Reduced graphene oxide as ultra fast temperature sensor

Size: px
Start display at page:

Download "Reduced graphene oxide as ultra fast temperature sensor"

Transcription

1 Reduced graphene oxide as ultra fast temperature sensor Satyaprakash Sahoo, *,1 Sujit K. Barik, 1 G. L. Sharma, 1 Geetika Khurana, 1 J. F. Scott 2 and Ram S. Katiyar 1 1Department of Physics, University of Puerto Rico, San Juan, USA 2 Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom We demonstrate the excellent temperature sensing property of a chemically synthesized reduced graphene oxide (rgo). It is found that with increase in temperature from 80 to 375K, the resistivity of reduced graphene oxide monotonically decreases. The ultra-fast temperature sensing property is demonstrated by keeping and removing a block of ice under the rgo sensor, which shows the resistance of rgo increases by 15% in 592 miliseconds and recovers in 8.92 seconds. The temperature sensing of rgo is compared with a standard platinum thermo sensor (Pt 111) and found the sensitivity is much better in rgo. * Corresponding Author: satya504@gmail.com 1

2 In recent years graphene has gained a tremendous research interest due to its unusual physical properties such as high carrier mobility, quantum Hall effect, high electrical and thermal conductivity etc. 1-5 The charge carriers in graphene are mass less Dirac fermions. Graphene is the basic building block of carbon nanotube, fullerene and graphite. On the other hand, graphene oxide is a derivative of graphene in which most of the pi-bonds between carbon-carbon atoms are shared either by oxygen or functional hydroxyl group. 6 Thus both graphene and graphene oxide share the same crystallographic atomic layered structure. However, the presence of oxygen and hydroxyl groups make graphene oxide more resistive to electric field than that of graphene. The reduction of graphene oxide can be achieved under harassing reducing environments using hydrazin or high temperature treatment and the electrical conductivity can significantly be tuned. The advantage of GO over graphene is mainly due to the fact that the former can be produced easily and in large quantities. Secondly, GO is usually dispersed as single sheet in water and hence a continuous film of GO can easily be prepared on a substrate. 7 The reduced graphene oxide (rgo) has shown many promising applications such as gas sensor, field effect transistor, bio-sensor, etc Being atomically thin and having a high surface-to-volume ratio, its surface can absorb gas molecules very efficiently. Although there are many reports on the gas sensing properties of GO, its temperature sensing properties have not been reported so far. Here we report the temperature sensing properties of rgo over a wide temperature range (375 K 80 K) and demonstrate the ultra fast sensing properties using an ice cube. Graphene oxide (GO) synthesis was performed using a modified Hummers method. 13 Concentrated H 2 SO 4 was added to highly oriented pyrolytic graphite (HOPG, 2g) in a at room temperature followed by continuous stirring using magnetic stirrer. The flask was kept in an ice bath to maintain a constant low reaction temperature. Potassium permanganate (KMnO 4, 7g) was 2

3 added very slowly to the solution. After that excess of distilled water was added slowly to the solution. Hydrogen peroxide was added slowly while stirring until the gas evolution stopped. The resultant mixture filtered using a vacuum glass filter and the precipitates obtained were dried for 24 hours in a vacuum oven at room temperature. In the present study the exfoliation of the GO sheets was performed in this manner by sonicating the graphite oxide in water for 2 hours. The sensor device was fabricated by drop casting the GO solution directly on the platinum interdigital electrodes (Pt-IDE) and was allowed to dry and then heated at about 400 O C for few minutes then followed by hydrazin vapor treatment. It may be noted that the resistance of the GO before annealing was about few mega-ohms but changes to several ohms after reduction. The platinum electrodes were made out of Pt metal on a thin (1 mm) Al 2 O 3 substrate using electron beam lithography. A thinner substrate was used to ensure quick thermal equilibrium between the sensor and the environment. The temperature dependent resistance was measured using a MMR temperature controller (K-20) and Keithley 2401 meter. The sensing properties of rgo were measured using a Keithley 2401 meter. Figure 1 shows the optical image of the rgo layer on the Pt-IDE. It shows that the rgo evenly covers the electrodes except for few places, where some tearing and subsequent folding of rgo is observed. Figure 2(a) is the FESEM image of the Pt-IDE on which few layers of GO were deposited. Each of the Pt-IDE electrodes is 1000 and 20 µm in length and width, respectively. The spacing between the consecutive electrode fingers is about 20 µm. FESEM image of the several-layer rgo film on the Pt-IDE is shown in Fig. 2 (b), (c), and (d). The rgo film is vey transparent, as can be seen from the high magnifying images [Fig. 2 (c) and (d)], which indicates that our rgo sheets are very thin and may be consisting of only a few layers of rgo. Figure 3 compares the Raman spectra of GO to that of rgo. Both GO and rgo have two 3

4 distinct peaks: Those at 1350 and 1580 cm -1 are the so-called D and G Raman bands, respectively. 14 The peak height of D and G are almost the same in GO. However, the D band intensity is larger than that of G in rgo, and this is due to the formation of large number of defects during reduction process. The Raman spectra of GO and rgo are consistent with other reported results. 15 We fabricated many rgo sheets of different electrical resistance to study the sensing properties. Next, we will show the temperature sensing properties of two rgo sheets. Figure 4 shows the current (I) verses voltage (V) plot of sample 1 at T = 375K and 80 K. It is found that the current increases linearly with increasing voltage from -1 V to +1 V. The linear I-V characteristic indicates the ohmic nature of rgo. Although the I-V plot shows ohmic nature for other temperatures between 375 K and 80 K, we have not shown them here for clarity. Hence, we have used the Ohm s law to calculate the resistance (R = V/I) of the rgo sheets in the measured temperature range. Samples of deferent resistances show similar behavior. It is worth to mention here that a non-linear IV curve can be obtained, if the GO is not reduced enough. 16 Figure 5 shows the temperature dependence of the resistance R(T) of rgo sensor. It is found that the resistance decreases almost linearly with increase in temperature in the measured temperature region 80 to 375 K, which shows the behavior of an intrinsic semiconductor. A similar temperature dependent resistance behavior has been reported in metallic carbon nanotube and monolayer and bilayer graphene. 17,18 Uher et al. 19 have reported such unusual temperature dependent resistance in exfoliated graphite and according to them the negative coefficient of resistivity is some form of activated behavior and not intrinsic to graphites rather related to high density of defects. However, the exact mechanism is still not clear. It is important to know the coefficient of resistance (α) of rgo temperature sensor for its sensor characteristic. Hence, we 4

5 have calculated α for rgo from the above results using the expression, α=(1/r 0 ) (dr/dt), where R 0 is the resistance of the sample at 273 K and dr/dt is the slope of the R-T curve. We have fitted the resistance behavior in the entire temperature region using a linear equation and the slope is found to be Ohm/K. As the value of R 0 is 554 Ω at 273 K, the α is found to be K -1 which is one order larger than that of reported carbon nanotube. 17 This experiment was performed several times and over several periods of times to ensure repeatability of the result. The temperature sensing performance test was conducted by keeping the rgo sensor device on a block of ice. A constant voltage of 1V was applied across the two terminals of the device and the change in current/resistance was monitored by periodically touching and removing the ice block. The ice was in full physical contact with the back side of the device to ensure proper thermal equilibrium between the ice and the sample. The thin substrate also helps in quick thermal equilibrium. We have performed the temperature sensing in two rgo devices with different room temperature resistances; sample 1 (240 ohm), sample 2 (520 ohm). Figure 6 shows the resistance verses time graph of sample 1 and sample 2. When the sample was just touched to the ice block, the resistance increases abruptly and almost saturates after few millisecond. Once the ice is removed the resistance drops exponentially and reaches room temperature resistance. It is found that while the resistance increases by 15% in sample 2, it increases by 12% in sample 1 upon touching the ice block with the sensor. As can be seen from the graph that response time is much faster than the recovery time which a characteristic of sensor. We calculate the recovery time for both the sensors by fitting the graphs using the following simplified equation, R(t)=R 0 +A exp[-(t-b)/ τ], (1) 5

6 where R 0 is the room temperature resistance, A is the amplitude, B is a constant and ζ is the recovery/response time. The fitted curve is shown in Fig. 7 (a). The recovery times (τ r ) were found to be around 6.35 and 8.19 seconds for sample 1 and sample 2, respectively. The response times (τ s ) were also calculated from the plot and are found to be 0.58 and 0.59 seconds for sample 1 and sample 2, respectively. The temperature sensitivity of rgo sensor was also compared with that of standard platinum sensor (Pt 111) (see Fig. 7(b)) by using the similar experimental set up. Both the response and recovery times in Pt 111 are found to be much slower than that of the rgo sensor for same change in temperature (297 to 273K). The response and recovery times of Pt 111 were calculated to be 8.66 and seconds, respectively and the change is resistance is also smaller (~ 6.8%). Note that, while the resistance of Pt 111 sensor decreases with decreasing temperature, the resistance increases with decreasing temperature of rgo. In summary the temperature sensing effect in film of reduced graphene oxide a few layers thick has been studied. The linearity in resistance as a function of temperature is verified over a wide range of temperature (from 80 to 375K). The temperature sensitivity is found to be much faster than the standard platinum thermometer. The response and recovery times of rgo are 8 and 3 times faster than that of PT-111 sensor in the temperature range of 297 to 273K. Thus rgo could be a potential candidate as a fast temperature sensor. Acknowledgements: The authors acknowledge partial financial support from DoE through Grant No. DE-FG02-ER

7 References 1. K. S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666 (2004). 2. Y. Zhang, Y. -W. Tan, H. L. Stormer, P.Kim, Nature 438, 201 (2005). 3. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 315, 1379 (2007). 4. A. K. Geim, and K. S. Novoselov, Nature Materials 6, 183 (2007). 5. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 8, 902 (2008). 6. D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 39, 228 (2010). 7. Y. Si, E. T. Samulski, Nano Lett. 8, 1679 (2008). 8. J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan, Nano Lett., 8, 3137 (2008). 9. G. Lu, L. E. Ocola, J. Chen, Appl. Phys. Lett. 94, (2009). 10. S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong, K. P. Loh, Nano Lett., 10, 92 (2010). 11. S. Mao, G. Lu, K. Yu, Z. Bo, J. Chen, Adv. Mat., 22, 3521 (2010). 12. Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir, 26, 6158 (2010). 13. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). 14. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car, Nano Lett., 8, 36, (2008). 15. I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nat. Commun., 1, 73, (2010). 16. I. Jung, D. A. Dikin, R. D. Piner, R. S. Ruoff, Nano Lett., 8, 4283, (2008). 7

8 17. A. D. Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A. M. Cucolo, P. Ciambelli, J. Appl. Phys., 105, (2009). 18. Q. Shao, G. Liu, D. Teweldebrhan, A. A. Balandinm, Appl. Phys. Lett., 92, , (2008). 19. C. Uher, L. M. Sander, Phys. Rev. B., 27, 1326 (1983). 8

9 Figure Captions Fig. 1. Optical microscopy image of rgo film on Pt-IDE. Fig. 2. (a) FESEM image of a Pt-IDE. (b), (c) and (d) FESEM image of few layer reduced graphene oxide with different magnifications. Fig. 3. Comparison of Raman spectra of graphene oxide and reduced graphene oxide. Fig. 4. Current verses voltage graph of rgo thin film deposited on Pt-IDE measured at 397 K. Fig. 5. Temperature dependent resistance of the rgo temperature sensor. Fig. 6. (a) Temperature sensing behavior of two rgo devices of different resistances; top and bottom graph represents sample 1 and 2, respectively. The on and off-state in the graph represent the contact and removal of a block of ice to the device. The corresponding resistances scales are indicated by arrows. (b) Temperature sensing behavior for sample 1 and sample 2 are compared for one period of time. The recovery time is calculated using equation (1). 7. A comparison of temperature sensing behavior of rgo device with that of a standard platinum thermometer (PT-111). In both cases the recovery times were calculated by fitting Eq. 1. to the graph which is shown as solid line. The corresponding resistances and time scales are indicated by arrows. 9

10 Fig. 1. Sahoo. et al. 10

11 (a) (b) (c) (d) Fig. 2. Sahoo et al. 11

12 D band G band Intensity (arb. units) rgo GO Raman shift (cm -1 ) Fig. 3. Sahoo et al. 12

13 K 375 K 0.4 I (ma) V (Volt) Fig. 4. Sahoo et al. 13

14 R (Ohm) T (K) Fig. 5. Sahoo et al. 14

15 273 K 600 Sample K 500 OFF (Remove Ice) 450 Sample ON (Insert Ice) R (Ohm) 300 R (Ohm) 650 (a) Time (Sec) R(T) = *exp(-(t-68.78)/7.72) = sec Sample 1 =6 270 t1 = 0.58 sec R(T) = *exp(-(t-64.48)/6.35) Time (Sec) Fig. 6. Sahoo et al. 15 R (Ohm) sec 550 t2 R (Ohm) t2 Sample t1 = sec (b) 330

16 R (Ohm) R/R sample 1 = 12.1% R/R Sample 1 Pt 111 = 6.8% τ 2 = 6.35 sec τ r = sec 110 τ s = 0.58 sec τ s = 8.66 sec Pt Time (Sec) R (Ohm) Fig. 7. Sahoo et al. 16

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets

Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Solvothermal Reduction of Chemically Exfoliated Graphene Sheets Hailiang Wang, Joshua Tucker Robinson, Xiaolin Li, and Hongjie Dai* Department of Chemistry and Laboratory for Advanced Materials, Stanford

More information

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014

Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date: th July 2014 Conference Return Seminar- NANO2014,Moscow State University,Moscow,Russia Date:13-1818 th July 2014 An electrochemical method for the synthesis of single and few layers graphene sheets for high temperature

More information

Synthesis & Structural Study on Graphene Nano Particles

Synthesis & Structural Study on Graphene Nano Particles Synthesis & Structural Study on Graphene Nano Particles L. Kashinath R. Senthil Kumar Y. Hayakawa Shizuko University Japan. G. Ravi Abstract: Graphene is one atom thick planar sheet of carbon atoms densely

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Int J Thermophys (2012) 33:986 991 DOI 10.1007/s10765-012-1216-y Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Jiuning Hu Xiulin Ruan Yong P. Chen Received: 26 June 2009 / Accepted:

More information

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons Jiuning Hu 1* Xiulin Ruan 2 Yong P. Chen 3# 1School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue

More information

Characterization of partially reduced graphene oxide as room

Characterization of partially reduced graphene oxide as room Supporting Information Characterization of partially reduced graphene oxide as room temperature sensor for H 2 Le-Sheng Zhang a, Wei D. Wang b, Xian-Qing Liang c, Wang-Sheng Chu d, Wei-Guo Song a *, Wei

More information

The study on physical and mechanical properties of latex/graphene oxide composite film

The study on physical and mechanical properties of latex/graphene oxide composite film Journal of Physics: Conference Series PAPER OPEN ACCESS The study on physical and mechanical properties of latex/graphene oxide composite film To cite this article: S Gea et al 2018 J. Phys.: Conf. Ser.

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION Materials Graphite powder (SP-1 graphite) was obtained from Bay carbon.

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst

Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst Supporting Information Iodide-mediated room temperature reduction of graphene oxide: a rapid chemical route for the synthesis of a bifunctional electrocatalyst Ashok Kumar Das, 1 Manish Srivastav, 1 Rama

More information

Supporting Information Available:

Supporting Information Available: Supporting Information Available: Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS 2 Nanoflakes Nengjie Huo 1, Shengxue Yang 1, Zhongming Wei 2, Shu-Shen Li 1, Jian-Bai Xia

More information

Influence of temperature and voltage on electrochemical reduction of graphene oxide

Influence of temperature and voltage on electrochemical reduction of graphene oxide Bull. Mater. Sci., Vol. 37, No. 3, May 2014, pp. 629 634. Indian Academy of Sciences. Influence of temperature and voltage on electrochemical reduction of graphene oxide XIUQIANG LI, DONG ZHANG*, PEIYING

More information

Lithography-free Fabrication of High Quality Substrate-supported and. Freestanding Graphene devices

Lithography-free Fabrication of High Quality Substrate-supported and. Freestanding Graphene devices Lithography-free Fabrication of High Quality Substrate-supported and Freestanding Graphene devices W. Bao 1, G. Liu 1, Z. Zhao 1, H. Zhang 1, D. Yan 2, A. Deshpande 3, B.J. LeRoy 3 and C.N. Lau 1, * 1

More information

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method

Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Electronic Supplementary Information (ESI) Vertical Alignment of Reduced Graphene Oxide/Fe-oxide Hybrids Using the Magneto-Evaporation Method Sang Cheon Youn, Dae Woo Kim, Seung Bo Yang, Hye Mi Cho, Jae

More information

A. Optimizing the growth conditions of large-scale graphene films

A. Optimizing the growth conditions of large-scale graphene films 1 A. Optimizing the growth conditions of large-scale graphene films Figure S1. Optical microscope images of graphene films transferred on 300 nm SiO 2 /Si substrates. a, Images of the graphene films grown

More information

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS

REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS REDUCED GRAPHITE OXIDE-INDIUM TIN OXIDE COMPOSITES FOR TRANSPARENT ELECTRODE USING SOLUTION PROCESS K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K.

More information

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of

Chemical functionalization of graphene sheets by solvothermal reduction of suspension of Supplementary material Chemical functionalization of graphene sheets by solvothermal reduction of suspension of graphene oxide in N-methyl-2-pyrrolidone Viet Hung Pham, Tran Viet Cuong, Seung Hyun Hur,

More information

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC)

GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) Communications in Physics, Vol. 26, No. 1 (2016), pp. 43-49 DOI:10.15625/0868-3166/26/1/7961 GRAPHENE EFFECT ON EFFICIENCY OF TiO 2 -BASED DYE SENSITIZED SOLAR CELLS (DSSC) NGUYEN THAI HA, PHAM DUY LONG,

More information

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors

Hydrogenated CoO x Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric supercapacitors . Electronic Supplementary Material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Hydrogenated CoO x nanowire @ Ni(OH) 2 nanosheet core shell nanostructures for high-performance asymmetric

More information

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films

Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Supporting Information Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films Jinping Zhao, Songfeng Pei, Wencai Ren*, Libo Gao and Hui-Ming Cheng* Shenyang National

More information

sheets in the exfoliation step

sheets in the exfoliation step Optimization of the size and yield of graphene oxide sheets in the exfoliation step Cristina Botas, Ana M. Pérez-Mas, Patricia Álvarez, Ricardo Santamaría, Marcos Granda, Clara Blanco, and Rosa Menéndez

More information

Ambipolar bistable switching effect of graphene

Ambipolar bistable switching effect of graphene Ambipolar bistable switching effect of graphene Young Jun Shin, 1,2 Jae Hyun Kwon, 1,2 Gopinadhan Kalon, 1,2 Kai-Tak Lam, 1 Charanjit S. Bhatia, 1 Gengchiau Liang, 1 and Hyunsoo Yang 1,2,a) 1 Department

More information

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions

Supporting Information. High-Performance Strain Sensors with Fish Scale-Like Graphene. Sensing Layers for Full-Range Detection of Human Motions Supporting Information High-Performance Strain Sensors with Fish Scale-Like Graphene Sensing Layers for Full-Range Detection of Human Motions Qiang Liu, Ji Chen, Yingru Li, and Gaoquan Shi* Department

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research

Overview. Carbon in all its forms. Background & Discovery Fabrication. Important properties. Summary & References. Overview of current research Graphene Prepared for Solid State Physics II Pr Dagotto Spring 2009 Laurene Tetard 03/23/09 Overview Carbon in all its forms Background & Discovery Fabrication Important properties Overview of current

More information

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System

High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System Journal of Physics: Conference Series PAPER OPEN ACCESS High Performance, Low Operating Voltage n-type Organic Field Effect Transistor Based on Inorganic-Organic Bilayer Dielectric System To cite this

More information

Lithography-Free Fabrication of High Quality Substrate- Supported and Freestanding Graphene Devices

Lithography-Free Fabrication of High Quality Substrate- Supported and Freestanding Graphene Devices 98 DOI 10.1007/s12274-010-1013-5 Research Article Lithography-Free Fabrication of High Quality Substrate- Supported and Freestanding Graphene Devices Wenzhong Bao 1, Gang Liu 1, Zeng Zhao 1, Hang Zhang

More information

Radiation Induced Reduction: A Effect and Clean Route to

Radiation Induced Reduction: A Effect and Clean Route to Supporting Information for Radiation Induced Reduction: A Effect and Clean Route to Synthesize Functionalized Graphene Bowu ZHANG, a, b Linfan LI, a Ziqiang WANG, a Siyuan XIE, a, b Yujie ZHANG, c Yue

More information

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan

High Quality Thin Graphene Films from Fast. Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan Supporting Materials High Quality Thin Graphene Films from Fast Electrochemical Exfoliation Ching-Yuan Su, Ang-Yu Lu #, Yanping Xu, Fu-Rong Chen #, Andrei N. Khlobystov $ and Lain-Jong Li * Research Center

More information

Supplementary Information

Supplementary Information Supplementary Information Plasma-assisted reduction of graphene oxide at low temperature and atmospheric pressure for flexible conductor applications Seung Whan Lee 1, Cecilia Mattevi 2, Manish Chhowalla

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION

AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION NANO: Brief Reports and Reviews Vol. 7, No. 1 (2012) 1150001 (6 pages) World Scienti c Publishing Company DOI: 10.1142/S1793292011500019 AN IMPROVED METHOD FOR TRANSFERRING GRAPHENE GROWN BY CHEMICAL VAPOR

More information

Tunneling characteristics of graphene

Tunneling characteristics of graphene Tunneling characteristics of graphene Young Jun Shin, 1,2 Gopinadhan Kalon, 1,2 Jaesung Son, 1 Jae Hyun Kwon, 1,2 Jing Niu, 1 Charanjit S. Bhatia, 1 Gengchiau Liang, 1 and Hyunsoo Yang 1,2,a) 1 Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Spin Injection into a Graphene Thin Film at Room Temperature

Spin Injection into a Graphene Thin Film at Room Temperature Spin Injection into a Graphene Thin Film at Room Temperature Megumi Ohishi, Masashi Shiraishi*, Ryo Nouchi, Takayuki Nozaki, Teruya Shinjo, and Yoshishige Suzuki Graduate School of Engineering Science,

More information

Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene

Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene Effects of interaction of electron-donor and accepter molecules on the electronic structure of graphene Rakesh Voggu 1, Barun Das 1, 2, Chandra Sekhar Rout, 1 1, 2,* and C. N. R. Rao 1 Chemistry and Physics

More information

Three-dimensional Multi-recognition Flexible Wearable

Three-dimensional Multi-recognition Flexible Wearable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 This journal is The Royal Society of Chemistry 2016 Supporting Information Three-dimensional Multi-recognition

More information

Supporting Information

Supporting Information Supporting Information Oxygen Reduction on Graphene-Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur Drew C. Higgins, Md Ariful Hoque, Fathy Hassan, Ja-Yeon Choi, Baejung Kim, Zhongwei

More information

Graphene Chemical Vapor Deposition (CVD) Growth

Graphene Chemical Vapor Deposition (CVD) Growth ECE440 Nanoelectronics Graphene Chemical Vapor Deposition (CVD) Growth Zheng Yang Timeline of graphene CVD growth Exfoliation

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Dual N-type Doped Reduced Graphene Oxide Field Effect Transistors Controlled by Semiconductor Nanocrystals Luyang Wang, Jie Lian, Peng Cui, Yang Xu, Sohyeon Seo, Junghyun

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL

GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL GRAPHENE ON THE Si-FACE OF SILICON CARBIDE USER MANUAL 1. INTRODUCTION Silicon Carbide (SiC) is a wide band gap semiconductor that exists in different polytypes. The substrate used for the fabrication

More information

Graphene Novel Material for Nanoelectronics

Graphene Novel Material for Nanoelectronics Graphene Novel Material for Nanoelectronics Shintaro Sato Naoki Harada Daiyu Kondo Mari Ohfuchi (Manuscript received May 12, 2009) Graphene is a flat monolayer of carbon atoms with a two-dimensional honeycomb

More information

Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques

Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques Journal: 2012 MRS Spring Meeting Manuscript ID: MRSS12-1451-DD14-02.R1 Manuscript Type: Symposium DD Date

More information

The study of wettability in reduced graphene oxide film on copper substrate using electrostatic spray deposition technique

The study of wettability in reduced graphene oxide film on copper substrate using electrostatic spray deposition technique Journal of Physics: Conference Series PAPER OPEN ACCESS The study of wettability in reduced graphene oxide film on copper substrate using electrostatic spray deposition technique To cite this article:

More information

Effect of the Substrate on Phonon Properties of Graphene. Estimated by Raman Spectroscopy

Effect of the Substrate on Phonon Properties of Graphene. Estimated by Raman Spectroscopy This is a pre-print of an article published in Journal of Low Temperature Physics. The final authenticated version is available online at: https://doi.org/10.1007/s10909-017807-x Effect of the Substrate

More information

Solution-processable graphene nanomeshes with controlled

Solution-processable graphene nanomeshes with controlled Supporting online materials for Solution-processable graphene nanomeshes with controlled pore structures Xiluan Wang, 1 Liying Jiao, 1 Kaixuan Sheng, 1 Chun Li, 1 Liming Dai 2, * & Gaoquan Shi 1, * 1 Department

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED GRAPHENE/EPOXY NANOCOMPOSITES

IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED GRAPHENE/EPOXY NANOCOMPOSITES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPROVEMENT IN MECHANICAL PROPERTIES OF MODIFIED 1 Introduction Since first successfully separated from graphite by micromechanical cleavage [1], graphene

More information

Transparent Electrode Applications

Transparent Electrode Applications Transparent Electrode Applications LCD Solar Cells Touch Screen Indium Tin Oxide (ITO) Zinc Oxide (ZnO) - High conductivity - High transparency - Resistant to environmental effects - Rare material (Indium)

More information

Transient Photocurrent Measurements of Graphene Related Materials

Transient Photocurrent Measurements of Graphene Related Materials Transient Photocurrent Measurements of Graphene Related Materials P. Srinivasa Rao Mentor: Prof. dr. Gvido Bratina Laboratory of Organic Matter Physics University of Nova Gorica 1 Contents: 1. Electrical

More information

Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application

Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application Resistive switching behavior of reduced graphene oxide memory cells for low power nonvolatile device application S. K. Pradhan, Bo, Xiao, S. Mishra, A. Killam, A. K. Pradhan Center for Materials Research,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Wafer-scale fabrication of graphene

Wafer-scale fabrication of graphene Wafer-scale fabrication of graphene Sten Vollebregt, MSc Delft University of Technology, Delft Institute of Mircosystems and Nanotechnology Delft University of Technology Challenge the future Delft University

More information

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics

Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Supporting Information Electrochemically Exfoliated Graphene as Solution-Processable, Highly-Conductive Electrodes for Organic Electronics Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez,

More information

Supporting Information

Supporting Information Supporting Information Repeated Growth Etching Regrowth for Large-Area Defect-Free Single-Crystal Graphene by Chemical Vapor Deposition Teng Ma, 1 Wencai Ren, 1 * Zhibo Liu, 1 Le Huang, 2 Lai-Peng Ma,

More information

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066

A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE. Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 A project report on SYNTHESIS AND CHARACTERISATION OF COPPER NANOPARTICLE-GRAPHENE COMPOSITE Submitted by Arun Kumar Yelshetty Roll no 410 CY 5066 Under the guidance of Prof. (Ms). Sasmita Mohapatra Department

More information

Synthesis and Characterization of Graphene by Raman Spectroscopy

Synthesis and Characterization of Graphene by Raman Spectroscopy Journal of Materials Sciences and Applications 2015; 1(3): 130-135 Published online June 20, 2015 (http://www.aascit.org/journal/jmsa) Synthesis and Characterization of Graphene by Raman Spectroscopy Hilal

More information

Raman spectroscopy at the edges of multilayer graphene

Raman spectroscopy at the edges of multilayer graphene Raman spectroscopy at the edges of multilayer graphene Q. -Q. Li, X. Zhang, W. -P. Han, Y. Lu, W. Shi, J. -B. Wu, P. -H. Tan* State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors,

More information

Supporting Information. by Hexagonal Boron Nitride

Supporting Information. by Hexagonal Boron Nitride Supporting Information High Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride Megan A. Yamoah 1,2,, Wenmin Yang 1,3, Eric Pop 4,5,6, David Goldhaber-Gordon 1 * 1 Department of Physics,

More information

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University

Graphene The Search For Two Dimensions. Christopher Scott Friedline Arizona State University Graphene The Search For Two Dimensions Christopher Scott Friedline Arizona State University What Is Graphene? Single atomic layer of graphite arranged in a honeycomb crystal lattice Consists of sp 2 -bonded

More information

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen

Supplementary Material for. Zinc Oxide-Black Phosphorus Composites for Ultrasensitive Nitrogen Electronic Supplementary Material (ESI) for Nanoscale Horizons. This journal is The Royal Society of Chemistry 2018 Supplementary Material for Zinc Oxide-Black Phosphorus Composites for Ultrasensitive

More information

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes

Multicolor Graphene Nanoribbon/Semiconductor Nanowire. Heterojunction Light-Emitting Diodes Multicolor Graphene Nanoribbon/Semiconductor Nanowire Heterojunction Light-Emitting Diodes Yu Ye, a Lin Gan, b Lun Dai, *a Hu Meng, a Feng Wei, a Yu Dai, a Zujin Shi, b Bin Yu, a Xuefeng Guo, b and Guogang

More information

Graphene FETs with Combined Structure and Transparent Top

Graphene FETs with Combined Structure and Transparent Top Available online at www.sciencedirect.com Physics Procedia 32 (2012 ) 869 874 18th International Vacuum Congress (IVC-18) Graphene FETs with Combined Structure and Transparent Top Yuanlin Yuan a, Zhen

More information

Supplementary Figure 1 A schematic representation of the different reaction mechanisms

Supplementary Figure 1 A schematic representation of the different reaction mechanisms Supplementary Figure 1 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles:

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Preparation of graphene relying on porphyrin exfoliation of graphite

Preparation of graphene relying on porphyrin exfoliation of graphite Electronic Supplementary Information (ESI) for: Preparation of graphene relying on porphyrin exfoliation of graphite Jianxin Geng, Byung-Seon Kong, Seung Bo Yang and Hee-Tae Jung* National Research Laboratory,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography

Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography Sub-5 nm Patterning and Applications by Nanoimprint Lithography and Helium Ion Beam Lithography Yuanrui Li 1, Ahmed Abbas 1, Yuhan Yao 1, Yifei Wang 1, Wen-Di Li 2, Chongwu Zhou 1 and Wei Wu 1* 1 Department

More information

Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy

Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning probe microscopy Bull. Mater. Sci., Vol. 36, No. 6, November 2013, pp. 1073 1077. c Indian Academy of Sciences. Intrinsic structure and friction properties of graphene and graphene oxide nanosheets studied by scanning

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014

CVD growth of Graphene. SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 CVD growth of Graphene SPE ACCE presentation Carter Kittrell James M. Tour group September 9 to 11, 2014 Graphene zigzag armchair History 1500: Pencil-Is it made of lead? 1789: Graphite 1987: The first

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany 3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells** Hui Wang, Kai

More information

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots

Enhanced photocurrent of ZnO nanorods array sensitized with graphene. quantum dots Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots Bingjun Yang,

More information

Functionalization of Graphene Oxide by Two-Step Alkylation

Functionalization of Graphene Oxide by Two-Step Alkylation Full Paper Macromolecular Functionalization of Graphene Oxide by Two-Step Alkylation Yi Huang, Weibo Yan, Yanfei Xu, Lu Huang, Yongsheng Chen * A new reaction sequence for the chemical functionalization

More information

Fabrication of graphene nanogap with crystallographically matching edges and its. electron emission properties

Fabrication of graphene nanogap with crystallographically matching edges and its. electron emission properties Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties H. M. Wang, 1 Z. Zheng, 1 Y.Y.Wang, 1 J.J. Qiu, Z.B. Guo, Z. X. Shen, 1 and T. Yu 1,* 1 Division

More information

Electronic Supplementary Information. Microwave-assisted, environmentally friendly, one-pot preparation. in electrocatalytic oxidation of methanol

Electronic Supplementary Information. Microwave-assisted, environmentally friendly, one-pot preparation. in electrocatalytic oxidation of methanol Electronic Supplementary Information Microwave-assisted, environmentally friendly, one-pot preparation of Pd nanoparticles/graphene nanocomposites and their application in electrocatalytic oxidation of

More information

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene /

Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene / Supplementary Information: Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene / Monolayer h-bn stacks Victor W. Brar 1,2, Min Seok Jang 3,, Michelle Sherrott 1, Seyoon Kim 1, Josue J. Lopez 1, Laura

More information

Raman spectroscopy of graphene on different substrates and influence of defects

Raman spectroscopy of graphene on different substrates and influence of defects Bull. Mater. Sci., Vol. 31, No. 3, June 2008, pp. 579 584. Indian Academy of Sciences. Raman spectroscopy of graphene on different substrates and influence of defects ANINDYA DAS, BISWANATH CHAKRABORTY

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED ON RAMAN MAPPING

PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED ON RAMAN MAPPING Proceedings of the Asian Conference on Thermal Sciences 217, 1st ACTS March 26-3, 217, Jeju Island, Korea ACTS-4 PARALLEL MEASUREMENT OF CONDUCTIVE AND CONVECTIVE THERMAL TRANSPORT OF MICRO/NANOWIRES BASED

More information

MICROWAVE AND MILLIMETERWAVE ELECTRICAL PERMITTIVITY OF GRAPHENE MONOLAYER. G. Konstantinidis 3

MICROWAVE AND MILLIMETERWAVE ELECTRICAL PERMITTIVITY OF GRAPHENE MONOLAYER. G. Konstantinidis 3 1 MICROWAVE AND MILLIMETERWAVE ELECTRICAL PERMITTIVITY OF GRAPHENE MONOLAYER Alina Cismaru 1, Mircea Dragoman 1*, Adrian Dinescu 1, Daniela Dragoman 2, G. Stavrinidis, G. Konstantinidis 3 1 National Institute

More information

One-step reduction, characterization and magnetic behaviour of exfoliated graphene oxide

One-step reduction, characterization and magnetic behaviour of exfoliated graphene oxide Materials Science-Poland, 31(1), 2013, pp. 59-64 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.2478/s13536-012-0068-2 One-step reduction, characterization and magnetic behaviour of exfoliated graphene

More information

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one

Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one Supplementary Figure 1 Dark-field optical images of as prepared PMMA-assisted transferred CVD graphene films on silicon substrates (a) and the one after PBASE monolayer growth (b). 1 Supplementary Figure

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor

Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor Electronic Supplementary Information for: Synthesis of a highly conductive and large surface area graphene oxide hydrogel and its use in a supercapacitor Van Hoang Luan, a Huynh Ngoc Tien, a Le Thuy Hoa,

More information

ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES

ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ELECTROMAGNETIC PROPERTIES OF COBALT REDUCED GRAPHENE OXIDE (CO-RGO)/ EPOXY COMPOSITES Y. Wang 1, Y. Zhao 1 *, Y. Su 1, X. Lu 2 1 School of Materials

More information

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that

Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that Chemical Identity and Applications of Graphene-Titanium Dioxide Graphene is a single, two-dimensional nanosheet of aromatic sp 2 hybridized carbons that enhances the performance of photocatalysts. 1 The

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting Information 1. Synthesis of perovskite materials CH 3 NH 3 I

More information

The GO was synthesized by oxidation of purified natural small graphite and graphite

The GO was synthesized by oxidation of purified natural small graphite and graphite Jing-He Yang, a,b Geng Sun, a Yongjun Gao, a Huabo Zhao, a Pei Tang, a Juan Tan, b Lu b and Ding Ma*,a An-Hui a Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering,

More information

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites

Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Synthesis and Characterization of Exfoliated Graphite (EG) and to Use it as a Reinforcement in Zn-based Metal Matrix Composites Here H 2 SO 4 was used as an intercalant and H 2 O 2 as an oxidant. Expandable

More information

Graphene A One-Atom-Thick Material for Microwave Devices

Graphene A One-Atom-Thick Material for Microwave Devices ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 11, Number 1, 2008, 29 35 Graphene A One-Atom-Thick Material for Microwave Devices D. DRAGOMAN 1, M. DRAGOMAN 2, A. A. MÜLLER3 1 University

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Simultaneous Nitrogen Doping and Reduction of Graphene Oxide

Simultaneous Nitrogen Doping and Reduction of Graphene Oxide Published on Web 10/09/2009 Simultaneous Nitrogen Doping and Reduction of Graphene Oxide Xiaolin Li, Hailiang Wang, Joshua T. Robinson, Hernan Sanchez, Georgi Diankov, and Hongjie Dai* Department of Chemistry,

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information