Vibrational Stark Effect: Theory and Analysis. NC State University

Size: px
Start display at page:

Download "Vibrational Stark Effect: Theory and Analysis. NC State University"

Transcription

1 Vibrational Stark Effect: Theory and Analysis NC State University

2 Vibrational Stark Effect Surface effect on bound ligands (interfacial) CO on metal surfaces Electrostatic environment in a protein (matrix) e-bound CO, NO, Artificial amino acid CN Applied electric field (capacitor) Nitrile and carbonyl groups in molecules

3 Systematic study of CO and CN vibrations Perform DT calculations of frequencies and potential energy surfaces based on the eigenvector projection of the relevant CO or CN stretching mode. Perform frequency calculations on geometry optimized structures at each electric field value and calculate the frequency. Calculate the anharmonic potential energy surface and anharmonic correction at each projected geometry.

4 Potential energy surface model Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

5 Compare potential surfaces Eliminate higher order terms using the device e b a U = 3 2 ) ( ) ( ) ( ) ( µ e b a U ) ( ) ( ) ( ) ( 3 2 = ) (1 ε = x x b = b 2 1 ) 3 1 ( 2 x a e a b x e a a = 2a e x x = The field-dependent coefficient and geometry changes are Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

6 A quadratic surface becomes non-harmonic in an applied field U ( ) µ ( ) = a ( ) 2 e 2 U ( ) = a ( ) e( ) Eliminate higher order terms using the device x = x(1 ε ) The field-dependent coefficient and geometry changes are a = a 1 x 1 x x = x (1 x) x = e 2a x Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

7 Anharmonic wavefunctions Energy (x1 3 ) (cm -1 ) Normal Coordinate Displacement Use Cooley-Numerov Algorithm to obtain eigenvalues and eigenfunctions for a polynomial model of PES Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

8 Calculation of the Stark tuning rate anharm geom tot µ µ µ = E E E = = µ A M M = ) ( Calculation of the transition polarizability χ χ 1 µ M = α χ χ = η µω α = = M M M M A χ χ χ χ χ χ χ χ Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

9 Correlation of µ Molecule Stark Tuning Rate Calculated A (cm -1 /(MV/cm) Stark Tuning Rate Calculated B (cm -1 /(MV/cm) Stark Tuning Rate A B Stark Tuning Rate Experimental (cm -1 /(MV/cm) C acetone CO D CN HCN E ACN BCN MVK NMP chlorobenzonitrile chlorobenzonitrile chlorobenzonitrile methoxybenzonitrile propionitrile butyronitrile valeronitrile hexanenitrile Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

10 Correlation of µ Experimental µ (cm -1 /MV/cm) Calculated µ (cm -1 /MV/cm) Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

11 Correlation of A A = 1 M1 χ χ1 M1 χ χ1 M1 χ χ1 M1 χ χ1 2 A (x1-4 ) A (x1-4 ) Molecule A (x1-4 ) (D/(MV/cm)) I (D/(MV/cm)) II (literature values) (D/(MV/cm) III acetone CO CN HCN IV ACN BCN MVK NMP chlorobenzonitrile chlorobenzonitrile chlorobenzonitrile methoxybenzonitrile propionitrile butyronitrile valeronitrile hexanenitrile Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

12 Correlation of A Brewer, S. H., ranzen, J. Chem. Phys. 23, 119,

13 DT case study CO in myoglobin Calculate frequencies of CO vibrations in various geometries Compare to experiment and determine calibration of frequency, bond length and Mulliken charge. A states - CO bound states. There are often multiple CO stretching frequencies. These have been attributed to specific interactions with residues such as histidine. B states - Photolyzed CO states. CO is trapped inside the protein and yet its frequency is shifted due to interactions with particular groups.

14 MbCO The peptide backbone is shown as a ribbon that follows the a-helical structure of myoglobin. The structure shown is at equilibrium. Conformational substates are called A states. Teng, Srajer, Moffat Nature Struct. Biol. (1994), 1, 71

15 Mb:CO The photoproduct. Iron moves out of the heme plane when CO is photolyzed. CO moves to a docking site and is parallel to the heme plane. Conformational substates are called B states.

16

17 The origin of the A states is the hydrogen bonding conformations to CO

18 A view of the distal pocket Distal L29 V68 43 H64 Proximal Protein Data Bank 2MGK

19 Wild-type has multiple CO bands Distal L29 V68 43 H64 uillin, Phillips et al. JMB 1993, 234, Proximal

20 Distal histidine is key Distal L29 V68 43 H64 Proximal

21 The substrate of DHP binding site is in the heme pocket The enzyme dehaloperoxidase also provides an interesting case Study. Since the substrate can bind in an internal binding pocket One can see effects of the substrate on bound CO frequencies. Bound substrate Lebioda et al., J.Biol.Chem. (2) 275, 18712

22 A-state and B-state CO vibrations in DHP

23 DT computational study of ν CO The interpretation of the frequency shifts of bound CO in terms of the electrostatic environment in the heme pocket has been studied by DT calculation of various hydrogen bonding geometries (shown in the following pages) compared to calculation of the frequency in an applied electric field. The results permit comparison of the experimentally measured Stark tuning rate with the frequency shifts observed in mutant myoglobins and DHP. Model porphine complex ranzen JACS, 22, 124, 13271

24 DT calculation of ν CO frequencies Multiple hydrogen bonding interactions

25 DT calculation of ν CO frequencies Single hydrogen bonding interaction

26 DT calculation of ν CO frequencies No hydrogen bonding interaction

27 DT calculation in an applied electric field ranzen JACS, 22, 124, 13271

28 Electric field effect by DT MV/cm e-c C-O q C q O q C q O q C -q O ν CO Eqn. 1 ν CO Eqn. 2 ν CO Eqn Correlation is based on distance or Mulliken charge. ν CO = (R CO -R CO ) (1) ν CO = { (q C q O )} cm -1 (2)

29 DT calculation of ν CO frequencies Stark tuning rate is 2.4 cm -1 /(MV/cm). This is value predicted from correlations shown on right. Park and Boxer JPC 1999, 13, 913 ranzen JACS, 22, 124, 13271

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin. NC State University

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin. NC State University Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin NC State University The iron in heme is the binding site for oxygen and peroxide Heme is iron protoporphyrin IX. Functional aspects in

More information

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin

Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin Spectroscopic Probes of Protein Dynamics: Hemoglobin and Myoglobin The iron in heme is the binding site for oxygen and peroxide Heme is iron protoporphyrin IX. Functional aspects in Mb O O Fe C State University

More information

Vibrational Stark Effects on Carbonyl, Nitrile, and Nitrosyl Compounds Including Heme Ligands, CO, CN, and NO, Studied with Density Functional Theory

Vibrational Stark Effects on Carbonyl, Nitrile, and Nitrosyl Compounds Including Heme Ligands, CO, CN, and NO, Studied with Density Functional Theory 6450 J. Phys. Chem. B 2004, 108, 6450-6457 Vibrational Stark Effects on Carbonyl, Nitrile, and Nitrosyl Compounds Including Heme Ligands, CO, CN, and NO, Studied with Density Functional Theory Sergio D.

More information

Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin

Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin J. Phys. Chem. B 2006, 110, 14483-14493 14483 Hydrophobic Distal Pocket Affects NO-Heme Geminate Recombination Dynamics in Dehaloperoxidase and H64V Myoglobin Stefan Franzen,*, Audrius Jasaitis,, Jennifer

More information

Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins

Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins 5800 J. Phys. Chem. B 2002, 106, 5800-5806 Origins of the Sensitivity of Molecular Vibrations to Electric Fields: Carbonyl and Nitrosyl Stretches in Model Compounds and Proteins Eun Sun Park and Steven

More information

BATCH: ja11a34 USER: jld69 DATE: September 17, Published on Web 00/00/0000

BATCH: ja11a34 USER: jld69 DATE: September 17, Published on Web 00/00/0000 Published on Web 00/00/0000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 An Electrostatic Model for the Frequency Shifts in the Carbonmonoxy Stretching Band of Myoglobin: Correlation

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin

FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin Biochemistry 2001, 40, 15047-15056 15047 FTIR and Resonance Raman Studies of Nitric Oxide Binding to H93G Cavity Mutants of Myoglobin Melissa R. Thomas, Derek Brown, Stefan Franzen, and Steven G. Boxer*,

More information

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov

Molecular dynamics simulations of anti-aggregation effect of ibuprofen. Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Biophysical Journal, Volume 98 Supporting Material Molecular dynamics simulations of anti-aggregation effect of ibuprofen Wenling E. Chang, Takako Takeda, E. Prabhu Raman, and Dmitri Klimov Supplemental

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy

Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy pubs.acs.org/jacs Protein Dynamics in Cytochrome P450 Molecular Recognition and Substrate Specificity Using 2D IR Vibrational Echo Spectroscopy Megan C. Thielges, Jean K. Chung, and Michael D. Fayer* Department

More information

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins:

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins: Membrane Proteins: 1. Integral proteins: proteins that insert into/span the membrane bilayer; or covalently linked to membrane lipids. (Interact with the hydrophobic part of the membrane) 2. Peripheral

More information

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice

Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Effect of Electric Field on Condensed-Phase Molecular Systems. II. Stark Effect on the Hydroxyl Stretch Vibration of Ice Sunghwan Shin, Hani Kang, Daeheum Cho, Jin Yong Lee, *, and Heon Kang *, Department

More information

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy

Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational echo spectroscopy / Journal Homepage / Table of Contents for this issue INVITED ARTICLE www.rsc.org/pccp Physical Chemistry Chemical Physics Probing dynamics of complex molecular systems with ultrafast 2D IR vibrational

More information

Harmonic Oscillator Eigenvalues and Eigenfunctions

Harmonic Oscillator Eigenvalues and Eigenfunctions Chemistry 46 Fall 217 Dr. Jean M. Standard October 4, 217 Harmonic Oscillator Eigenvalues and Eigenfunctions The Quantum Mechanical Harmonic Oscillator The quantum mechanical harmonic oscillator in one

More information

Direct observation of fast protein conformational switching

Direct observation of fast protein conformational switching Direct observation of fast protein conformational switching Haruto Ishikawa*, Kyungwon Kwak, Jean K. Chung, Seongheun Kim, and Michael D. Fayer Department of Chemistry, Stanford University, Stanford, CA

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Chem Lecture 3 Hemoglobin & Myoglobin

Chem Lecture 3 Hemoglobin & Myoglobin Chem 452 - Lecture 3 Hemoglobin & Myoglobin 111003 Hemoglobin (Hb) and Myoglobin (Mb) function as oxygen transport and storage molecules in higher organisms. There functions have been long studied and,

More information

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski

Protein Bioinformatics Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Protein Bioinformatics 260.655 Computer lab #1 Friday, April 11, 2008 Sean Prigge and Ingo Ruczinski Goals: Approx. Time [1] Use the Protein Data Bank PDB website. 10 minutes [2] Use the WebMol Viewer.

More information

Tyrosine B10 Inhibits Stabilization of Bound Carbon Monoxide and Oxygen in Soybean Leghemoglobin

Tyrosine B10 Inhibits Stabilization of Bound Carbon Monoxide and Oxygen in Soybean Leghemoglobin University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska

More information

[Urea] (M) k (s -1 )

[Urea] (M) k (s -1 ) BMB178 Fall 2018 Problem Set 1 Due: 10/26/2018, noon Office hour: 10/25/2018, SFL GSR218 7 9 pm Problem 1. Transition state theory (20 points): Consider a unimolecular reaction where a substrate S is converted

More information

4 Examples of enzymes

4 Examples of enzymes Catalysis 1 4 Examples of enzymes Adding water to a substrate: Serine proteases. Carbonic anhydrase. Restrictions Endonuclease. Transfer of a Phosphoryl group from ATP to a nucleotide. Nucleoside monophosphate

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Use of Periodic Boundary Conditions to Calculate Accurate β-sheet Frequencies Using Density Functional Theory

Use of Periodic Boundary Conditions to Calculate Accurate β-sheet Frequencies Using Density Functional Theory Use of Periodic Boundary Conditions to Calculate Accurate β-sheet Frequencies Using Density Functional Theory Stefan Franzen Department of Chemistry North Carolina State University Raleigh, NC 27695 Abstract

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Molecular Mechanics. Yohann Moreau. November 26, 2015

Molecular Mechanics. Yohann Moreau. November 26, 2015 Molecular Mechanics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Mechanics, Label RFCT 2015 November 26, 2015 1 / 29 Introduction A so-called Force-Field

More information

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations

Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Catalytic Mechanism of the Glycyl Radical Enzyme 4-Hydroxyphenylacetate Decarboxylase from Continuum Electrostatic and QC/MM Calculations Supplementary Materials Mikolaj Feliks, 1 Berta M. Martins, 2 G.

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling

Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling 10634 J. Phys. Chem. B 2003, 107, 10634-10639 Vibrational Energy Relaxation of Tailored Hemes in Myoglobin Following Ligand Photolysis Supports Energy Funneling Mechanism of Heme Cooling Lintao Bu and

More information

Prediction of spectroscopic parameters for bio-organic and bio-inorganic intermediates in complex systems

Prediction of spectroscopic parameters for bio-organic and bio-inorganic intermediates in complex systems Prediction of spectroscopic parameters for bio-organic and bio-inorganic intermediates in complex systems Erik Donovan Hedegård Department of Physics, Chemistry and Pharmacy University of Southern Denmark

More information

Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States

Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States Biophysical Journal Volume 74 February 1998 789 802 789 Computer Simulations of Carbon Monoxide Photodissociation in Myoglobin: Structural Interpretation of the B States Jaroslaw Meller* # and Ron Elber*

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Insights into the Biotransformation of 2,4,6- Trinitrotoluene by the Old Yellow Enzyme Family of Flavoproteins. A Computational Study

Insights into the Biotransformation of 2,4,6- Trinitrotoluene by the Old Yellow Enzyme Family of Flavoproteins. A Computational Study Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Supporting Information for Insights into the Biotransformation of 2,4,6- Trinitrotoluene

More information

Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420

Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420 pubs.acs.org/biochemistry Investigations of Heme Ligation and Ligand Switching in Cytochromes P450 and P420 Yuhan Sun, Weiqiao Zeng, Abdelkrim Benabbas, Xin Ye, Ilia Denisov, Stephen G. Sligar, Jing Du,

More information

A Study of Vibrational Relaxation of B-State Carbon Monoxide in the Heme Pocket of Photolyzed Carboxymyoglobin

A Study of Vibrational Relaxation of B-State Carbon Monoxide in the Heme Pocket of Photolyzed Carboxymyoglobin 70 Biophysical Journal Volume 77 July 1999 70 84 A Study of Vibrational Relaxation of B-State Carbon Monoxide in the Heme Pocket of Photolyzed Carboxymyoglobin Diane E. Sagnella and John E. Straub Department

More information

Problem Set 5 Solutions

Problem Set 5 Solutions Chemistry 362 Dr Jean M Standard Problem Set 5 Solutions ow many vibrational modes do the following molecules or ions possess? [int: Drawing Lewis structures may be useful in some cases] In all of the

More information

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information

[Urea] (M) k (s -1 )

[Urea] (M) k (s -1 ) BMB178 Fall 2018 Problem Set 1 Due: 10/26/2018, noon Office hour: 10/25/2018, SFL GSR218 7 9 pm Problem 1. Transition state theory (20 points): Consider a unimolecular reaction where a substrate S is converted

More information

The protein folding problem consists of two parts:

The protein folding problem consists of two parts: Energetics and kinetics of protein folding The protein folding problem consists of two parts: 1)Creating a stable, well-defined structure that is significantly more stable than all other possible structures.

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory

Chem. 27 Section 1 Conformational Analysis Week of Feb. 6, TF: Walter E. Kowtoniuk Mallinckrodt 303 Liu Laboratory Chem. 27 Section 1 Conformational Analysis TF: Walter E. Kowtoniuk wekowton@fas.harvard.edu Mallinckrodt 303 Liu Laboratory ffice hours are: Monday and Wednesday 3:00-4:00pm in Mallinckrodt 303 Course

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE

QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE Chemistry 460 Fall 2017 Dr. Jean M. Standard October 4, 2017 OUTLINE QUANTUM CHEMISTRY PROJECT 2: THE FRANCK CONDON PRINCIPLE This project deals with the Franck-Condon Principle, electronic transitions

More information

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS

THE UNIVERSITY OF MANITOBA. PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS PAPER NO: 409 LOCATION: Fr. Kennedy Gold Gym PAGE NO: 1 of 6 DEPARTMENT & COURSE NO: CHEM 4630 TIME: 3 HOURS EXAMINATION: Biochemistry of Proteins EXAMINER: J. O'Neil Section 1: You must answer all of

More information

Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes

Measuring Electric Fields in Biological Matter Using the Vibrational Stark Effect of Nitrile Probes Annu. Rev. Phys. Chem. 2018. 69:253 71 The Annual Review of Physical Chemistry is online at physchem.annualreviews.org https://doi.org/10.1146/annurev-physchem- 052516-045011 Copyright c 2018 by Annual

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11085 Supplementary Tables: Supplementary Table 1. Summary of crystallographic and structure refinement data Structure BRIL-NOP receptor Data collection Number of crystals 23 Space group

More information

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH

CH 3 CH 2 OH +H 2 O CHO. 2e + 2H + + O 2 H 2 O +HCOOH 2 4 H CH 3 2e + 2H + + 2 H 2 2 H CH 2 H 2e + 2H + + 2 H 2 2 H +H 2 CH 2e + 2H + + 2 H 2 2 H +HCH Supplemental Figure S. The three-step 4DM reaction, each step requires two reducing equivalents from ADPH

More information

Ultrafast 2D-IR spectroscopy of haemoproteins

Ultrafast 2D-IR spectroscopy of haemoproteins Ultrafast 2D-IR spectroscopy of haemoproteins N. SIMPSON, N. T. HUNT * Department of Physics, University of Strathclyde, SUPA, 107 Rottenrow East, Glasgow, G4 0NG, UK * Corresponding author email address:

More information

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016

Molecular mechanics. classical description of molecules. Marcus Elstner and Tomáš Kubař. April 29, 2016 classical description of molecules April 29, 2016 Chemical bond Conceptual and chemical basis quantum effect solution of the SR numerically expensive (only small molecules can be treated) approximations

More information

Docking. GBCB 5874: Problem Solving in GBCB

Docking. GBCB 5874: Problem Solving in GBCB Docking Benzamidine Docking to Trypsin Relationship to Drug Design Ligand-based design QSAR Pharmacophore modeling Can be done without 3-D structure of protein Receptor/Structure-based design Molecular

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

Infrared spectra of small biomolecules from first-principle molecular dynamics simulations and effective normal mode analysis

Infrared spectra of small biomolecules from first-principle molecular dynamics simulations and effective normal mode analysis Infrared spectra of small biomolecules from first-principle molecular dynamics simulations and effective normal mode analysis R. Vuilleumier, M.-P. Gaigeot and D. Borgis Département de chimie, Ecole Normale

More information

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics

5th CCPN Matt Crump. Thermodynamic quantities derived from protein dynamics 5th CCPN 2005 -Matt Crump Thermodynamic quantities derived from protein dynamics Relaxation in Liquids (briefly!) The fluctuations of each bond vector can be described in terms of an angular correlation

More information

Semi Empirical Force Fields and Their Limitations. Potential Energy Surface (PES)

Semi Empirical Force Fields and Their Limitations. Potential Energy Surface (PES) Semi Empirical Force Fields and Their Limitations Ioan Kosztin Beckman Institute University of Illinois at Urbana-Champaign Potential Energy Surface (PES) Schrödinger equation: H T Ψ( r, = E Ψ( r, H =

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Secondary structure of CAP (in the camp 2 -bound state) 10. α-helices are shown as cylinders and β- strands as arrows. Labeling of secondary structure is indicated. CDB, DBD and the hinge are

More information

BCHS 6229 Protein Structure and Function. Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization

BCHS 6229 Protein Structure and Function. Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization BCHS 6229 Protein Structure and Function Lecture 3 (October 18, 2011) Protein Folding: Forces, Mechanisms & Characterization 1 The folding problem One of the greatest unsolved problems of Science The folding

More information

Since the pioneering efforts of Landau and Teller (1), the

Since the pioneering efforts of Landau and Teller (1), the Vibrational population relaxation of carbon monoxide in the heme pocket of photolyzed carbonmonoxy myoglobin: Comparison of time-resolved mid-ir absorbance experiments and molecular dynamics simulations

More information

Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450

Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450 Biochemistry 2006, 45, 9393-9407 9393 Computational Solvent Mapping Reveals the Importance of Local Conformational Changes for Broad Substrate Specificity in Mammalian Cytochromes P450 Karl H. Clodfelter,

More information

Molecular Mechanics, Dynamics & Docking

Molecular Mechanics, Dynamics & Docking Molecular Mechanics, Dynamics & Docking Lawrence Hunter, Ph.D. Director, Computational Bioscience Program University of Colorado School of Medicine Larry.Hunter@uchsc.edu http://compbio.uchsc.edu/hunter

More information

Properties of Human Hemoglobins with Increased Polarity in the - or -Heme Pocket

Properties of Human Hemoglobins with Increased Polarity in the - or -Heme Pocket THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 273, No. 37, Issue of September 11, pp. 23740 23749, 1998 1998 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Properties

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Useful background reading

Useful background reading Overview of lecture * General comment on peptide bond * Discussion of backbone dihedral angles * Discussion of Ramachandran plots * Description of helix types. * Description of structures * NMR patterns

More information

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram 15 Dana Alsulaibi Jaleel G.Sweis Mamoon Ahram Revision of last lectures: Proteins have four levels of structures. Primary,secondary, tertiary and quaternary. Primary structure is the order of amino acids

More information

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University

Thermodynamics. Entropy and its Applications. Lecture 11. NC State University Thermodynamics Entropy and its Applications Lecture 11 NC State University System and surroundings Up to this point we have considered the system, but we have not concerned ourselves with the relationship

More information

Molecular Dynamics of Human Methemoglobin: The Transmission of Conformational Information between Subunits in an Dimer

Molecular Dynamics of Human Methemoglobin: The Transmission of Conformational Information between Subunits in an Dimer 1796 Biophysical Journal Volume 76 April 1999 1796 1811 Molecular Dynamics of Human Methemoglobin: The Transmission of Conformational Information between Subunits in an Dimer Nirmala Ramadas and Joseph

More information

Interpreting and evaluating biological NMR in the literature. Worksheet 1

Interpreting and evaluating biological NMR in the literature. Worksheet 1 Interpreting and evaluating biological NMR in the literature Worksheet 1 1D NMR spectra Application of RF pulses of specified lengths and frequencies can make certain nuclei detectable We can selectively

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

Central Dogma. modifications genome transcriptome proteome

Central Dogma. modifications genome transcriptome proteome entral Dogma DA ma protein post-translational modifications genome transcriptome proteome 83 ierarchy of Protein Structure 20 Amino Acids There are 20 n possible sequences for a protein of n residues!

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

AFM: Atomic Force Microscopy II

AFM: Atomic Force Microscopy II AM: Atomic orce Microscopy II Jan Knudsen The MAX IV laboratory & Division of synchrotron radiation research K522-523 (Sljus) 4 th of May, 2018 http://www.sljus.lu.se/staff/rainer/spm.htm Last time: The

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

T6.2 Molecular Mechanics

T6.2 Molecular Mechanics T6.2 Molecular Mechanics We have seen that Benson group additivities are capable of giving heats of formation of molecules with accuracies comparable to those of the best ab initio procedures. However,

More information

ANALYSIS OF THE CARBONYL GROUP STRETCHING VIBRATIONS IN SOME STRUCTURAL FRAGMENTS OF POLY-3-HYDROXYBUTYRATE

ANALYSIS OF THE CARBONYL GROUP STRETCHING VIBRATIONS IN SOME STRUCTURAL FRAGMENTS OF POLY-3-HYDROXYBUTYRATE ANALYSIS OF THE CARBONYL GROUP STRETCHING VIBRATIONS IN SOME STRUCTURAL FRAGMENTS OF POLY-3-HYDROXYBUTYRATE G.A. Pitsevich 1*, E.N. Kozlovskaya 1, I.Yu. Doroshenko 2 1 Belarusian State University, Minsk,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11539 Supplementary Figure 1 Schematic representation of plant (A) and mammalian (B) P 2B -ATPase domain organization. Actuator (A-), nucleotide binding (N-),

More information

Gürol M. Süel, Steve W. Lockless, Mark A. Wall, and Rama Ra

Gürol M. Süel, Steve W. Lockless, Mark A. Wall, and Rama Ra Gürol M. Süel, Steve W. Lockless, Mark A. Wall, and Rama Ranganathan, Evolutionarily conserved networks of residues mediate allosteric communication in proteins, Nature Structural Biology, vol. 10, no.

More information

Supporting Information

Supporting Information Supporting Information Boehr et al. 10.1073/pnas.0914163107 SI Text Materials and Methods. R 2 relaxation dispersion experiments. 15 NR 2 relaxation dispersion data measured at 1 H Larmor frequencies of

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 XIV 67 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate,

More information

Photosynthetic Reaction Centers

Photosynthetic Reaction Centers JBC Papers in Press. Published on September 15, 2003 as Manuscript M307560200 Tuning Heme Redox Potentials in the Cytochrome C Subunit of Photosynthetic Reaction Centers Philipp Voigt and Ernst-Walter

More information

Lecture 6 Quantum Mechanical Systems and Measurements

Lecture 6 Quantum Mechanical Systems and Measurements Lecture 6 Quantum Mechanical Systems and Measurements Today s Program: 1. Simple Harmonic Oscillator (SHO). Principle of spectral decomposition. 3. Predicting the results of measurements, fourth postulate

More information

QM/MM study on inhibitor of HIV-1 protease. Graduate School of Science, Kyoto University Masahiko Taguchi, Masahiko Kaneso, Shigehiko Hayashi

QM/MM study on inhibitor of HIV-1 protease. Graduate School of Science, Kyoto University Masahiko Taguchi, Masahiko Kaneso, Shigehiko Hayashi QM/MM study on inhibitor of HIV-1 protease Graduate School of Science, Kyoto University Masahiko Taguchi, Masahiko Kaneso, Shigehiko Hayashi HIV Human Immunodeficiency Virus Origin of AIDS HIV appearing

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Probing the Origins of Intermolecular Vibrational and Relaxational Dynamics in Organic Solids with CP2K

Probing the Origins of Intermolecular Vibrational and Relaxational Dynamics in Organic Solids with CP2K Probing the Origins of Intermolecular Vibrational and Relaxational Dynamics in Organic Solids with CP2K Michael Ruggiero Department of Chemical Engineering and Biotechnology, University of Cambridge CP2K

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

Generation of strong electric fields in an ice film capacitor

Generation of strong electric fields in an ice film capacitor Generation of strong electric fields in an ice film capacitor Sunghwan Shin, Youngsoon Kim, Eui-seong Moon, Du Hyeong Lee, Hani Kang, Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro,

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2720 1 2 3 Tuning underwater adhesion with cation-π interactions Matthew A. Gebbie, Wei Wei, Alex M. Schrader,

More information

ion mobility spectrometry IR spectroscopy

ion mobility spectrometry IR spectroscopy Debasmita Gho 29.10.2016 Introducti on Owing to its accuracy, sensitivity, and speed, mass spectrometry (MS) coupled to fragmentation techniques is the method of choice for determining the primary structure

More information

Rex-Family Repressor/NADH Complex

Rex-Family Repressor/NADH Complex Kasey Royer Michelle Lukosi Rex-Family Repressor/NADH Complex Part A The biological sensing protein that we selected is the Rex-family repressor/nadh complex. We chose this sensor because it is a calcium

More information

Megan C. Thielges, Jun Y. Axup, Daryl Wong, Hyun Soo Lee, Jean K. Chung, Peter G. Schultz, and Michael D. Fayer, * I. INTRODUCTION

Megan C. Thielges, Jun Y. Axup, Daryl Wong, Hyun Soo Lee, Jean K. Chung, Peter G. Schultz, and Michael D. Fayer, * I. INTRODUCTION pubs.acs.org/jpcb Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand Megan C. Thielges,

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

A primer on pharmacology pharmacodynamics

A primer on pharmacology pharmacodynamics A primer on pharmacology pharmacodynamics Drug binding & effect Universidade do Algarve Faro 2017 by Ferdi Engels, Ph.D. 1 Pharmacodynamics Relation with pharmacokinetics? dosage plasma concentration site

More information

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2

1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 15 Harmonic Oscillator 1. For the case of the harmonic oscillator, the potential energy is quadratic and hence the total Hamiltonian looks like: d 2 H = h2 2mdx + 1 2 2 kx2 (15.1) where k is the force

More information