Change in the Charge and Defect Impurity State of Silicon for Solar-Power Engineering under the Effect of a Magnetic Field

Size: px
Start display at page:

Download "Change in the Charge and Defect Impurity State of Silicon for Solar-Power Engineering under the Effect of a Magnetic Field"

Transcription

1 ISSN 13-7, Semiconductors, 1, Vol., No., pp Pleiades Publishing, Ltd., 1. Original Russian Text V.A. Makara, L.P. Steblenko, O.A. Korotchenkov, A.B. Nadtochiy, D.V. Kalinichenko, A.N. Kuryliuk, Yu.L. Kobzar, A.N. Krit, S.N. Naumenko, 1, published in Fizika i Tekhnika Poluprovodnikov, 1, Vol., No., pp SURFACES, INTERFACES, AND THIN FILMS Change in the Charge and Defect Impurity State of Silicon for Solar-Power Engineering under the Effect of a Magnetic Field V. A. Makara a, L. P. Steblenko a, O. A. Korotchenkov a, A. B. Nadtochiy a, D. V. Kalinichenko a, A. N. Kuryliuk a, Yu. L. Kobzar a^, A. N. Krit b, and S. N. Naumenko a a Taras Shevchenko Kyiv National University (Faculty of Physics), Kyiv, 11 Ukraine ^ ukaka@ukr.net b Scientific Investigation Center Physicochemical materials, Taras Shevchenko Kyiv National University, and the National Academy of Sciences of Ukraine, Kyiv, 11 Ukraine Submitted July, 13; accepted for publication September 3, 13 Abstract The effect of a weak permanent magnetic field on the structure and charge state of silicon for solar-power engineering is investigated. It is revealed that magnetostimulated changes in the defect impurity state and surface potential have a reversible character. DOI: 1.113/S INTRODUCTION In studying magnetostimulated changes in the structure and physical characteristics of silicon used for solar-power engineering (solar-si, or s-si), there are significant gaps in knowledge. Meanwhile, these investigations are relevant and expedient because devices fabricated on the basis of s-si crystals quite frequently operate under extreme conditions including under the action of magnetic fields. Recently, the effect of magnetic fields including weak ones (with an induction of B 1 T) on various physical characteristics of low-magnetic materials with different types of chemical bonds [1 13] has been widely studied. The proportion of specific scientific investigations on covalent crystals, in particular, s- Si crystals is relatively small. The fact that problems concerning the effect of a magnetic field on the properties and real structure of nonmagnetic s-si semiconductor crystals are practically unstudied makes their consideration appropriate and relevant. In [13], we investigated the effect of a permanent magnetic field (B =.17 T) on the kinetics of a decrease in the photoconductivity in s-si crystals and the character of variation in the physical characteristics of s-si depending on the time elapsed after carrying out magnetic treatment. To explain the obtained results, a hypothesis regarding the effect of charged impurity centers adsorbed and gettered by a magnetoactivated s-si surface on the character of a decrease in photoconductivity was stated. This study is devoted to verification of the hypotheses stated in [13]. The purpose of this study is to reveal changes in the defect impurity composition of surface layers and in the charge state of the surface of silicon crystals used for solar-power engineering under the effect of a weak permanent magnetic field.. EXPERIMENTAL In the study, we investigated s-si crystals grown by the Czochralski method and boron-doped to the resistivity ρ = 5 Ω cm. Magnetic treatment (MT) was carried out by storing the s-si samples in a permanent magnetic field with an induction of B =.17 T for a specific amount of time (t M = 7 or 1 day). The impurity composition of the control samples, i.e., the samples, which were not exposed to the magnetic effect, and also the samples, which were subjected to magnetic action, was studied using X-ray spectral analysis. The analysis was carried out by means of a setup combining an X-ray spectrum analyzer and a scanning electron microscope. Investigation of charge state of the surface was carried out by means of the photovoltage-relaxation technique. These investigations were carried out using an automated installation combining the contactless signaldetection method and the possibility of mapping the signal over the sample surface. The details of the experiment are described in [1, 15]. The photovoltage was generated using a 7-mW red laser LED (wavelength of 5 nm) focused into a light spot of ~1 μm in diameter. In addition, the photovoltage signal was scanned over the sample surface with a step of 1 μm. This technique enables us to study the electric-potential distribution over the s-si surface before magnetic treatment. 7

2 CHANGE IN THE CHARGE AND DEFECT IMPURITY STATE OF SILICON EXPERIMENTAL RESULTS, DISCUSSION, AND CONCLUSION In [13], we proposed a hypothesis according to which the magnetostimulated changes in the kinetics of the photoconductivity decrease can be related to the occurrence of a microscopic recombination barrier formed by impurities, which were adsorbed and gettered by the magnetoactivated surface. This hypothesis was confirmed by investigations of the distribution of the surface electric potential carried out in this study. These investigations are testimony to the fact that an extension of the electric-potential area (Fig. 1) is observed on the surface of s-si samples after the magnetic effect in comparison with the control samples, which is possibly related to the spatial dissipation of the electric potential. In this case, as can be seen from the comparison of Figs. 1b and 1c, an increase in the MT duration resulted in an increase in the area of the surface electric-potential distribution. As follows from the maps of photovoltage distribution U (Figs. 1a, 1b, and 1c), the MT results also in a double increase in its value instead of only in extension of the surface-potential area. An increase in the distribution area and the value of the surface potential, in our opinion, is the manifestation of the process of adsorption and gettering of various impurities including electrically charged impurities by the surface activated in the magnetic field. In our opinion, the magnetostimulated redistribution of the impurity concentration due to adsorption and gettering in the surface s-si layers also causes an increase in the surface electric potential. Additional investigations showed that a variation in the electric-potential-distribution area was observed in the s-si crystals also after magnetic-field action by another type, in particular, after the action of a lowfrequency (1 Hz) modulated magnetic field instead of only after magnetic treatment in a permanent magnetic field. Contrary to the permanent magnetic field, it is only the photovoltage-signal distribution that varied in the case of modulated magnetic-field action, with its magnitude remaining costant. Our investigations established that the distribution and magnitude of the surface potential altered during MT gradually return to values typical for the control samples (Figs. 1d and 1e) after a certain time after MT termination. The last fact points to the reversibility of the structural changes caused by the magnetic effect. The investigations carried out in the study involving the method of scanning-electron microscopy and X-ray spectral analysis showed that, as a result of the magnetic-field action in the surface layer of the crystals under investigation with a thickness of ~ μm, the number of carbon atoms increases ~. times in average, the number of oxygen atoms increases ~1. times, and a certain decrease in the number of basic matrix elements, i.e., silicon atoms is also observed. The increase in the carbon concentration after MT can be related to the magnetostimulated strengthening of the interdefect reactions. According to [1], interstitial silicon atoms can interact with carbon displacing carbon, which is located at crystal-lattice sites, to an interstitial position by the Watkins reaction Si i + C s Si s + C i (the subscript i corresponds to interstitial atoms, and the subscript s, to atoms at the sites). An increase in the oxygen concentration revealed here in the surface s-si layer after magnetic action can occur due to the magnetostimulated breaking of chemical bonds in nanoclusters of structural defects, such as, for example, oxide precipitates. The interdefect reactions stimulated by the magnetic field can result in the following: due to mutual interaction between carbon atoms and their interaction with oxygen and silicon atoms, carbonaceous and silicon carbonaceous oxygen complexes can be formed, which, according to [1], have electrical activity. The charged impurity adsorbed and gettered by the magneto-active surface result in an increase in the microscopic recombination barrier ϕ. In essence, an increase in the area of the electricpotential distribution observed in this study and the increase in the potential amplitude confirms the assumption about the magnetostimulated increase in the surface-potential-barrier height stated in [13] and explains an increase in the long-term component of the photoconductivity relaxation time τ found in [13]. When investigating the surface potential, we determined also the time of nonequilibrium-carrier recombination through the potential barrier generated by charged impurities instead of only the character of distribution of the photovoltage signal over the surface and its value. It was established that an increase in the distribution area and the photovoltage-signal value stimulated by magnetic action well correlates with the increase in the carrier-recombination time τ r. In the investigation of the electric potential, it was established that the value of τ r after magnetic treatment of the s-si samples increases ~(.5) times as compared with the s-si samples without magnetic treatment. It is typical that the variation in τ r agrees well with the variation in the value of the long-term component τ established in [13] upon investigation of photoconductivity relaxation. According to [13], the value of the long-term components τ also increases almost twice right after completion of MT in comparison with similar parameters for the s-si samples, which were not subjected SEMICONDUCTORS Vol. No. 1

3 7 MAKARA et al (a) (b) (c) (e) (d) Fig. 1. Surface distribution of the photovoltage value in s-si crystals: (a) before MT, (b) after MT during t M = days and (c) 1 days, (d) after 1 days after MT, and (е) 15 days after MT. to MT. It was experimentally established that the area of photovoltage-signal distribution over the surface, the value of the potential, and also such parameters as τ r and τ changed as a result of MT gradually return after a certain time after MT completion to the initial values inherent to the s-si crystals, which were not subjected to the magnetic action. The reversible character of the variation in the investigated characteristics testifies to gradual relaxation of the microscopic recombination barrier and SEMICONDUCTORS Vol. No. 1

4 CHANGE IN THE CHARGE AND DEFECT IMPURITY STATE OF SILICON 75 Intensity, arb. units Time, days ~ Fig.. Dependence of the ESR-signal intensity on the time elapsed after MT of silicon crystals for solar-power engineering. indicates the instability of the charge state of centers responsible for the behavior of the long-term component τ of the photoconductivity relaxation investigated in [13]. In our opinion, it is the oxygen and carbon atoms and also ions of impurities of alkaline metals and aluminum gettered from the material bulk by the magnetoactivated surface after MT which can act as the mentioned centers. It is quite probable that with increasing time, after the end of MT, the specified centers participate in interdefect reactions stimulated by the magnetic field, for example, with oxygen, carbon, and hydroxyl groups adsorbed by the magnetoactivated surface from the surrounding atmosphere due to which their charge state is neutralized. The latter results in the fact that the parameters τ r and τ changed as a result of the magnetic action come back in time to the initial values. The assumption about the effect of processes of adsorption of certain chemical elements, in particular, oxygen and carbon by a magnetoactivated surface on the kinetics of surface charge-state change and photovoltage relaxation was confirmed by us when investigating the quantitative content of the specified elements in the s-si surface layers. This investigation, which was carried out using X-ray spectral analysis, showed that the oxygen content in the s-si surface layers increased from.33 to.7% 1 days after the end of MT. This points to the fact that oxygen adsorption gradually increases in time. The carbon concentration increases from 7.73 to.57% 1 days after MT. The result obtained with the help of the X-ray spectral method evidencing the gradual increase in the oxygen and carbon concentration after MT well agrees with the results obtained in additional investigations carried out using electron-spin resonance (ESR) (Fig. ). From Fig., it can be seen that the intensity of the ESR-spectrum line with a g factor of.55, which corresponds to broken bonds, gradually increases after MT. It should be noted that, upon the breakage of silicon oxygen bonds Si O Si which are dominant in silicon, a radical in the form of SiO arises on the surface of the natural-oxide film, which is always present in silicon, alongside with the radical Si, which is not observed directly (by the ESR method) through the degeneration of its basic orbital state. According to [17], this radical interacts with gas molecules (O, CO) adsorbed on the SiO surface forming new radicals (SiOO O, SiOC O ), the ESR spectrum of which can be investigated and, thus, allows one to judge the state of the surface before the adsorption of gases. It is improbable that an increase in the ESR signal intensity from the line with the g factor.55 observed under our experimental conditions after a certain time after the end of magnetic treatment evidences the following. The magnetic effect results in the occurrence of several processes, namely, the breakage of Si O Si bonds and also the formation of radicals of the form Si O instead of only radicals of the Si type. The interaction of adsorbed CO molecules with the radical Si is carried out with charge transfer according to the scheme Si + CO = Si + CO, and resonance arises already at paramagnetic ions CO. The radicals Si O form new radicals SiOOO and SiOC O due to adsorption. It is improbable that the transformation of radicals effects the character of the dependence of the ESR-signal intensity on the duration of time elapsed after carrying out MT (Fig. ). The data of X-ray spectral analysis point to the fact that the effect of the increasing number of oxygen and carbon atoms in the surface layers observed right after the performance of MT relaxed in time (5 days after the end of MT), i.e., the number of oxygen and carbon atoms gradually returned to values typical of the initial s-si samples. The last fact correlates with the gradual decrease in the ESR signal intensity (see Fig. ). In summary, it is possible to state that the MT of s-si crystals causes long-term evolution of the impurity composition in its surface layers. REFERENCES 1. V. I. Al shits, E. V. Darinskaya, T. M. Perekalina, and A. A. Urusovskaya, Sov. Phys. Solid State 9, 5 (197).. Ya. B. Zel dovich, A. L. Buchachenko, and E. L. Frankevich, Sov. Phys. Usp. 31, 35 (19). 3. V. M. Maslovskii and S. N. Postnikov, in Proceedings of the th Scientific Technical Seminar on Processing by Pulse Magnetic Field (Methods and Technology) (Gor kii, Sofiya, 199), p. 5. SEMICONDUCTORS Vol. No. 1

5 7 MAKARA et al.. V. N. Buzykin, O. I. Datsko, and S. N. Postikov, Elektron. Obrab. Mater., No., 1 (1993). 5. M. N. Levin and B. A. Zon, J. Exp. Theor. Phys., 7 (1997).. M. N. Levin, G. V. Semenova, T. P. Sushkova, V. V. Postnikov, and B. A. Agapov, Phys. Solid State 5, 39 (3). 7. M. N. Levin, A. V. Tatarintsev, O. A. Kostsova, and A. M. Kostsov, Tech. Phys., 13 (3).. Yu. I. Golovin, Phys. Solid State, 79 (). 9. R. B. Morgunov, Phys. Usp. 7, 15 (). 1. A. L. Buchachenko, J. Exp. Theor. Phys. 15, 593 (7). 11. V. A. Makara, L. P. Steblenko, A. M. Korduban, et al., in Proceedings of the International Conference on Materials and Structures of Modern Electronics (Minsk, ), p V. A. Makara, M. A. Vasiliev, L. P. Steblenko, O. V. Koplak, A. N. Kuryliuk, Yu. L. Kobzar, and S. N. Naumenko, Semiconductors, 1 (). 13. V. A. Makara, O. A. Korotchenkov, L. P. Steblenko, A. A. Podolyan, and D. V. Kalinichenko, Semiconductors 7, 5 (13). 1. A. Podolian, V. Kozachenko, A. Nadtochiy, N. Borovoy, and O. Korotchenkov, J. Appl. Phys. 17, 937 (1). 15. A. B. Nadtochiy, O. A. Kortchenkov, and V. V. Kurilyuk, Tech. Phys. 5, 393 (13). 1. V. S. Vavilov, Defects in the Bulk and at the Surface of Silicon (Nauka, Moscow, 199) [in Russian]. 17. A. B. Roitsin and V. M. Maevskii, Sov. Phys. Usp. 3, 91 (199). Translated by V. Bukhanov SEMICONDUCTORS Vol. No. 1

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state. Photovoltaics Basic Steps the generation of light-generated carriers; the collection of the light-generated carriers to generate a current; the generation of a large voltage across the solar cell; and

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion

Diffusion. Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Diffusion Diffusion = the spontaneous intermingling of the particles of two or more substances as a result of random thermal motion Fick s First Law Γ ΔN AΔt Γ = flux ΔN = number of particles crossing

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation. Abstract

Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation. Abstract Change of Majority-Carrier Concentration in p-type Silicon by 10 MeV Proton Irradiation H. Iwata, S. Kagamihara, H. Matsuura, S. Kawakita 1), T. Oshima ), T. Kamiya ) Osaka Electro-Communication University,

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński Institute of Electronic Materials Technology Joint Laboratory for Characterisation of Defect Centres in Semi-Insulating Materials High-resolution photoinduced transient spectroscopy of radiation defect

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions

The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions The Effect of Dipole Boron Centers on the Electroluminescence of Nanoscale Silicon p + -n Junctions Nikolay Bagraev a, Leonid Klyachkin a, Roman Kuzmin a, Anna Malyarenko a and Vladimir Mashkov b a Ioffe

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

Cd(Zn)Te semiconductor-based diodes for detection of X- and gamma-ray photons with high energy resolution and imaging formation

Cd(Zn)Te semiconductor-based diodes for detection of X- and gamma-ray photons with high energy resolution and imaging formation P-46 Cd(Zn)Te semiconductor-based diodes for detection of X- and gamma-ray photons with high energy resolution and imaging formation [1] Organization Project Leader: Volodymyr Gnatyuk, Ph.D., Assoc. Prof.,

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004

Diamond. Covalent Insulators and Semiconductors. Silicon, Germanium, Gray Tin. Chem 462 September 24, 2004 Covalent Insulators and Chem 462 September 24, 2004 Diamond Pure sp 3 carbon All bonds staggered- ideal d(c-c) - 1.54 Å, like ethane Silicon, Germanium, Gray Tin Diamond structure Si and Ge: semiconductors

More information

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model Today MOS Structure Basic Idea Semiconductor Physics Metals, insulators Silicon lattice

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

2 Fundamentals of Flash Lamp Annealing of Shallow Boron-Doped Silicon

2 Fundamentals of Flash Lamp Annealing of Shallow Boron-Doped Silicon 2 Fundamentals of Flash Lamp Annealing of Shallow Boron-Doped Silicon MSA of semiconductors is usually performed using flash lamps. It has been shown that FLA holds the balance between effective dopant

More information

HALL EFFECT IN SEMICONDUCTORS

HALL EFFECT IN SEMICONDUCTORS Warsaw University of Technology Faculty of Physics Physics Laboratory I P Andrzej Kubiaczyk 30 HALL EFFECT IN SEMICONDUCTORS 1. ackground 1.1. Electron motion in electric and magnetic fields A particle

More information

On the Description of the Coadsorption of Cesium and Selenium Atoms on the Silicon Surface

On the Description of the Coadsorption of Cesium and Selenium Atoms on the Silicon Surface ISSN 063-7834, Physics of the Solid State, 009, Vol. 5, No. 4, pp. 849 853. Pleiades Publishing, Ltd., 009. Original Russian Text S.Yu. Davydov, 009, published in Fizika Tverdogo Tela, 009, Vol. 5, No.

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-3 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Electrically active defects in semiconductors induced by radiation

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood ELECTRONIC I Lecture 1 Introduction to semiconductor By Asst. Prof Dr. Jassim K. Hmood SOLID-STATE ELECTRONIC MATERIALS Electronic materials generally can be divided into three categories: insulators,

More information

Nonresonant Transparency Channels of a Two-Barrier Nanosystem in an Electromagnetic Field with an Arbitrary Strength

Nonresonant Transparency Channels of a Two-Barrier Nanosystem in an Electromagnetic Field with an Arbitrary Strength ISSN 0021-3640, JETP Letters, 2012, Vol. 95, No. 5, pp. 271 276. Pleiades Publishing, Inc., 2012. Original Russian Text N.V. Tkach, Yu.A. Seti, 2012, published in Pis ma v Zhurnal Eksperimental noi i Teoreticheskoi

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

doi: /

doi: / doi: 10.1063/1.350497 Morphology of hydrofluoric acid and ammonium fluoride-treated silicon surfaces studied by surface infrared spectroscopy M. Niwano, Y. Takeda, Y. Ishibashi, K. Kurita, and N. Miyamoto

More information

Chapter 7. Solar Cell

Chapter 7. Solar Cell Chapter 7 Solar Cell 7.0 Introduction Solar cells are useful for both space and terrestrial application. Solar cells furnish the long duration power supply for satellites. It converts sunlight directly

More information

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS

PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS PHYSICAL AND CHEMICAL PROPERTIES OF ATMOSPHERIC PRESSURE PLASMA POLYMER FILMS O. Goossens, D. Vangeneugden, S. Paulussen and E. Dekempeneer VITO Flemish Institute for Technological Research, Boeretang

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES

SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES 148 A p p e n d i x D SUPPLEMENTARY MATERIALS FOR PHONON TRANSMISSION COEFFICIENTS AT SOLID INTERFACES D.1 Overview The supplementary information contains additional information on our computational approach

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

The Reactions of Electrons and Holes Leading to the Metal Clusters Formation in Silver Halides: New Quantitative Characteristics 1

The Reactions of Electrons and Holes Leading to the Metal Clusters Formation in Silver Halides: New Quantitative Characteristics 1 The Reactions of Electrons and Holes Leading to the Metal Clusters Formation in Silver Halides: New Quantitative Characteristics 1 G.F. Novikov*, E.V. Rabenok*, N.V. Lichkova** *Institute of Problems of

More information

Mesoscopic Fluctuations of Conductance in a Depleted Built-in Channel of a MOSFET

Mesoscopic Fluctuations of Conductance in a Depleted Built-in Channel of a MOSFET ISSN 1063-7826, Semiconductors, 2006, Vol. 40, No. 9, pp. 1055 1059. Pleiades Publishing, Inc., 2006. Original Russian Text B.A. Aronzon, A.S. Vedeneev, A.A. Panferov, V.V. Ryl kov, 2006, published in

More information

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession T. Sasaki 1,a), T. Oikawa 1, T. Suzuki 2, M. Shiraishi 3, Y. Suzuki 3, and K. Noguchi 1 SQ Research Center, TDK

More information

Characterization of Semiconductor Detectors of (1 30)-keV Monoenergetic and Backscattered Electrons

Characterization of Semiconductor Detectors of (1 30)-keV Monoenergetic and Backscattered Electrons ISSN 162-8738, Bulletin of the Russian Academy of Sciences: Physics, 28, Vol. 72, No. 11, pp. 1456 1461. Allerton Press, Inc., 28. Original Russian Text A.V. Gostev, S.A. Ditsman, V.V. Zabrodskii, N.V.

More information

ELEC 4700 Assignment #2

ELEC 4700 Assignment #2 ELEC 4700 Assignment #2 Question 1 (Kasop 4.2) Molecular Orbitals and Atomic Orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule. Suppose that each atomic wavefunction

More information

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands

Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands Interference of magnetointersubband and phonon-induced resistance oscillations in single GaAs quantum wells with two populated subbands A.A.Bykov and A.V.Goran Institute of Semiconductor Physics, Russian

More information

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU ) 1 Ion Implant Part 1 Chapter 17: Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2014 Saroj Kumar Patra,, Norwegian University of Science and Technology ( NTNU ) 2 Objectives

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

Optimization of the Dielectric Constant of a Blocking Dielectric in the Nonvolatile Memory Based on Silicon Nitride

Optimization of the Dielectric Constant of a Blocking Dielectric in the Nonvolatile Memory Based on Silicon Nitride ISSN 8756-699, Optoelectronics, Instrumentation and Data Processing, 9, Vol. 45, No. 4, pp. 48 5. c Allerton Press, Inc., 9. Original Russian Text c Y. N. Novikov, V. A. Gritsenko, K. A. Nasyrov, 9, published

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE METAL-OXIDE-SEMICONDUCTOR (MOS) STRUCTURES

DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE METAL-OXIDE-SEMICONDUCTOR (MOS) STRUCTURES DISTRIBUTION OF POTENTIAL BARRIER HEIGHT LOCAL VALUES AT Al-SiO 2 AND Si-SiO 2 INTERFACES OF THE ETAL-OXIDE-SEICONDUCTOR (OS) STRUCTURES KRZYSZTOF PISKORSKI (kpisk@ite.waw.pl), HENRYK. PRZEWLOCKI Institute

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

FM AFM Crossover in Vanadium Oxide Nanomaterials

FM AFM Crossover in Vanadium Oxide Nanomaterials ISSN 0021-3640, JETP Letters, 2010, Vol. 91, No. 1, pp. 11 15. Pleiades Publishing, Inc., 2010. Original Russian Text S.V. Demishev, A.L. Chernobrovkin, V.V. Glushkov, A.V. Grigorieva, E.A. Goodilin, N.E.

More information

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4,

Lecture 1. Introduction to Electronic Materials. Reading: Pierret 1.1, 1.2, 1.4, Lecture 1 Introduction to Electronic Materials Reading: Pierret 1.1, 1.2, 1.4, 2.1-2.6 Atoms to Operational Amplifiers The goal of this course is to teach the fundamentals of non-linear circuit elements

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR In an extrinsic semiconducting material, the charge carriers originate from impurity atoms added to the original material is called impurity [or] extrinsic semiconductor. This Semiconductor

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Chapter 1 Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Atomic Structure Atom is the smallest particle of an element that can exist in a stable or independent

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Germany. Keywords: silicon, boron, oxygen, lifetime degradation

Germany. Keywords: silicon, boron, oxygen, lifetime degradation Solid State Phenomena Vols. 178-179 (211) pp 139-146 Online available since 211/Aug/16 at www.scientific.net (211) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/ssp.178-179.139 The

More information

Surface atoms/molecules of a material act as an interface to its surrounding environment;

Surface atoms/molecules of a material act as an interface to its surrounding environment; 1 Chapter 1 Thesis Overview Surface atoms/molecules of a material act as an interface to its surrounding environment; their properties are often complicated by external adsorbates/species on the surface

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Theory of Electrical Characterization of Semiconductors

Theory of Electrical Characterization of Semiconductors Theory of Electrical Characterization of Semiconductors P. Stallinga Universidade do Algarve U.C.E.H. A.D.E.E.C. OptoElectronics SELOA Summer School May 2000, Bologna (It) Overview Devices: bulk Schottky

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface. (DPHY 21) ASSIGNMENT - 1, DEC - 2018. PAPER- V : ELECTROMAGNETIC THEORY AND MODERN OPTICS 1) a)derive Fresnel equation. b) Discuss the amplitude of electromagnetic waves on reflection and refraction at

More information

Microscopic Ohm s Law

Microscopic Ohm s Law Microscopic Ohm s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm s Law 1 TRUE / FALSE 1. Judging from the filled bands, material A is an insulator.

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX Understanding process-dependent oxygen vacancies in thin HfO 2 /SiO 2 stacked-films on Si (100) via competing electron-hole injection dynamic contributions to second harmonic generation. J. Price, 1,2

More information

Upper-barrier excitons: first magnetooptical study

Upper-barrier excitons: first magnetooptical study Upper-barrier excitons: first magnetooptical study M. R. Vladimirova, A. V. Kavokin 2, S. I. Kokhanovskii, M. E. Sasin, R. P. Seisyan and V. M. Ustinov 3 Laboratory of Microelectronics 2 Sector of Quantum

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Specific Features of the Luminescence and Conductivity of Zinc Selenide on Exposure to X-Ray and Optical Excitation

Specific Features of the Luminescence and Conductivity of Zinc Selenide on Exposure to X-Ray and Optical Excitation ISSN 63-786, Semiconductors,, Vol. 44, No. 5, pp. 7. Pleiades Publishing, Ltd.,. Original Russian Text V.Ya. Degoda, A.O. Sofienko,, published in Fizika i Tekhnika Poluprovodnikov,, Vol. 44, No. 5, pp.

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

Defect Formation in 18 MeV Electron Irradiated MOS Structures

Defect Formation in 18 MeV Electron Irradiated MOS Structures Bulg. J. Phys. 33 (2006) 48 54 Defect Formation in 18 MeV Electron Irradiated MOS Structures S. Kaschieva 1, V. Gueorguiev 1, E. Halova 2, S. N. Dmitriev 3 1 Institute of Solid State Physics, Bulgarian

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures Sheng S. Li Department of Electrical and Computer Engineering University of Florida Gainesville,

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes

The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Supporting Information The Role of Hydrogen in Defining the n-type Character of BiVO 4 Photoanodes Jason K. Cooper, a,b Soren B. Scott, a Yichuan Ling, c Jinhui Yang, a,b Sijie Hao, d Yat Li, c Francesca

More information

Solid State Device Fundamentals

Solid State Device Fundamentals Solid State Device Fundamentals ENS 345 Lecture Course by Alexander M. Zaitsev alexander.zaitsev@csi.cuny.edu Tel: 718 982 2812 Office 4N101b 1 Outline - Goals of the course. What is electronic device?

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11231 Materials and Methods: Sample fabrication: Highly oriented VO 2 thin films on Al 2 O 3 (0001) substrates were deposited by reactive sputtering from a vanadium target through reactive

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors 5. Radiation Microsensors Radiation µ-sensors convert incident radiant signals into standard electrical out put signals. Radiant Signals Classification

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

desorption (ESD) of the O,/Si( 111) surface K. Sakamoto *, K. Nakatsuji, H. Daimon, T. Yonezawa, S. Suga

desorption (ESD) of the O,/Si( 111) surface K. Sakamoto *, K. Nakatsuji, H. Daimon, T. Yonezawa, S. Suga -!!!I c%sj ELSEVIER Surface Science 306 (1994) 93-98.:.:.j:::~:::~~~::::::~:~::~~:~~,:~.~...,.. ~. :...:E.:.:: :.:.::::::~.:.:.:.:.:.:.,:.:,:,:. ~.~:+::.:.::::::j:::~::::.:...( ~ :.:.::.:.:.:,:..:,: :,,...

More information

PHOTOVOLTAICS Fundamentals

PHOTOVOLTAICS Fundamentals PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions

Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions Thermal and Electrical Breakdown Versus Reliability of Ta2O5 under Both Bipolar Biasing Conditions P. Vašina, T. Zedníček, Z. Sita AVX Czech Republic s.r.o., Dvorakova 328, 563 1 Lanskroun, Czech Republic

More information

ACOUSTIC EFFECTS OCCURRING IN OPTICAL BREAKDOWN WITH A LIQUID BY LASER RADIATION

ACOUSTIC EFFECTS OCCURRING IN OPTICAL BREAKDOWN WITH A LIQUID BY LASER RADIATION The 21 st International Congress on Sound and Vibration 13-17 July, 2014, Beijing/China ACOUSTIC EFFECTS OCCURRING IN OPTICAL BREAKDOWN WITH A LIQUID BY LASER RADIATION Bulanov Alexey V.I. Il'ichev Pacific

More information

Doping of Semiconductors Using Radiation Defects Produced by Irradiation with Protons and Alpha Particles

Doping of Semiconductors Using Radiation Defects Produced by Irradiation with Protons and Alpha Particles Semiconductors, Vol. 35, No. 7, 1, pp. 735 761. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 7, 1, pp. 769 795. Original Russian Text Copyright 1 by Kozlov, Kozlovski. REVIEWS Doping

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information