Student Worksheet for Buffers, Ksp, and Titrations

Size: px
Start display at page:

Download "Student Worksheet for Buffers, Ksp, and Titrations"

Transcription

1 Student Worksheet for Attempt to work the following practice problems after working through the sample problems in the videos. Answers are given on the last page(s). Relevant Equations Keq= [C]c [D] d [A] a [B] b ph= pk a + log [A ] [HA] [C] Ka = c [A] a [B] b pk a = -log Ka Ksp = Provided Value= [A] a [B] b ph= - log [H + ] = K eq [C][D] K a = 10 -pka s [A] or [B]= [aa] a =[bb] b M= moles Liter [H + ] = 10 -ph Quadratic Equation: ax 2 + bx + c * M1V1= M2V2 Where, A and B= reactants, C and D= products, a and b= coefficients of reactants, c and d= coefficients of products, s= solubility, Keq = equilibrium constant, Ksp= solubility constant, Ka = disassociation constant of the acid, A - = acid after donating its H, HA= acid before donating its H, M= molarity, and [ ] = concentration * The a, b, and c values for the quadratic equation come from the Ka equation Supercharged Science 1

2 1. If 100mL of 1.2M HCl are required to neutralize 75 ml of NaOH, what is the concentration of NaOH? 2. What is the ph of a solution that is a 3.5M weak, monoprotic acid that has a Ka of 1.2? 3. What is the solubility of Ag and CrO4, according to the following equation, if the Ksp of Ag2CrO4 is 1.1*10-12? 2 Ag + + CrO4 2- Ag2CrO4 4. Calculate the pk a of a weak acid solution that has a ph of 5.7 after the addition of 7 moles of the acid Supercharged Science 2

3 5. Calculate the solubility of Ag if the Ksp of AgBr is 5.4* Calculate the Ksp of Fe(OH)3 if the solubility of Fe 3+ and - OH are 1.29* What is the ph of a solution when 125 ml of a 4M acid solution has a pka of If 75mL of 2 M sulfuric acid is needed to neutralize Mg(OH)2, how many moles of Mg(OH)2 was in the original solution? Assume only 1 H + disassociates Supercharged Science 3

4 9. What is the ph of the solution in #8? 10. Benzoic Acid, C6H5COOH, is a weak acid with a Ka of 6.46*10-5. If 100 g are dissolved in 1.5L of water, what is the ph of the solution? NOTE: In this case, H2O acts as a base only. 11. The following chemical equation has a known Keq of What are the concentrations of products and reactants at equilibrium if 3 moles of CO are mixed with 5.7 moles of H2O? CO + H2O CO2 + H2 12. If the Ksp of Ca3(PO4)2 is 2.1*10-33, what is the concentration of Ca 2+ if it is dissolved in water to make a saturated solution? 2017 Supercharged Science 4

5 13. What is the Keq when HCl is mixed with S2 according to the following equation? 4 HCl + S2 2 H2S + 2 Cl2 14. Explain the observation that phosphate buffers have multiple equivalence points according to the following deprotonations: H3PO4 H2PO4 - + H + H2PO4 HPO H + HPO4 2- PO H Calculate the Ka of an acid if dissolving 1.5L of the 3M acid in 3 liters of water produces a solution that has a ph of Supercharged Science 5

6 1. If 100mL of 1.2M HCl are required to neutralize 75 ml of NaOH, what is the concentration of NaOH? You will first need to set up your balanced equation. This becomes: HCl + NaOH H2O + NaCl Now use the molarity formula to find out how many moles of HCl were actually added. M = moles Liter Moles = M * Liters You are solving for moles. Don t forget to convert ml to L. = 1.2 * 0.1 = 0.12 moles HCl added. From the equation, we know that there s a 1:1 ratio, so there were also 0.12 moles of NaOH. Plugging this into the molarity formula: M = moles Liter = = 1.6M of NaOH 2. What is the ph of a solution that is a 3.5M weak, monoprotic acid that has a Ka of 1.2? Because it is a weak acid, you will need to set up your ICE table. Ka = [B][C] [A] HA H + A - I C - X +X +X E 3.5-X +X +X Note: In this example, there is one reactant (the acid) and 2 products. 1.2 = X X 3.5 X = X X Set all variables equal to 0. X X 4.2= 0 Use the Quadratic Equation to solve for X. X= 1.54, The negative number can never be the answer because it implies that matter is destroyed. Now plug your values of X (1.54) into the H + space of the Equilibrium row in the table. [H + ] = 1.54 Use ph= -log [H + ] to solve ph= (Rare, but yes, that s possible) 2017 Supercharged Science 6

7 3. What is the solubility of Ag and CrO4, according to the following equation, if the Ksp of Ag2CrO4 is 1.1*10-12? 2 Ag + + CrO4 2- Ag2CrO4 Ksp = [Ag] 2 [CrO4 2- ]= 1.1*10-12 s 3 = 1.1*10-12 s= 1.03*10-4 each Note: Because there is twice as much Ag, you will multiply the s value by 2 to get the total solubility of Ag. This value is per ion. 4. Calculate the pk a of a weak acid solution that has a ph of 5.7 after the addition of 7 moles of the acid. Using the Henderson-Hasselbalch equation, ph = pk a + log [A ], you can use the reverse log [HA] formula [H + ]= 10 -ph. Because the A - value is equal to the H + value, these can plug straight in. [H + ]= = 2.0*10-6. Plugging the values into the Henderson equation, we get: ph = pka + log [A ] [HA] 5.7 = pka + log ( ) 5.7 log = pka pka = Calculate the solubility of Ag if the Ksp of AgBr is 5.4* Ksp = [Ag][Br]= 5.4*10-13 You probably guessed that it s the square root of the Ksp. s 2 = 5.4*10-13 = = 7.35* Supercharged Science 7

8 6. Calculate the Ksp of Fe(OH)3 if the solubility of Fe 3+ and - OH are 1.29* Ksp= s[a] a *s[b] b = 1.29*10-39 * (1.29*10-39 ) 3 = 2.8*10-39 mol/l 7. What is the ph of a solution when 125 ml of a 4M acid solution that has a pka of 1.9 is diluted to 1 L. Use the Molarity equation to find the moles of acid. M= moles Liter Moles= Molarity * Liter = 0.5 moles in 1 liter ph= -log (0.5) = If 75mL of 2 M sulfuric acid is needed to neutralize Mg(OH)2, how many moles of Mg(OH)2 was in the original solution? Assume only 1 H + disassociates. Write the balanced equation, and then use the molarity equation to determine the number of moles. M= moles Liter Moles= Molarity * Liter = 2* 0.75 = 1.5 moles H2SO4 2 H2SO4 + Mg(OH)2 2 HSO H2O + Mg 2+ From the equation, we know that there is a 2:1 molar ratio between the reactants. So, the number of moles of Mg(OH)2 is = 0.75 moles of Mg(OH) Supercharged Science 8

9 9. What is the ph of the solution in #8? Because all H + and - OH are neutralized, the ph is Benzoic Acid, C6H5COOH, is a weak acid with a Ka of 6.46*10-5. If 100 g are dissolved in 1.5L of water, what is the ph of the solution? NOTE: In this case, H2O acts as a base only. First find the moles of benzoic acid. Moles of Benzoic Acid= 100 = 0.82 moles 122 C6H5COOH + H2O H3O + + C6H5COO - C6H5COOH H3O + C6H5COO - I C -X +X +X E 0.82-X X X 6.46*10-5 = [H 3O + ][C 6H5 COO ] [C 6H5 COOH] = X X Multiply both sides by the denominator and distribute 5.3* *10-5 X = X 2 Set everything equal to 0. X * *10-5 = 0 Solve for X via the Quadratic Equation X= 7.36*10-6, -7.2*10-5 The H + concentration is 7.36*10-6. ph= -log H + = 5.13 Note: In this example, the moles of water are not included in the ICE table because there is significantly more of it. Therefore, it s change is considered to be negligible. 11. The following chemical equation has a known Keq of What are the concentrations of products and reactants at equilibrium if 3 moles of CO are mixed with 5.7 moles of H2O? CO + H2O CO2 + H2 CO H2O CO2 H2 I C -X -X +X +X E 3-X 5.7-X X X 0.64 = [CO 2 ][H 2] [CO][H 2 O] = X X (3 X)(5.7 X) Multiply both sides, FOIL, and distribute Supercharged Science 9

10 0.64X 2 = X 5.7X + X 2 Combine like terms. 0.64X 2 5.6X = X 2 Set everything equal to X X 10.9 = 0 Solve for X via the Quadratic Equation. X = 1.75, [CO] = = 1.25 moles [H2O] = = 3.95 moles [CO2] = 1.75 moles [H2] = 1.75 moles 12. If the Ksp of Ca3(PO4)2 is 2.1*10-33, what is the concentration of Ca 2+ if it is dissolved in water to make a saturated solution? Start by writing the disassociation equation. Ca3(PO4)2 3 Ca PO *10-33 = (3s) 3 (2s) 2 = 27s 3 (4s 2 ) = 108s 5 5 = [Ca 2+ ] = 1.14*10-7 moles/l 13. What is the Keq when HCl is mixed with S2 according to the following equation? Keq = [C]c [D] d [A] a [B] b = = 1 mol/l 4 HCl + S2 2 H2S + 2 Cl2 14. Explain the observation that phosphate buffers have multiple equivalence points according to the following deprotonations: H3PO4 H2PO4 - + H + H2PO4 HPO H + HPO4 2- PO H Supercharged Science 10

11 The equivalence point is when the concentration of H + equals the concentration of each phosphate compound (left side of the reaction arrow above). H3PO4 has 3 hydrogens attached, which lends to three different areas of the titration graph that H + will equal phosphates. 15. Calculate the Ka of an acid if dissolving 1.5L of the 3M acid in 3 liters of water produces a solution that has a ph of [H + ] = 10 -ph = = 1.91*10-6 (This value is equal to the base after deprotonation) Start by using the Molarity dilution formula to calculate the final molarity of solution. M1V1 = M2V2 M2 = M 1V 1 V 2 = 1.5L3M 4.5L = 1M Now calculate the number of moles present. 1M = X moles 4.5L X moles = 4.5L * 1 M = 4.5 moles Now use the Henderson-Hasselbalch Equation to solve for pka: ph= pka + log [A ] [HA] pka = ph - log [A ] [HA] = log [ ] [4.5] = (-6.37) = Ka = 10 -pka = 8.13* Supercharged Science 11

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17

CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 CHEM 1412 Answers to Practice Problems Chapters 15, 16, & 17 1. Definitions can be found in the end-of-chapter reviews and in the glossary at the end of the textbook! 2. Conjugate Base Conjugate Acid Compound

More information

X Unit 15 HW Solutions Acids & Bases. Name:

X Unit 15 HW Solutions Acids & Bases. Name: X Unit 15 HW Solutions Acids & Bases Name: Homework #1: Solubility Curve Worksheet Use the solubility chart below to answer the following questions: Graph from U. Va Department of Physics. 1) What is the

More information

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution

Today. Solubility The easiest of all the equilibria. Polyprotic Acids determining something about an unknown by reacting it with a known solution Today Solubility The easiest of all the equilibria Polyprotic Acids determining something about an unknown by reacting it with a known solution Solubility Equilibria Mg(OH)2 (s) Mg 2+ (aq) + 2OH - (aq)

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

Student Worksheet for Acids and Bases

Student Worksheet for Acids and Bases Student Worksheet for Attempt to work the following practice problems after working through the sample problems in the videos. Answers are given on the last page(s). Relevant Equations Kw = 1.0*10-14 =

More information

Calorimetry, Heat and ΔH Problems

Calorimetry, Heat and ΔH Problems Calorimetry, Heat and ΔH Problems 1. Calculate the quantity of heat involved when a 70.0g sample of calcium is heated from 22.98 C to 86.72 C. c Ca= 0.653 J/g C q = 2.91 kj 2. Determine the temperature

More information

KEY. Practice Problems: Applications of Aqueous Equilibria

KEY. Practice Problems: Applications of Aqueous Equilibria Practice Problems: Applications of Aqueous Equilibria KEY CHEM 1B 1. Ammonia (NH3) is a weak base with a Kb = 1.8 x 1 5. a) Write the balanced chemical equation for the reaction of ammonia with water.

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA !! www.clutchprep.com CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist

More information

Buffer Solutions. Buffer Solutions

Buffer Solutions. Buffer Solutions Buffer Solutions A buffer solution is comprised of a mixture of an acid (base) with its conjugate base (acid) that resists changes in ph when additional acid or base is added The Henderson-Hasselbalch

More information

Chapter 17: Additional Aspects of Aqueous Equilibria

Chapter 17: Additional Aspects of Aqueous Equilibria Chapter 17: Additional Aspects of Aqueous Equilibria -Buffer Problems -Titrations -Precipitation Rx Common Ion Effect- The effect that a common ion (from two different sources) has on an equilibrium. (LeChatelier's

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

CHAPTER 7.0: IONIC EQUILIBRIA

CHAPTER 7.0: IONIC EQUILIBRIA Acids and Bases 1 CHAPTER 7.0: IONIC EQUILIBRIA 7.1: Acids and bases Learning outcomes: At the end of this lesson, students should be able to: Define acid and base according to Arrhenius, Bronsted- Lowry

More information

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following.

Problems -- Chapter Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. Problems -- Chapter 1 1. Write balanced chemical equations for the important equilibrium that is occurring in an aqueous solution of the following. (a) NaNO and HNO answers: see end of problem set (b)

More information

Acids, Bases and Buffers

Acids, Bases and Buffers 1 Acids, Bases and Buffers Strong vs weak acids and bases Equilibrium as it relates to acids and bases ph scale: [H+(aq)] to ph, poh, etc ph of weak acids ph of strong acids Conceptual about oxides (for

More information

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph Buffer Calculations A buffer is a solution that has the ability to resist a change in ph upon the addition of a strong acid or a strong base. For a buffer to exist it must satisfy two conditions: (1) the

More information

Chem 112, Fall 05 Exam 3A

Chem 112, Fall 05 Exam 3A Before you begin, make sure that your exam has all 10 pages. There are 32 required problems (3 points each, unless noted otherwise) and two extra credit problems (3 points each). Stay focused on your exam.

More information

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species?

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species? CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, 2001 M.A. Brook B.E. McCarry A. Perrott 1. (i) What is the conjugate base of each of the following species? (a) H 3 O + (b) NH 4 + (c) HCl

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10 5 )? Write out acid dissociation reaction: C 6 H 5 COOH C 6 H 5 COO H Make an ICE chart since this is a weak

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2

Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Ch. 14/15: Acid-Base Equilibria Sections 14.6, 14.7, 15.1, 15.2 Creative Commons License Images and tables in this file have been used from the following sources: OpenStax: Creative Commons Attribution

More information

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right Problems, Chapter 17 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) In which of these solutions will HNO2 ionize less than it does in pure water? a) 0.10 M NaCl b)

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right Problems, Chapter 17 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) In which of these solutions will HNO2 ionize less than it does in pure water? a) 0.10 M NaCl b)

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution 10/15/01 Commonion effect In the last chapter, we calculated the [H 3 O ] of a M O as 6.010 5 M. The percent dissociation for this solution would be: More Acid and Base Chemistry 6.010 5 100 0.089% [H

More information

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M

7. A solution has the following concentrations: [Cl - ] = 1.5 x 10-1 M [Br - ] = 5.0 x 10-4 M Solubility, Ksp Worksheet 1 1. How many milliliters of 0.20 M AlCl 3 solution would be necessary to precipitate all of the Ag + from 45ml of a 0.20 M AgNO 3 solution? AlCl 3(aq) + 3AgNO 3(aq) Al(NO 3)

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility Chapter 2 Water Acids and Bases 9 / 03 / 2009 1. How is the molecular structure of water related to physical and chemical behavior? 2. What is a Hydrogen Bond? 3Wh 3. What are Acids Aid and db Bases? 4.

More information

Preparation of different buffer solutions

Preparation of different buffer solutions Preparation of different buffer solutions 1 - Buffers: - All biochemical reactions occur under strict conditions of the concentration of hydrogen ion. - Biological life cannot withstand large changes in

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria ACIDS-BASES COMMON ION EFFECT SOLUBILITY OF SALTS Acid-Base Equilibria and Solubility Equilibria Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 The common

More information

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect

2/4/2016. Chapter 15. Chemistry: Atoms First Julia Burdge & Jason Overby. Acid-Base Equilibria and Solubility Equilibria The Common Ion Effect Chemistry: Atoms First Julia Burdge & Jason Overby 17 Acid-Base Equilibria and Solubility Equilibria Chapter 15 Acid-Base Equilibria and Solubility Equilibria Kent L. McCorkle Cosumnes River College Sacramento,

More information

CHM Third Hour Exam Spring 2003

CHM Third Hour Exam Spring 2003 CHM 1143 Third Hour Exam Spring 2003 Each question is worth 10 points. You get six free misses. Write the letter of your choice to the right of the answer choices. MULTIPLE CHOICE. Choose the one alternative

More information

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases Acids and Bases 1 UNIT 4: ACIDS & BASES OUTCOMES All important vocabulary is in Italics and bold. Outline the historical development of acid base theories. Include: Arrhenius, BronstedLowry, Lewis. Write

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

Triprotic H3A, H2A -, HA 2-, A 3-

Triprotic H3A, H2A -, HA 2-, A 3- Today Quick solubility question Polyprotic Acids determining something about an unknown by reacting it with a known solution Silver Nitrate (AgNO3) and Potassium Chloride (KCl) are both soluble salts.

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

... so we need to find out the NEW concentrations of each species in the system.

... so we need to find out the NEW concentrations of each species in the system. 171 Take 100. ml of the previous buffer (0.050 M tris / 0.075 M tris-hcl), and add 5.0 ml of 0.10 M HCl. What is the ph of the mixture? The HCl should react with basic component of the buffer (tris), and

More information

acid : a substance which base : a substance which H +

acid : a substance which base : a substance which H + 4.4. BronstedLowry Theory of A&B acid : a substance which base : a substance which H Typical BronstedLowry AB rxn eqn: eg1) NH 3 H 2 O NH 4 base acid OH eg2) CH 3 COOH H 2 O CH 3 COO H 3 O H 2 O an acid

More information

[A] a [B] b [C] c [D] d

[A] a [B] b [C] c [D] d Unit 4, Lesson #4: Calculations using The quilibrium Constant For the general homogeneous, reversible chemical reaction: aa + bb cc + dd At equilibrium, when the rate of the forward and reverse reactions

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs. 18.1 Introduction to Acids and Bases 1. Name the following compounds as acids: a. H2SO4 d. HClO4 b. H2SO3 e. HCN c. H2S 2. Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014 ph, DDS, PhD Dr.abuhassand@gmail.com Lecture 3 MD summer 2014 www.chem4kids.com 1 Outline ph Henderson-Hasselbalch Equation Monoprotic and polyprotic acids Titration 2 Measuring the acidity of solutions,

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily 3 Hashem Al-Dujaily Tamer Barakat + Hashem Al-Dujaily Hala Al Suqi Mamoun + Diala Last time we talked about the Ionization of water and then started talking about kw (ion product for water) which is a

More information

Practice Problems: Applications of Aqueous Equilibria

Practice Problems: Applications of Aqueous Equilibria Practice Problems: Applications of Aqueous Equilibria CHEM 1B 1. Ammonia (NH3) is a weak base with a Kb = 1.8 x 1 5. a) Write the balanced chemical equation for the reaction of ammonia with water. Using

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

General Chemistry II CHM 1046 E Exam 2

General Chemistry II CHM 1046 E Exam 2 General Chemistry II CHM 1046 E Exam 2 Dr. Shanbhag Name: 1. The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) H= -92.2 kj Which of

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations Acid-Base Equilibria And the beat goes on Buffer solutions Titrations 1 Common Ion Effect The shift in equilibrium due to addition of a compound having an ion in common with the dissolved substance. 2

More information

Solutions to: Acid-Base and Solubility Homework Problem Set S.E. Van Bramer 1/3/17

Solutions to: Acid-Base and Solubility Homework Problem Set S.E. Van Bramer 1/3/17 Solutions to: Acid-Base and Solubility Homework Problem Set S.E. Van Bramer /3/7.Calculate the H 3 O + concentration, OH - concentration, ph, and poh of the following solutions. First solve assuming that

More information

CEE March FIRST EXAM (Solutions)

CEE March FIRST EXAM (Solutions) CEE 680 5 March 015 FIRST EXAM (Solutions) Closed book, one page of notes allowed. Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work. You are

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

Volume NaOH Delivered (ml)

Volume NaOH Delivered (ml) Chemistry Spring 011 Exam 3: Chapters 8-10 Name 80 Points Complete five (5) of the following problems. Each problem is worth 16 points. CLEARLY mark the problems you do not want graded. You must show your

More information

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY ACIDS AND BASES A. CHARACTERISTICS OF ACIDS AND BASES 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 Unit 2 1- The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 2- How many grams of Na 2 CO 3 (mw = 106 ) A) 318 B) 0.028 C) 134 D) 201 E) 67 in 3 moles, 3- Calculate the normal

More information

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA CHAPTER 16 ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA 16.5 (a) This is a weak acid problem. Setting up the standard equilibrium table: CH 3 COOH(aq) H (aq) CH 3 COO (aq) Initial (): 0.40 0.00 0.00

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

Equilibrium constant

Equilibrium constant Equilibrium constant Equilibrium constant Many reactions that occur in nature are reversible and do not proceed to completion. They come to an equilibrium where the net velocity = 0 The velocity of forward

More information

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY

CHAPTER 12 ACID-BASE EQUILIBRIA AND SOLUBILITY CHAPTER 1 ACID-BASE EQUILIBRIA AND SOLUBILITY 1.1 (a) This is a weak acid problem. Setting up the standard equilibrium table: CHCOOH(aq) H (aq) CHCOO (aq) Initial (M): 0.40 0.00 0.00 Change (M): x x x

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

Student Worksheet for Kinetics

Student Worksheet for Kinetics Student Worksheet for Attempt to work the following practice problems after working through the sample problems in the videos. Answers are given on the last page(s). Relevant Equations Average Reaction

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts Arrhenius Definitions produce H + ions in the solution strong acids ionize completely

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3 BRCC CHM 101 Chapter 9 Notes (Chapter 8 in older text versions) Page 1 of 9 Chapter 9: Acids and Bases Arrhenius Definitions more than 100 years old Acid a substance that produces H + in water (H + is

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated.

Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. Chemistry 112 Spring 2007 Prof. Metz Exam 3 Each question is worth 5 points, unless otherwise indicated. 1. The ph of a 0.150 M solution of formic acid, HCOOH is (K a (formic acid) = 1.8 x 10-4 ). (A)

More information

CHEMISTRY 31 FINAL EXAM Dec. 12, points total

CHEMISTRY 31 FINAL EXAM Dec. 12, points total NAME CHEMISTRY 31 FINAL EXAM Dec. 12, 2016-150 points total Equations: Debye-Hückel Equation: 2 0.51 z µ logγ = 1+ ( α µ / 305) Where: γ = activity coefficient, μ = ionic strength, α = hydrated ion radius,

More information

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol Chemistry Spring 016 Exam 3: Chapters 8-10 Name 80 Points Complete problem 1 and four of problems -6. CLEARLY mark the problem you do not want graded. You must show your work to receive credit for problems

More information

Chapter 16 Aqueous Ionic Equilibrium

Chapter 16 Aqueous Ionic Equilibrium Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro Chapter 16 Aqueous Ionic Equilibrium Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall The Danger of Antifreeze

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals.

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals. Acids and Bases Properties of Acids and Bases Acids taste. Lemon juice and, for example, are both aqueous solutions of acids. Acids conduct electricity; they are. Some are strong electrolytes, while others

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

Chapter 6 Acids and Bases

Chapter 6 Acids and Bases Chapter 6 Acids and Bases Introduction Brønsted acid-base reactions are proton transfer reactions. Acids donate protons to bases. In the process, the acid is converted into its conjugate base and the base

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

Worksheet 4.1 Conjugate Acid-Base Pairs

Worksheet 4.1 Conjugate Acid-Base Pairs Worksheet 4.1 Conjugate AcidBase Pairs 1. List five properties of acids that are in your textbook. Acids conduct electricity, taste sour, neutralize bases, change the color of indicators, and react with

More information

A. Multiple Choice and Short answer Section.

A. Multiple Choice and Short answer Section. CHEMISTRY 31 FINAL EXAM - KEY Dec. 12, 2016-150 points total NAME Equations: Debye-Hückel Equation: 2 0.51 z µ logγ = 1+ ( α µ / 305) Where: γ = activity coefficient, μ = ionic strength, α = hydrated ion

More information

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) I. Multiple Choice UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12) 1) Which one of the following would form an ionic solution when dissolved in water? A. I 2 C. Ca(NO 3 ) 2 B. CH 3 OH D.

More information

EQUIVALENCE POINT. 8.8 millimoles is also the amount of acid left, and the added base gets converted to acetate ion!

EQUIVALENCE POINT. 8.8 millimoles is also the amount of acid left, and the added base gets converted to acetate ion! 184 Another interesting point: The halfway point phenolphthalein color change buffer region EQUIVALENCE POINT What's special about it? It's the point where we have added half the required base to reach

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is 1. An equation representing the reaction of a weak acid with water is A. HCl + H 2 O H 3 O + + Cl B. NH 3 + H 2 O NH 4 + + OH C. HCO 3 H 2 O H 2 CO 3 + OH D. HCOOH + H 2 O H 3 O + + HCOO 2. The equilibrium

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) 1. hydro- - HF 2. root of

More information

1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O.

1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O. 1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H O. HCN + H O º H O + + CN ) Write the Brønsted-Lowry reaction for weak base NH reacting with H O NH + H O º OH + NH + ) Using the

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section

Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section Chemistry 102 Discussion #8, Chapter 14_key Student name TA name Section 1. If 1.0 liter solution has 5.6mol HCl, 5.mol NaOH and 0.0mol NaA is added together what is the ph when the resulting solution

More information

More About Chemical Equilibria

More About Chemical Equilibria 1 More About Chemical Equilibria Acid-Base & Precipitation Reactions Chapter 15 & 16 1 Objectives Chapter 15 Define the Common Ion Effect (15.1) Define buffer and show how a buffer controls ph of a solution

More information