1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O.

Size: px
Start display at page:

Download "1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H 2 O."

Transcription

1 1) Write the Brønsted-Lowry reaction for weak acid HCN reacting with H O. HCN + H O º H O + + CN ) Write the Brønsted-Lowry reaction for weak base NH reacting with H O NH + H O º OH + NH + ) Using the information from the Chemical Equilibria Eercises, write the equilibria epression for the acid HCN in 1) above using the substitution K a K K a + - [HO ][CN ] [HCN] ) Write the equilibrium epression for the base NH in ) above using the substitution K. + [OH ][NH ]

2 5) Calculate the ph of a solution which is M in HCN. The K a of HCN is HCN + H O º H O + + CN [HCN] [H O + ] [CN ] equilibrium substituting: and assume << so: Ans: ) Calculate the ph of a solution which is 0.10 M in HCN and 0.10 M in NaCN. The K a of HCN is (Notice that the important chemical species here is the CN - ion. Na + is a spectator ion) HCN + H O º H O + + CN [HCN] [H O + ] [CN ] equilibrium ( ) substituting: and assume << Ans: 9.8 7) Calculate the ph of a solution which is 0.10 M in HCN and 0.0 M in NaCN. The K a of HCN is (What is Na +? Ans: spectator ion ) HCN + H O º H O + + CN [HCN] [H O + ] [CN ] equilibrium ( ) substituting: and assume << 0.10 (and << 0.0 ) Ans: 9.85

3 8) Calculate the ph of a solution which is M in NH. The for NH is NH + H O º OH + + NH [NH ] [OH ] [NH + ] equilibrium substituting: and assume << so:. 10 ([OH ] ) poh.7 Ans: ) Calculate the ph of a solution which is M in NH and M in NH +. The for NH is NH + H O º OH + + NH [NH ] [OH ] [NH + ] equilibrium substituting: and assume << ([OH ] ) poh.7 Ans: ) Calculate the ph of a solution which is 0.10 M in NH and M in NH +. The for NH is NH + H O º OH + + NH [NH ] [OH ] [NH + ] equilibrium substituting: and assume << ( and << 0.10 ) ([OH ] ) poh.7 Ans: 10.6 Problems 11, 1 and 1 are dilution problems. If you do not know how to do dilution problems, do some review first. These are in preparation for subsequent questions.

4 11) If ml of a solution is originally 0.10 M CH COOH and one adds 50.0 ml of water to this solution, what is the final concentration of the CH COOH? For dilutions: C 1 V 1 C V C M V ml C? V 150 ml (volume of dilute solutions add with little error.) substitute: (0.10 M)(100.0 ml) C (150 ml) Ans: M 1) If ml of a solution is originally 0.10 M CH COOH and one adds 50.0 ml of 0.10 M NaCl to this solution, what is the final concentration of the CH COOH? C 1 V 1 C V For CH COOH: (0.10 M)(100.0 ml) C (150.0 ml) (NaCl is irrelevant) Ans: M 1) If ml of a solution is originally 0.10 M CH COOH and one adds 50.0 ml of 0.10 M NaCH COO to this solution, what is the final concentration of the CH COOH? What is the final concentration of the NaCH COO? (At this point, ignore the establishment of the Brønsted-Lowry equilibrium.) C 1 V 1 C V For CH COOH: NaCH COO: (0.10 M)(100.0 ml) C (150.0 ml) (0.10 M)(50.0 ml) C (150.0 ml) For M of CH COOH: Ans: M CH COOH For M of NaCH COO Ans: 0.0 M NaCH COO (What is Na + in NaCH COO?) What is the important ion? Ans: the CH COO (acetate) ion

5 1) What are the phs of the solutions described in questions 11, 1 and 1? The K a for CH COOH For 11: CH COOH + H O º H O + + CH COO [CH COOH] [H O + ] [CH COO ] initially equilibrium substituting: and assume << 0.10 (and << 0.0 ) Ans #11: ph.96 For 1: Same as for 11 since Na + and Cl are a spectator ions. Ans #1: ph.96 For 1: CH COOH + H O º H O + + CH COO [CH COOH] [H O + ] [CH COO ] initially equilibrium ( ) substituting: and assume << 0.0. (and << ) Ans #1: ph. 15) A solution is created by miing ml of a solution which is 0.10 M CH COOH with 50.0 ml of a solution which is 0.10 M NaOH. (Confused? - Look up Arrhenius Acid/Base and neutralization.) a) Write the Arrhenius acid-base reaction for this: CH COOH + NaOH! NaCH COO + H O b) What is the concentration of the CH COOH if one does not take into account the Brønsted-Lowry reaction with water? By definition C n/v where V is in liters. and so n CV

6 moles of: when: How calculated: ANS: CH COOH initially (0.10 M)( L) mol NaOH initially (0.10 M)( L) mol NaCH COOH after Arrhenius reaction n NaCHCOO /1 n NaOH /1* mol CH COOH after Arrhenius reaction n starting n used mol *limiting reactant. C CH COOH thus: Ans: 0.0 M CH COOH mol L 15 continued: c) What is the concentration of the NaCH COO if one does not take into account the Brønsted-Lowry reaction with water? C NaCH COO thus: Ans: 0.0 M NaCH COO mol L d) What is the ph of the resultant solution described above? The K a for CH COOH ph pk a log( ).7 (Why?) Ans: ph.7 16) What is the ph of a solution formed by miing 00 ml of 0.0 M NH with 50 ml of water? for NH C 1 V 1 C V C M V 1 00 ml C? V 50 ml (0.0 M)(00 ml) C (50 ml) C 0.16 M + [NH ][OH ] ( [OH ]) Ans: ph 11.

7 17) What is the ph of a solution formed by miing 00 ml of 0.0 M NH with 50 ml of 0.50 M NH Cl? The for NH C 1 V 1 C V for both [NH ] and NH [NH ]: [NH + ]: C M C M V 1 00 ml V 1 50 ml C? C? V 50 ml V 50 ml C 0.16 M C 0.10 M + [NH ][OH ] ( [OH ]) poh.5 Ans: ph ) What is the ph of a solution formed by miing 00 ml of 0.0 M NH with 50 ml of 0.50 M HCl? (Note: you must first answer questions similar to question? above. What is the concentration of NH and NH Cl?) The for NH Final volume 50 ml n NH originally (0.0 M)(00 ml) 0 mmol n HCl originally (0.50 M)(50 ml) 5 mmol (limiting reactant) n NHCl produced n HCl originally 5 mmol n NH left 0 mmol 5 mmol 15 mmol resultant [NH ] 15 mmol/50 ml resultant [NH + ] 5 mmol/50 ml [NH ][OH ] ([OH ]) poh.97 Ans: ph ) What is the ph of a solution formed by miing 00 ml of 0.0 M NH with 50 ml of 0.50 M NH Cl and 50 ml of 0.50 M HCl? (Hint: first calculate the dilutions for each of these species, then do the Arrhenius acid-base reaction.) The for NH Final Volume 00 ml n NH originally (0.0 M)(00 ml) 0 mmol n HCl originally (0.50 M)(50 ml) 5 mmol (limiting reactant) n NHCl originally (0.50 M)(50 ml) 5 mmol n NHCl produced n HCl originally 5 mmol n NHCl total 5 mmol + 5 mmol 50 mmol n NH left 0 mmol 5 mmol 15 mmol resultant [NH ] 15 mmol/00 ml resultant [NH + ] 50 mmol/00 ml [NH ][OH ] ([OH ]) poh 5.7 Ans: ph 8.7

8 Use the following K a s to answer questions 0 through : For the reaction: The equilibrium constant is: - H PO + H O º H PO + H O + K a1 (H PO ) H PO + H O º HPO + H O + K a (H PO - ) HPO + H O º PO + H O + - K a (HPO ) ) What is the ph of a solution which is 0.10 M in H PO? K a etc. + [HPO ][HO ] [HPO ] 0.10 Ans: ph 1.56 (1.6 if << 0.10 not assumed) 1) What is the ph of a solution which is 0.10 M in H PO and 0.10 M in NaH PO? (What is Na +? It is spectator ion ) ph pk a1 Ans: ph.1 ) What is the ph of a solution which is 0.10 M in NaH PO and 0.10 M in Na HPO? ph pk a Ans: ph 7.1 ) What is the ph of a solution which is 0.10 M in Na HPO and 0.10 M in Na PO? ph pk a Ans: ph 1.

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

Salt Hydrolysis Problems

Salt Hydrolysis Problems Salt Hydrolysis Problems Page 169 Salt Hydrolysis Problems 1) Write the Brønsted-Lowry reaction between the base CN! and the weak acid H 2 O. CN! + H 2 O W HCN + OH! 2) Write the Brønsted-Lowry reaction

More information

Follow- up Wkst Acid and Base ph Calculations

Follow- up Wkst Acid and Base ph Calculations CH302 LaBrake and Vanden Bout 2-23- 12 Follow- up Wkst Acid and Base ph Calculations For each of the following solutions: Write a chemical equation, identify the limiting reactant (if there is one), and

More information

CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section

CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section CH102 Spring 2019 Discussion #7 Chapter 14 *Assume room temperature for all reactions* Student name TA name Section Things you should know when you leave Discussion today: K w

More information

Unit 2 Acids and Bases

Unit 2 Acids and Bases Unit 2 Acids and Bases 1 Topics Properties / Operational Definitions Acid-Base Theories ph & poh calculations Equilibria (Kw, K a, K b ) Indicators Titrations STSE: Acids Around Us 2 Operational Definitions

More information

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Chemistry 12 Acid-Base Equilibrium II Name: Date: Block: 1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases Strengths of Acids and

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Name: Class: Date: Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward

More information

CHAPTER 7 Acid Base Equilibria

CHAPTER 7 Acid Base Equilibria 1 CHAPTER 7 Acid Base Equilibria Learning Objectives Acid base theories Acid base equilibria in water Weak acids and bases Salts of weak acids and bases Buffers Logarithmic concentration diagrams 2 ACID

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

Unless otherwise stated, all images in this file have been reproduced from:

Unless otherwise stated, all images in this file have been reproduced from: Unless otherwise stated, all images in this file have been reproduced from: Blackman, Bottle, Schmid, Mocerino and Wille, Chemistry, 3 rd Edition 2016 (John Wiley & Sons) The University of Sydney Page

More information

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria I. Multiple Choice (for those with an asterisk, you must show work) These multiple choice (MC) are not "Google-proof", but they were so good

More information

Chem1120pretest2Summeri2016

Chem1120pretest2Summeri2016 Chem1120pretest2Summeri2016 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Chemistry 102 Discussion #5, Chapter 14 *Assume room temperature for all reactions* Student name TA name

Chemistry 102 Discussion #5, Chapter 14 *Assume room temperature for all reactions* Student name TA name Chemistry 102 Discussion #5, Chapter 14 *Assume room temperature for all reactions* Student name TA name Section Things you should know when you leave Discussion today: 1. K w

More information

Discussion 7 Chapter Key:

Discussion 7 Chapter Key: Discussion 7 Chapter 14 2018 Key: 1. 2 M of HCN has a K a = 5 10 10. What is the ph at equilibrium and the percent reaction of the acid? HCN H 2 O H 3 O + CN I Q=0

More information

Part 01 - Assignment: Introduction to Acids &Bases

Part 01 - Assignment: Introduction to Acids &Bases Part 01 - Assignment: Introduction to Acids &Bases Classify the following acids are monoprotic, diprotic, or triprotic by writing M, D, or T, respectively. 1. HCl 2. HClO4 3. H3As 4. H2SO4 5. H2S 6. H3PO4

More information

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY ACIDS AND BASES A. CHARACTERISTICS OF ACIDS AND BASES 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers

School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban. CHEM191 Tutorial 1: Buffers School of Chemistry, University of KwaZulu-Natal, Howard College Campus, Durban CHEM191 Tutorial 1: Buffers Preparing a Buffer 1. How many moles of NH 4 Cl must be added to 1.0 L of 0.05 M NH 3 to form

More information

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected. Judith Herzfeld 1996,1998 These exercises are provided here for classroom and study use only. All other uses are copyright protected. 3.3-010 According to Bronsted-Lowry Theory, which of the following

More information

Acids, Bases, and Salts Review for Sections

Acids, Bases, and Salts Review for Sections 1. Consider the following: Review for Sections 4.1 4.9 I H 2 CO 3 + F HCO 3 + HF 2 II HCO 3 + HC 2 O 4 H 2 CO 3 + C 2 O 4 2 III HCO 3 + H 2 C 6 H 6 O 7 H 2 CO 3 + HC 6 H 5 O 7 The HCO 3 is a base in A.

More information

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is

I II III IV. Volume HCl added. 1. An equation representing the reaction of a weak acid with water is 1. An equation representing the reaction of a weak acid with water is A. HCl + H 2 O H 3 O + + Cl B. NH 3 + H 2 O NH 4 + + OH C. HCO 3 H 2 O H 2 CO 3 + OH D. HCOOH + H 2 O H 3 O + + HCOO 2. The equilibrium

More information

ACIDS AND BASES. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet

ACIDS AND BASES. for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet ACIDS AND BASES for it cannot be But I am pigeon-liver d and lack gall To make oppression bitter Hamlet Learning objectives Name and write formulae for common acids and bases Describe acids and bases according

More information

Preparation of different buffer solutions

Preparation of different buffer solutions Preparation of different buffer solutions 1 - Buffers: - All biochemical reactions occur under strict conditions of the concentration of hydrogen ion. - Biological life cannot withstand large changes in

More information

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base.

*In every acid-base reaction, equilibrium favors transfer of a proton from the stronger acid to the stronger base. 16.2 Bronsted-Lowry Acids and Bases An acid is a substance that can transfer a proton to another substance. A base is a substance that can accept a proton. A proton is a hydrogen ion, H +. Proton transfer

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

Buffer Solutions. Buffer Solutions

Buffer Solutions. Buffer Solutions Buffer Solutions A buffer solution is comprised of a mixture of an acid (base) with its conjugate base (acid) that resists changes in ph when additional acid or base is added The Henderson-Hasselbalch

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006 Northern Arizona University Exam #3 CHM 152, General Chemistry II Dr. Brandon Cruickshank Section 2, Spring 2006 April 21, 2006 Name ID # INSTRUCTIONS: Code the answers to the True-False and Multiple-Choice

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate

11/15/11. Chapter 16. HA(aq) + H 2 O(l) H 3 O + (aq) + A (aq) acid base conjugate conjugate Chapter 16 Table of Contents Chapter 16 16.1 16.2 16.3 16.4 16.5 16.6 Buffered Solutions Copyright Cengage Learning. All rights reserved 2 Models of Arrhenius: Acids produce H + ions in solution, bases

More information

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion.

Acids and Bases. A strong base is a substance that completely ionizes in aqueous solutions to give a cation and a hydroxide ion. Acid-Base Theories Arrhenius Acids and Bases (1884) Acids and Bases An acid is a substance that, when dissolved in water, increases the concentration of hydrogen ions. A base is a substance that, when

More information

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006

Northern Arizona University Exam #3. Section 2, Spring 2006 April 21, 2006 Northern Arizona University Exam #3 CHM 152, General Chemistry II Dr. Brandon Cruickshank Section 2, Spring 2006 April 21, 2006 Name ID # INSTRUCTIONS: Code the answers to the True-False and Multiple-Choice

More information

CHEM Dr. Babb s Sections Exam #3 Review Sheet

CHEM Dr. Babb s Sections Exam #3 Review Sheet CHEM 116 Dr. Babb s Sections Exam #3 Review Sheet Acid/Base Theories and Conjugate AcidBase Pairs 111. Define the following terms: Arrhenius acid, Arrhenius base, Lewis acid, Lewis base, BronstedLowry

More information

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized

Consider a 1.0 L solution of 0.10 M acetic acid. Acetic acid is a weak acid only a small percent of the weak acid is ionized Chemistry 12 Acid- Base Equilibrium V Name: Date: Block: 1. Buffers 2. Hydrolysis Buffers An acid- base buffer is a solution that resists changes in ph following the addition of relatively small amounts

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Ch 7 Practice Problems

Ch 7 Practice Problems Ch 7 Practice Problems 1. For the equilibrium that exists in an aqueous solution of nitrous acid (HNO 2, a eak acid), the equilibrium constant expression is [H ] [NO 2 ] = [HNO ] 2 [H ][N][O] [HNO 2] =

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions?

ph + poh = 14 G = G (products) G (reactants) G = H T S (T in Kelvin) 1. Which of the following combinations would provide buffer solutions? JASPERSE CHEM 210 PRACTICE TEST 3 VERSION 3 Ch. 17: Additional Aqueous Equilibria Ch. 18: Thermodynamics: Directionality of Chemical Reactions Key Equations: For weak acids alone in water: [H + ] = K a

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1

Chapter 16. Acids and Bases. Copyright Cengage Learning. All rights reserved 1 Chapter 16 Acids and Bases Copyright Cengage Learning. All rights reserved 1 Section 16.1 Acids and Bases Models of Acids and Bases Arrhenius: Acids produce H + ions in solution, bases produce OH ions.

More information

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases

Chem 106 Thursday, March 10, Chapter 17 Acids and Bases Chem 106 Thursday, March 10, 2011 Chapter 17 Acids and Bases K a and acid strength Acid + base reactions: Four types (s +s, s + w, w + s, and w + w) Determining K from concentrations and ph ph of aqueous

More information

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017 Acids, Bases and ph Preliminary Course Steffi Thomas ssthomas@tcd.ie 14/09/2017 Outline What are acids and bases? Can we provide a general definition of acid and base? How can we quantify acidity and basicity?

More information

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq)

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq) 1 Chapter 16 exercise Q1. Practice exercise page 671 Write the formula for the conjugate acid of the following, HSO 3, F, PO 4 3 and CO. HSO 3 H H 2 SO 4 F H HF PO 4 3 H HPO 4 2 CO H HCO Q2. Practice exercise

More information

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep 8.1 Explaining the Properties of Acids & Bases SCH4U - Chemistry, Gr. 12, University Prep Equilibrium & Acids & Bases 2 So far, we have looked at equilibrium of general chemical systems: We learned about

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Acid-Base Chemistry. Key Considerations

Acid-Base Chemistry. Key Considerations Acid-Base Chemistry Varying Definitions, depends on context/application Arrhenius Acid Base Brönsted/Lowry Lewis 1 Key Considerations Autoprotolysis of Water Water is an amphiprotic substance: can behave

More information

Worksheet 4.1 Conjugate Acid-Base Pairs

Worksheet 4.1 Conjugate Acid-Base Pairs Worksheet 4.1 Conjugate AcidBase Pairs 1. List five properties of acids that are in your textbook. Acids conduct electricity, taste sour, neutralize bases, change the color of indicators, and react with

More information

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P. 1 / 69 Chemistry 1 Provincial Exam Workbook Unit 0: Acid Base Equilibria Multiple Choice Questions 1. Calculate the volume of 0.00 M HNO needed

More information

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six ACID-BASE EQUILIBRIA Chapter 14 Big Idea Six Acid-Base Equilibria Common Ion Effect in Acids and Bases Buffer SoluDons for Controlling ph Buffer Capacity ph-titradon Curves Acid-Base TitraDon Indicators

More information

Chem 1102 Semester 1, 2011 ACIDS AND BASES

Chem 1102 Semester 1, 2011 ACIDS AND BASES Chem 1102 Semester 1, 2011 ACIDS AND BASES Acids and Bases Lecture 23: Weak Acids and Bases Calculations involving pk a and pk b Strong Acids and Bases Lecture 24: Polyprotic Acids Salts of Acids and Bases

More information

Equilibrium constant

Equilibrium constant Equilibrium constant Equilibrium constant Many reactions that occur in nature are reversible and do not proceed to completion. They come to an equilibrium where the net velocity = 0 The velocity of forward

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base Acid-Base Equilibria 1 Will the following salts be acidic, basic or neutral in aqueous solution? 1.NH 4 Cl.NaCl.KC H O 4.NaNO A = acidic B = basic C = neutral Solutions of a Weak Acid or Base The simplest

More information

Completion of acid/base/buffer chemistry. Hanson Activity Clicker quiz 3/11/2013. Chs 7 8 of Zumdahl

Completion of acid/base/buffer chemistry. Hanson Activity Clicker quiz 3/11/2013. Chs 7 8 of Zumdahl Completion of acid/base/buffer chemistry Chs 7 8 of Zumdahl Hanson Activity 16 3 Discuss Key Questions 1 of Activity 16 3, page 301, with your partner for three minutes. The clicker quiz will commence

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Chemical Equilibrium Chapter 6

Chemical Equilibrium Chapter 6 Chemical Equilibrium Chapter 6 "When a system is in chemical equilibrium, a change in one of the parameters of the equilibrium produces a shift in such a direction that, were no other factors involved

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Still having trouble understanding the material? Check

More information

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation

Chem Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation Chem 106 3--011 Chapter 18: Sect 1-3 Common Ion Effect; Buffers ; Acid-Base Titrations Sect 4-5 Ionic solubility Sect 6-7 Complex Formation 3//011 1 The net ionic equation for the reaction of KOH(aq) and

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

CHM 2046 Test #3 Review: Chapters , 15, & 16

CHM 2046 Test #3 Review: Chapters , 15, & 16 Chapter 14 1. For the following reaction Kc = 0.513 at 500 K. N 2 O 4 (g) 2 NO 2 (g) If a reaction vessel initially contains an N 2 O 4 concentration of 0.0500 M at 500 K, what are the equilibrium concentrations

More information

Acid / Base Properties of Salts

Acid / Base Properties of Salts Acid / Base Properties of Salts n Soluble ionic salts produce may produce neutral, acidic, or basic solutions depending on the acidbase properties of the individual ions. n Consider the salt sodium nitrate,

More information

Chemistry 192 Problem Set 3 Spring, 2018 Solutions

Chemistry 192 Problem Set 3 Spring, 2018 Solutions Chemistry 19 Problem Set 3 Spring, 018 Solutions 1. Problem 3, page 78, textbook Answer (a) (b) (c) (d) HOBr (acid 1) + HSO 4 (acid 1) + HS (base 1) + C 6 H 5 NH + 3 (acid 1) + H O (base ) H 3O + (acid

More information

CHEM J-4 June 2014

CHEM J-4 June 2014 CHEM1102 2014-J-4 June 2014 Calculate the ph of a 0.010 M solution of aspirin at 25 C. The pk a of aspirin is 3.5 at this temperature. 7 Ammonia, NH 3, is a weak base in water. Write the equation for the

More information

REVIEW QUESTIONS Chapter Identify the Lewis acid and base in each of the following reactions:

REVIEW QUESTIONS Chapter Identify the Lewis acid and base in each of the following reactions: Chemistry 102 REVIEW QUESTIONS Chapter 16 1. For each reaction below, identify the Brønsted-Lowry acid and base and their conjugates: A) NH 4 + (aq) + CN (aq) HCN (aq) + NH 3 (aq) B) (CH 3 ) 3 N (aq) +

More information

General Chemistry II CHM 1046 E Exam 2

General Chemistry II CHM 1046 E Exam 2 General Chemistry II CHM 1046 E Exam 2 Dr. Shanbhag Name: 1. The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) H= -92.2 kj Which of

More information

Chapter 15. Acid-Base Equilibria

Chapter 15. Acid-Base Equilibria Chapter 15 Acid-Base Equilibria The Common Ion Effect The common-ion effect is the shift in an ionic equilibrium caused by the addition of a solute that provides an ion already involved in the equilibrium

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16.

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16. discard 1 2 ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW PRINT NAME, LAST: FIRST: I.D.# : EACH QUESTION IS WORTH 1O POINTS 1. 7. 13. 2. 8. 14. 3. 9. 15. 4. 1O. 16. 5. 11. 17. 6. 12.

More information

Chapter 16: Acids and Bases

Chapter 16: Acids and Bases 1. Which is not a characteristic property of acids? A) neutralizes bases B) turns litmus from blue to red C) reacts with active metals to produce H 2 (g) D) reacts with CO 2 (g) to form carbonates E) All

More information

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form NOTES Acids, Bases & Salts Arrhenius Theory of Acids & Bases: an acid contains hydrogen and ionizes in solutions to produce H+ ions: a base contains an OH group and ionizes in solutions to produce OH ions:

More information

[H ] [OH ] 5.6 " 10

[H ] [OH ] 5.6  10 Howemork set solutions 10: 11.1 Table 11.5 of the tet contains a list of important Brønsted acids and bases. (a) both, base, (c) acid, (d) base, (e) acid, (f) base, (g) base, (h) base, (i) acid, (j) acid.

More information

Chapter 10. Acids and Bases

Chapter 10. Acids and Bases Chapter 10 Acids and Bases 1 Properties of Aqueous Solutions of Acids and Bases Aqueous acidic solutions have the following properties: 1. They have a sour taste.. They change the colors of many indicators.

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs.

Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 Acids and Bases Big Idea: Acids and Bases can be defined in terms of hydrogen ions and hydroxide ions or in terms of electron pairs. Ch 18 - Acids and Bases I CAN: 1) Compare properties of acids

More information

Grace King High School Chemistry Test Review

Grace King High School Chemistry Test Review CHAPTER 19 Acids, Bases & Salts 1. ACIDS Grace King High School Chemistry Test Review UNITS 7 SOLUTIONS &ACIDS & BASES Arrhenius definition of Acid: Contain Hydrogen and produce Hydrogen ion (aka proton),

More information

Unit 10: Acids and Bases

Unit 10: Acids and Bases Unit 10: Acids and Bases PROPERTIES OF ACIDS & BASES Properties of an Acid: a Tastes sour substance which dissociates (ionizes, breaks apart in solution) in water to form hydrogen ions Turns blue litmus

More information

Chemistry 12 Unit 4 Topic A Hand-in Assignment

Chemistry 12 Unit 4 Topic A Hand-in Assignment 1 Chemistry 12 Unit 4 Topic A Handin Assignment Answer the following multiplechoice and written response problems on your own paper. Submit your answers for marking. You do not need to show your work for

More information

Introduction to Acids & Bases II. Packet #26

Introduction to Acids & Bases II. Packet #26 Introduction to Acids & Bases II Packet #26 1 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. 2 Review II Arrhenius postulated that: Acids produce hydrogen

More information

Polyprotic acid-base equilibria

Polyprotic acid-base equilibria Polyprotic acidbase equilibria Diprotic acids and bases Polyprotic acids and bases Diprotic buffers Fractional composition Isoelectric and isoionic ph ph of diprotic acids and bases Example: amino acid

More information

CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM

CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM 1. The ph of a 0.10 M solution of NH3 containing 0.10 M NH 4 Cl is 9.20. What is the [H3O + ]? a) 1.6 x 10-5 b) 1.0 x 10-1 c) 6.3 x 10-10 d) 1.7 x 10-10 e) 2.0 x

More information

2] What is the difference between the end point and equivalence point for a monobasicmonoacid

2] What is the difference between the end point and equivalence point for a monobasicmonoacid 4 Titrations modified October 9, 2013 1] A solution of 0.100 M AgNO 3 is used to titrate a 100.00 ml solution of 0.100 M KCl. The K sp of AgCl is 1.8e-11 a) What is pag if 50.00 ml of the titrant is added

More information

HALFWAY to EQUIVALENCE POINT: ph = pk a of the acid being titrated.

HALFWAY to EQUIVALENCE POINT: ph = pk a of the acid being titrated. CHEMISTRY 109 Help Sheet #33 Titrations Chapter 15 (Part II); Section 15.2 ** Cover topics appropriate for your lecture** Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets:

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

CHAPTER 8: ACID/BASE EQUILIBRIUM

CHAPTER 8: ACID/BASE EQUILIBRIUM CHAPTER 8: ACID/BASE EQUILIBRIUM Already mentioned acid-base reactions in Chapter 6 when discussing reaction types. One way to define acids and bases is using the Brønsted-Lowry definitions. A Brønsted-Lowry

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

capable of neutralizing both acids and bases

capable of neutralizing both acids and bases Buffers Buffer n any substance or mixture of compounds that, added to a solution, is capable of neutralizing both acids and bases without appreciably changing the original acidity or alkalinity of the

More information

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1

Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 Create assignment, 48975, Exam 2, Apr 05 at 9:07 am 1 This print-out should have 30 questions. Multiple-choice questions may continue on the next column or page find all choices before making your selection.

More information

Ch 8 Practice Problems

Ch 8 Practice Problems Ch 8 Practice Problems 1. What combination of substances will give a buffered solution that has a ph of 5.05? Assume each pair of substances is dissolved in 5.0 L of water. (K a for NH 4 = 5.6 10 10 ;

More information

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Solutions are aqueous and the temperature is 25 C unless stated otherwise. Solutions are aqueous and the temperature is 25 C unless stated otherwise. 1. According to the Arrhenius definition, an acid is a substance that produces ions in aqueous solution. A. H C. OH B. H + D.

More information

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1 Chapter 15 Lesson Plan Grade 12 402. The presence of a common ion decreases the dissociation. BQ1 Calculate the ph of 0.10M CH 3 COOH. Ka = 1.8 10-5. [H + ] = = ( )( ) = 1.34 10-3 M ph = 2.87 Calculate

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

X Unit 15 HW Solutions Acids & Bases. Name:

X Unit 15 HW Solutions Acids & Bases. Name: X Unit 15 HW Solutions Acids & Bases Name: Homework #1: Solubility Curve Worksheet Use the solubility chart below to answer the following questions: Graph from U. Va Department of Physics. 1) What is the

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22 Toxins IV-17 to IV-22 Countless products are advertised on TV with the promise of reducing acid indigestion. a.what is acid indigestion? b.what does acid have to do with your stomach? c.how do you think

More information