct observation of fast protein conformational switching

Direct observation of fast protein conformational switching Direct observation of fast protein conformational switching Haruto Ishikawa*, Kyungwon Kwak, Jean K. Chung, Seongheun Kim, and Michael D. Fayer Department of Chemistry, Stanford University, Stanford, CA

More information

The binding of diatomic ligands to heme has been studied for

The binding of diatomic ligands to heme has been studied for Spin-dependent mechanism for diatomic ligand binding to heme Stefan Franzen Department of Chemistry, North Carolina State University, Raleigh, NC 27695 Communicated by Robert G. Parr, University of North

More information

Core Level Spectroscopies

Core Level Spectroscopies Core Level Spectroscopies Spectroscopies involving core levels are element-sensitive, and that makes them very useful for understanding chemical bonding, as well as for the study of complex materials.

More information

Ultrafast 2D-IR spectroscopy of haemoproteins

Ultrafast 2D-IR spectroscopy of haemoproteins Ultrafast 2D-IR spectroscopy of haemoproteins N. SIMPSON, N. T. HUNT * Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow, G4 0NG, UK * Corresponding author email address:

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Robert Schoenlein Materials Sciences Division Chemical Sciences Division - UXSL Matteo Rini ils Huse F. Reboani &

More information

molecular dynamics: Geminate rebinding of nitric oxide

molecular dynamics: Geminate rebinding of nitric oxide Proc. Natl. Acad. Sci. USA Vol. 9, pp. 9547-9551, October 1993 Biophysics Simulation of the kinetics of ligand binding to a protein by molecular dynamics: Geminate rebinding of nitric oxide to myoglobin

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Anand T. N. Kumar, Leyun Zhu, J. F. Christian, Andrey A. Demidov, and Paul M. Champion*

Anand T. N. Kumar, Leyun Zhu, J. F. Christian, Andrey A. Demidov, and Paul M. Champion* J. Phys. Chem. B 2001, 105, 7847-7856 7847 On the Rate Distribution Analysis of Kinetic Data Using the Maximum Entropy Method: Applications to Myoglobin Relaxation on the Nanosecond and Femtosecond Timescales

More information

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons Department of Chemistry Physical Chemistry Göteborg University KEN140 Spektroskopi Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons WARNING! The laser gives a pulsed very energetic and

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

A very brief history of the study of light

A very brief history of the study of light 1. Sir Isaac Newton 1672: A very brief history of the study of light Showed that the component colors of the visible portion of white light can be separated through a prism, which acts to bend the light

More information

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water

Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water Multi-Dimensional IR Spectroscopy of Acetic Acid Dimers and Liquid Water N. Huse 1, J. Dreyer 1, E.T.J.Nibbering 1, T. Elsaesser 1 B.D. Bruner 2, M.L. Cowan 2, J.R. Dwyer 2, B. Chugh 2, R.J.D. Miller 2

More information

Q1 Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studiesw

Q1 Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studiesw PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Q Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studiesw 0 Thibault Dartigalongue,z Claire Niezborala

More information

Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420

Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420 pubs.acs.org/biochemistry Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420 Yuhan Sun, Weiqiao Zeng, Abdelkrim Benabbas, Xin Ye, Ilia Denisov, Stephen G. Sligar, Jing Du,

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

A Thesis Presented to The Academic Faculty. Miranda McDaniel

A Thesis Presented to The Academic Faculty. Miranda McDaniel Proton Coupled Electron Transfer as Explored by the Tryptophan Cation Radical Formation in Biomimetic Peptides A Thesis Presented to The Academic Faculty by Miranda McDaniel In Partial Fulfillment of the

More information

Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling

Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling 10634 J. Phys. Chem. B 2003, 107, 10634-10639 Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling Lintao Bu and

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States

Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States Biophysical Journal Volume 74 February 1998 789 802 789 Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States Jaroslaw Meller* # and Ron Elber*

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Chem 442 Review of Spectroscopy

Chem 442 Review of Spectroscopy Chem 44 Review of Spectroscopy General spectroscopy Wavelength (nm), frequency (s -1 ), wavenumber (cm -1 ) Frequency (s -1 ): n= c l Wavenumbers (cm -1 ): n =1 l Chart of photon energies and spectroscopies

More information

a kinetic model that gives additional insight into the nature of dialyzed against 0.1 M potassium phosphate (ph 7.0), equilibrated

a kinetic model that gives additional insight into the nature of dialyzed against 0.1 M potassium phosphate (ph 7.0), equilibrated Proc. NatL Acad. Sci. USA Vol. 8, pp. 22352239, April 1983 Biophysics Nanosecond absorption spectroscopy of hemoglobin: Elementary processes in kinetic cooperativity (photodissociation/geminate recombination/quaternary

More information

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS) Spectroscopy of Nanostructures Angle-resolved Photoemission (ARPES, UPS) Measures all quantum numbers of an electron in a solid. E, k x,y, z, point group, spin E kin, ϑ,ϕ, hν, polarization, spin Electron

More information

Rate of Intrachain Diffusion of Unfolded Cytochrome c

Rate of Intrachain Diffusion of Unfolded Cytochrome c 2352 J. Phys. Chem. B 1997, 101, 2352-2365 Rate of Intrachain Diffusion of Unfolded Cytochrome c Stephen J. Hagen, James Hofrichter, and William A. Eaton* Laboratory of Chemical Physics, Building 5, National

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

Chemical and biochemical processes frequently involve networks

Chemical and biochemical processes frequently involve networks Protein ligand migration mapped by nonequilibrium 2D-IR exchange spectroscopy Jens Bredenbeck*, Jan Helbing*, Karin Nienhaus, G. Ulrich Nienhaus, and Peter Hamm* *Physikalisch-Chemisches Institut, Universität

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

Jean K. Chung, Megan C. Thielges, Sarah E. J. Bowman, Kara L. Bren, and M. D. Fayer*, I. INTRODUCTION

Jean K. Chung, Megan C. Thielges, Sarah E. J. Bowman, Kara L. Bren, and M. D. Fayer*, I. INTRODUCTION pubs.acs.org/jacs Temperature Dependent Equilibrium Native to Unfolded Protein Dynamics and Properties Observed with IR Absorption and 2D IR Vibrational Echo Experiments Jean K. Chung, Megan C. Thielges,

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6.

( ) x10 8 m. The energy in a mole of 400 nm photons is calculated by: ' & sec( ) ( & % ) 6.022x10 23 photons' E = h! = hc & 6. Introduction to Spectroscopy Spectroscopic techniques are widely used to detect molecules, to measure the concentration of a species in solution, and to determine molecular structure. For proteins, most

More information

Investigations of Heme Protein Absorption Line Shapes, Vibrational Relaxation, and Resonance Raman Scattering on Ultrafast Time Scales

Investigations of Heme Protein Absorption Line Shapes, Vibrational Relaxation, and Resonance Raman Scattering on Ultrafast Time Scales 8156 J. Phys. Chem. A 2003, 107, 8156-8165 Investigations of Heme Protein Absorption Line Shapes, Vibrational Relaxation, and Resonance Raman Scattering on Ultrafast Time Scales Xiong Ye, Andrey Demidov,

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse

The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 10-fs Pulse The Initial Process of Photoinduced Phase Transition in an Organic Electron-Lattice Correlated System using 1-fs Pulse S. Koshihara, K. Onda, Y. Matsubara, T. Ishikawa, Y. Okimoto, T. Hiramatsu, G. Saito,

More information

Conformational Substate Distribution in Myoglobin as studied by EPR Spectroscopy

Conformational Substate Distribution in Myoglobin as studied by EPR Spectroscopy 234 Bulletin of Magnetic Resonance Conformational Substate Distribution in Myoglobin as studied by EPR Spectroscopy Anna Rita Bizzarri 1^ and Salvatore Cannistraro 1 ' 2 ' ' INFM-CNR, Dipartimento di Fisica

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Mike Towrie Central Laser Facility Rutherford Appleton Laboratory. Diamond DIAMOND. Tony Parker, Pavel Matousek

Mike Towrie Central Laser Facility Rutherford Appleton Laboratory. Diamond DIAMOND. Tony Parker, Pavel Matousek Ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation explored using picosecond time-resolved infrared spectroscopy 1 Mike Towrie (m.towrie@rl.ac.uk)

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

Chapter 16. Examples of nutcracker mechanisms.

Chapter 16. Examples of nutcracker mechanisms. Protein Primer, Lumry, Draft-{6-15-03) Chapter 16, Nutcracker mechanisms, 16-1 Chapter 16. Examples of nutcracker mechanisms. Hemoglobin, cytochrome C and chymotrypsin were the first proteins to be used

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy 758 Bull. Korean Chem. Soc. 2014, Vol. 35, No. 3 Seongchul Park et al. http://dx.doi.org/10.5012/bkcs.2014.35.3.758 Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Lecture 15 February 15, 2013 Transition metals

Lecture 15 February 15, 2013 Transition metals Lecture 15 February 15, 2013 Transition metals Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Hydrogen Bond Switching among Flavin and. Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF.

Hydrogen Bond Switching among Flavin and. Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF. Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton- Coupled Electron Transfer in BLUF Photoreceptors Tilo Mathes 1,2, Jingyi Zhu 1, Ivo H.M. van Stokkum 1, M.L. Groot

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Contents. xiii. Preface v

Contents. xiii. Preface v Contents Preface Chapter 1 Biological Macromolecules 1.1 General PrincipIes 1.1.1 Macrornolecules 1.2 1.1.2 Configuration and Conformation Molecular lnteractions in Macromolecular Structures 1.2.1 Weak

More information

What dictates the rate of radiative or nonradiative excited state decay?

What dictates the rate of radiative or nonradiative excited state decay? What dictates the rate of radiative or nonradiative excited state decay? Transitions are faster when there is minimum quantum mechanical reorganization of wavefunctions. This reorganization energy includes

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

ion mobility spectrometry IR spectroscopy

ion mobility spectrometry IR spectroscopy Debasmita Gho 29.10.2016 Introducti on Owing to its accuracy, sensitivity, and speed, mass spectrometry (MS) coupled to fragmentation techniques is the method of choice for determining the primary structure

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3)

e 2m e c I, (7.1) = g e β B I(I +1), (7.2) = erg/gauss. (7.3) Chemistry 126 Molecular Spectra & Molecular Structure Week # 7 Electron Spin Resonance Spectroscopy, Supplement Like the hydrogen nucleus, an unpaired electron in a sample has a spin of I=1/2. The magnetic

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? XV 74 Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go? 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet S = 0 could be any of them

More information

Introduction to" Protein Structure

Introduction to Protein Structure Introduction to" Protein Structure Function, evolution & experimental methods Thomas Blicher, Center for Biological Sequence Analysis Learning Objectives Outline the basic levels of protein structure.

More information

Angle-Resolved Two-Photon Photoemission of Mott Insulator

Angle-Resolved Two-Photon Photoemission of Mott Insulator Angle-Resolved Two-Photon Photoemission of Mott Insulator Takami Tohyama Institute for Materials Research (IMR) Tohoku University, Sendai Collaborators IMR: H. Onodera, K. Tsutsui, S. Maekawa H. Onodera

More information

Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion

Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 1 1 JULY 2003 Structural dynamics of hydrogen bonded methanol oligomers: Vibrational transient hole burning studies of spectral diffusion I. R. Piletic, K.

More information

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY Shaul Mukamel University of Rochester Rochester, New York New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1. Introduction 3 Linear versus Nonlinear Spectroscopy

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Chiral Sum Frequency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces

Chiral Sum Frequency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces Supporting Information for Chiral Sum Freuency Generation for In Situ Probing Proton Exchange in Antiparallel β-sheets at Interfaces Li Fu, Deuan Xiao, Zhuguang Wang, Victor S. Batista *, and Elsa C. Y.

More information

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau

Visible and IR Absorption Spectroscopy. Andrew Rouff and Kyle Chau Visible and IR Absorption Spectroscopy Andrew Rouff and Kyle Chau The Basics wavelength= (λ) original intensity= Ι o sample slab thickness= dl Final intensity= I f ε = molar extinction coefficient -di=

More information

Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin The connection between spectral and functional heterogeneity

Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin The connection between spectral and functional heterogeneity Inhomogeneous broadening in spectral bands of carbonmonoxymyoglobin The connection between spectral and functional heterogeneity P. Ormos,** A. Ansari,* D. Braunstein,* B. R. Cowen,* H. Frauenfelder,*

More information

Exploring chemical reactivity in biological systems with hybrid QM-MM. MM methods. Darío o A. Estrin University of Buenos Aires ARGENTINA

Exploring chemical reactivity in biological systems with hybrid QM-MM. MM methods. Darío o A. Estrin University of Buenos Aires ARGENTINA SMR.1824-16 13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods 11-13 January 2007 ------------------------------------------------------------------------------------------------------------------------

More information

Thermodynamics and Kinetics

Thermodynamics and Kinetics Thermodynamics and Kinetics Lecture 12 Free Energy Applications NC State University Isolated system requires DS > 0 DS sys > 0 Isolated system: Entropy increases for any spontaneous process System and

More information

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30

Supporting information for the manuscript. Excited state structural evolution during charge-transfer reactions in Betaine-30 Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting information for the manuscript Excited state structural evolution during

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Supplementary Figures

Supplementary Figures Supplementary Figures iso ( =2900 cm -1 ) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 pump cm -1 3450 cm -1 cm -1 cm -1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 delay [ps] Supplementary Figure 1: Raw infrared pump-probe traces.

More information

Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins

Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins 5800 J. Phys. Chem. B 2002, 106, 5800-5806 Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins Eun Sun Park and Steven

More information

F NMR of Trifluoroacetyl-Labeled Cysteine Mutants of Myoglobin: Structural Probes of Nitric Oxide Bound to the H93G Cavity Mutant

F NMR of Trifluoroacetyl-Labeled Cysteine Mutants of Myoglobin: Structural Probes of Nitric Oxide Bound to the H93G Cavity Mutant 8588 Biochemistry 2001, 40, 8588-8596 F NMR of Trifluoroacetyl-Labeled Cysteine Mutants of Myoglobin: Structural Probes of Nitric Oxide Bound to the H93G Cavity Mutant Melissa R. Thomas and Steven G. Boxer*

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Time-Resolved Hole-Burning Study on Myoglobin: Fluctuation of Restricted Water within Distal Pocket

Time-Resolved Hole-Burning Study on Myoglobin: Fluctuation of Restricted Water within Distal Pocket Biophysical Journal Volume 80 February 2001 1013 1023 1013 Time-Resolved Hole-Burning Study on Myoglobin: Fluctuation of Restricted Water within Distal Pocket Yutaka Shibata,* Haruto Ishikawa, Satoshi

More information