STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

Size: px
Start display at page:

Download "STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY"

Transcription

1 STEEELECTNIC EFFECTS (S.E.) IN GANIC CEMISTY Pierre Deslongchamps (version du 3 février 2010) Cf. pour le livre: 1

2 SECTIN 5 Stereoelectronic Effects (S.E.) and eactivity of Esters and elated Functions 2

3 Esters and elated Functions 2 conformations Primary Stereoelectronic Effects esonance Structure and Stereoelectronic Effect in Ester 3

4 Secondary Stereoelectronic Effects and elative Stability of Esters even t-butyl formate: C C Z 90% E 10% 4

5 elative Stability of Dialkoxy-carbonium Ion C 3 C 3 + C + C 3 X-rays (NM) 5

6 Experimental Evidence for Secondary Stereoelectronic Effects Iodide Displacement on Lactonium Salt fast slow SN 2 on secondary carbon faster than primary one due to SE control 6

7 Stereocontrolled Cleavage of emiortoester Tetrahedral Intermediate primary (2 A.E.) secondary (2 A.E.) primary (1 A.E.) secondary (2 A.E.) primary (2 A.E.) secondary (1 A.E.) 7

8 18 -Exchange Concurrent to ydrolysis in Ester and Lactone Z-ester undergoes 18 exchange as k 2 k 3 8

9 18 -Exchange Concurrent to ydrolysis in Z Ester In both k 2 and k 3, cleavage takes place with 2 secondary stereoelectronic effects (or 2 A.E.) 9

10 Lactone (E-ester) do not undergo 18 -xygen Exchange Concurrent with ydrolysis in k 3, cleavage takes place with 2 secondary stereoelectronic effects in k 2, cleavage takes place with 1 secondary stereoelectronic effects k 3 is thus greater than k 2 consequently no 18 exchange even if there is conformational exchange (37 to 38) 10

11 Prediction of ydrolytic Pathway of Lactone elative ate of ydrolysis of Isomeric Lactones 11

12 eaction of Alkoxide on Lactonium Salt Experimental proof of stereoelectronic control 12

13 ydrolysis of Cyclic rthoesters The formation of esters from the mild acid hydrolysis of orthoesters proceeds through the formation of a hemi-orthoester tetrahedral intermediate as described by the following equation hemi-orthoester Possible product formation: 13

14 Mild Acid ydrolysis of Bicyclic rthoester with Two Different Alkoxy Groups Deslongchamps C 3 C 3 + CD 3 CD 3 C 3 clear preference for the exchange of the axial C 3 group (100/1) Kirby 14

15 Nine Conformers of Cyclic rthoester B, D, G, and I are eliminated because of strong steric effects (>4 kcal). C is unreactive. A, E and F should be reactive. 15

16 C is unreactive in acid 16

17 The Three eactive Conformers and their Corresponding Dialkoxy Carbonium Salt (1) E cleaves with no secondary S.E. (2) A and F cleave with one secondary S.E. (3) F yields one molecule (ring is cleaved) (4) A yield two molecules (favored entropically) A is thus the favored cleavage 17

18 N.B. ~5% lactone in case of no ring inversion is explained by cleavage of the boat form of 20. >5% lactone in case of ring inversion is explained by cleavage as above and by cleavage of 23 and

19 Product ratio of lactone (L) and hydroxy-ester (E) from the hydrolysis of cyclic orthoesters as a function of p* ESUME: WIth Chair Inversion: p < 3: more lactone p > 3: < 5% lactone WIthout Chair Inversion: all p: > 95% hydroxy-ester [ Can.J.Chem ] 19

20 emiorthoester chanism of Fragmentation as a Function of p p 3 -. C.. return less favored C less reactive p 3 C 3 +. C + return favored C C more reactive + More Lactone at p biomolecular process: less return + + C not a biomolecular process: more return 20

21 Small % of Lactone Produced in Cyclic rthoester ydrolysis CNCLUSIN ~ 5% LACTNE IS PDUCED VIA 5% CMPETITIVE BAT-LIKE TS 21

22 Cyclic rthoester with ing Inversion CNCLUSIN ME LACTNE IS PDUCED 22

23 S. Li, P. Deslongchamps. Tetrahedron Lett. 35, 5641 (1994). P. Deslongchamps, Y.L. Dory, S. Li. Tetrahedron 56, 3533 (2000). C.A. Bunton,.. De Wolfe. J. rg. Chem. 30, 1371 (1954). 23

24 BIMLECULA PCESS: ELATIVE ATE rthoester of formic acid el. rate: Entropy: 6.4 x x x cleavage 3 cleavages 3 cleavages Leaving group: C 3 C 3 C 2 5 rthoester of acetic acid el. rate: Entropy: 8.4 x x cleavage 3 cleavages Leaving group: C 3 C

25 ELATIVE ATE F YDLYSIS: TESTE VS TCABNATE Shigui LI 25

26 TESTE AND TCABNATE: ELATIVE ATE, CNFMATINAL ANALYSIS, AND STEEELECTNIC EFFECTS 26

27 lower than β attack lower than β attack 27

28 DIFFEENCE F EACTIVITY BETWEEN XENIUM AND DIXENIUM INS C + + C oxenium 80% α α T.S. + 20% β C G* = 0.8 kcal/mol o T.S. β C + 95% α C T.S. + G* = 1.8 kcal/mol dioxenium β 5% C + o T.S. * Position of T.S. 28

29 TESTES EACT WIT GIGNAD EAGENTS T YIELD ACETALS AND KETALS rthoester 3 gives 5 with axial group; 4 is unreactive 3 and 4 ( 1 = 2 = ; 1 = 2 = C 3 ; 1 = C 3, 2 = ) Grignard eagent ( 1 = C 3, C 2 5, (C 3 ) 2 C, p-c 6 4 ) Eliel N.B. Leaving C 3 group and incoming alkyl group prefer axial orientation. 29

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY STEEELECTNIC EFFECTS (S.E.) IN GANIC CEMISTY Pierre Deslongchamps (version du 5 février 2010) Cf. pour le livre: http://pages.usherbrooke.ca/pdeslongchamps/cv.htm 1 SECTIN 2 Stereoelectronic Effects (S.E.)

More information

SECTION 4. Stereoelectronic Effects (S.E.) and Reactivity of Acetals and Related Functions

SECTION 4. Stereoelectronic Effects (S.E.) and Reactivity of Acetals and Related Functions SECTIN 4 Stereoelectronic Effects (S.E.) and Reactivity of Acetals and Related Functions (2018) 1 2 Conformation of acetals 3 STEREELECTRNIC EFFECTS and xygen Basicity, Bond Length and Preferential Cleavage

More information

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY

STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY STEREOELECTRONIC EFFECTS (S.E.) IN ORGANIC CHEMISTRY Pierre Deslongchamps (version du 16 février 2010) Cf. pour le livre: http://pages.usherbrooke.ca/pdeslongchamps/cv.htm 1 SECTION 8 Stereoelectronic

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Brønsted Acid Proton donor Base Proton acceptor O CH 3 COH + H H 3 O + + CH 3 CO -

Brønsted Acid Proton donor Base Proton acceptor O CH 3 COH + H H 3 O + + CH 3 CO - hap 7. Acid and Bases Brønsted Acid Proton donor Base Proton acceptor 3 3 3-2 acid base conj. acid conj. base 3 2 S 4 3 - S 4 base acid conj. acid conj. base 6 5 N 2 N 2 6 5 N - N 3 acid base conj. base

More information

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives. Nucleophilic Acyl Substitution ucleophilic Acyl Substitution hapter 20 arboxylic Acid Derivatives ucleophilic Acyl Substitution Y (1) need to have Y as a u Y u u + Y (2) could not happen with aldehydes or ketones as : and : are poor

More information

Chem 263 Nov 28, Reactions of Carboxylic Acids and Derivatives: Strong Nucleophiles

Chem 263 Nov 28, Reactions of Carboxylic Acids and Derivatives: Strong Nucleophiles Chem 263 ov 28, 2013 eactions of Carboxylic Acids and Derivatives: Strong ucleophiles The strong nucleophiles (u: - ) that we have learned in this course are either hydride anion ( - ) or alkyl anion (

More information

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives

Nucleophilic Addition Reactions of Carboxylic Acid Derivatives Lecture 5: bjectives: Nucleophilic Addition eactions of Carboxylic Acid Derivatives By the end of this lecture you will be able to: draw the mechanism of a nucleophilic addition-elimination reaction with

More information

Suggested solutions for Chapter 32

Suggested solutions for Chapter 32 s for Chapter 32 32 PBLEM 1 Explain how the stereo- and regio- chemistry of these reactions are controlled. Why is the epoxidation only moderately diastereoselective, and why does the amine attack where

More information

THE IMPORTANCE OF CONFORMATION OF THE TETRAHEDRAL INTERMEDIATE IN THE HYDROLYSIS OF ESTERS AND AMIDES

THE IMPORTANCE OF CONFORMATION OF THE TETRAHEDRAL INTERMEDIATE IN THE HYDROLYSIS OF ESTERS AND AMIDES THE IMPORTANCE OF CONFORMATION OF THE TETRAHEDRAL INTERMEDIATE IN THE HYDROLYSIS OF ESTERS AND AMIDES PIERRE DESLONGCHAMPS Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada JJK

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution

Chapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution hapter 8: Nucleophilic Substitution 8.1: Functional Group Transformation By Nucleophilic Substitution Nu: = l,, I Nu - Nucleophiles are Lewis bases (electron-pair donor) Nucleophiles are often negatively

More information

Reactivity in Organic Chemistry. Mid term test October 31 st 2011, 9:30-12:30. Problem 1 (25p)

Reactivity in Organic Chemistry. Mid term test October 31 st 2011, 9:30-12:30. Problem 1 (25p) eactivity in rganic Chemistry Mid term test ctober 31 st 2011, 9:30-12:30 Problem 1 (25p) - (+)- Limonone can be epoxidized (using peracetic acid) to give an inseparable mixture of two diastereomeric limonene

More information

SECTION 3. Antiperiplanar Hypothesis. and Reactions at Unsaturated Systems

SECTION 3. Antiperiplanar Hypothesis. and Reactions at Unsaturated Systems SECTION 3 Antiperiplanar Hypothesis and Reactions at Unsaturated Systems (2016) 1 Reaction on Sp 2 Type Unsaturated System In cyclic ketone, both processes lead to a chair but we will see that C-H and

More information

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products

Chapter 7 Substitution Reactions 7.1 Introduction to Substitution Reactions Substitution Reactions: two reactants exchange parts to give new products hapter 7 Substitution eactions 7.1 Introduction to Substitution eactions Substitution eactions: two reactants exchange parts to give new products A-B + -D A-D + B- 3 2 + Br 3 2 Br + Elimination eaction:

More information

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX

Elimination Reactions Heating an alkyl halide with a strong base causes elimination of a. molecule of HX Elimination eactions eating an alkyl halide with a strong base causes elimination of a molecule of X 1. Potassium hydroxide dissolved in ethanol and the sodium salts of alcohols (such as sodium ethoxide)

More information

Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution Reactions. McMurray Text Chapter 21

Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution Reactions. McMurray Text Chapter 21 Carboxylic Acid Derivatives and Nucleophilic Acyl Substitution eactions McMurray Text Chapter 21 Carboxylic Acid Derivatives X Acid alide Ester ' Acid Anhydride ' N 2 Amide (1 ) Nomenclature Acid alides

More information

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2

1-What is substitution reaction? 2-What are can Nucleophilic Substitution Reaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1-What is substitution reaction? 2-What are can Nucleophilic Substitution eaction? 3- SN1 reaction. 4-SN2 reaction 5- mechanisms of SN1&SN2 1- SUBSTITUTION EACTIONS 1-Substitution eaction In this type

More information

8.8 Unimolecular Nucleophilic Substitution S N 1

8.8 Unimolecular Nucleophilic Substitution S N 1 8.8 Unimolecular Nucleophilic Substitution S N 1 A question. Tertiary alkyl halides are very unreactive in substitutions that proceed by the S N 2 mechanism. Do they undergo nucleophilic substitution at

More information

Chapter 17: Carbonyl Compounds II

Chapter 17: Carbonyl Compounds II Chapter 17: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Chapter 18: Carbonyl Compounds II

Chapter 18: Carbonyl Compounds II Chapter 18: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

The 6-membered geometry for transferring the R2 ligand from the metal to the C=O is far less strained.

The 6-membered geometry for transferring the R2 ligand from the metal to the C=O is far less strained. 549 M Williams Addition eactions to arbonyl Groups 1 The uncatalyzed addition of to 2 = has been carefully studied theoretically T 1 It was found that the entropic liability of employing a second moleclule

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

Course Goals for CHEM 202

Course Goals for CHEM 202 Course Goals for CHEM 202 Students will use their understanding of chemical bonding and energetics to predict and explain changes in enthalpy, entropy, and free energy for a variety of processes and reactions.

More information

molecules ISSN

molecules ISSN Molecules,, -8 molecules ISSN 0-0 http://www.mdpi.org Stereoselective Transformation of Cyclodecene-,-dione Systems, Derived from Steroids, to the Corresponding spiro-γ-lactones. A Semiempirical M Study

More information

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides:

Synthesis of Nitriles a. dehydration of 1 amides using POCl 3 : b. SN2 reaction of cyanide ion on halides: I. Nitriles Nitriles consist of the CN functional group, and are linear with sp hybridization on C and N. Nitriles are non-basic at nitrogen, since the lone pair exists in an sp orbital (50% s character

More information

Practice Problems, November 27, 2000

Practice Problems, November 27, 2000 Practice Problems, ovember 27, 2000 1. Why do the following groups all have very similar A-values? R-Group A-Value (kcal mol -1 ) 3 1.74 2 3 1.79 2 1.77 2 Br 1.79 2 Sn( 3 ) 3 1.79 2 Si( 3 ) 3 1.65 2 Ph

More information

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion

Chapter 11: Nucleophilic Substitution and Elimination Walden Inversion hapter 11: Nucleophilic Substitution and Elimination Walden Inversion (S)-(-) Malic acid [a] D = -2.3 Ag 2, 2 Pl 5 l Ag 2, 2 ()-2-hlorosuccinic acid l (-)-2-hlorosuccinic acid Pl 5 ()-() Malic acid [a]

More information

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions

PAPER No. 05: TITLE: ORGANIC CHEMISTRY-II MODULE No. 12: TITLE: S N 1 Reactions Subject hemistry Paper o and Title Module o and Title Module Tag 05, ORGAI EMISTRY-II 12, S 1 Reactions E_P5_M12 EMISTRY PAPER o. 05: TITLE: ORGAI EMISTRY-II TABLE OF OTETS 1. Learning Outcomes 2. Introduction

More information

Ch 18 Ethers and Epoxides

Ch 18 Ethers and Epoxides Ch 18 Ethers and Epoxides Ethers (R-O-R ) are compounds with two organic groups attached to an sp 3 oxygen. Epoxides are cyclic ethers where the sp 3 O is a part of a 3-membered ring. Thiols (R-S-H ) and

More information

Alcohols, Ethers, & Epoxides

Alcohols, Ethers, & Epoxides Alcohols, Ethers, & Epoxides Alcohols Structure and Bonding Enols and Phenols Compounds having a hydroxy group on a sp 2 hybridized carbon enols and phenols undergo different reactions than alcohols. Chapter

More information

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination

CHAPTER 7. Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination CHAPTER 7 Further Reactions of Haloalkanes: Unimolecular Substitution and Pathways of Elimination 7-1 Solvolysis of Tertiary and Secondary Haloalkanes The rate of S N 2 reactions decrease dramatically

More information

Highlights of Schmidt Reaction in the Last Ten Years

Highlights of Schmidt Reaction in the Last Ten Years ighlights of Schmidt eaction in the Last Ten Years Dendrobates histrionicus Jack Liu ov. 18, 2003 Introduction Classical Schmidt reaction of aldehydes and carboxylic acids Classical Schmidt reaction of

More information

Chapter 2: An Introduction to Organic Compounds

Chapter 2: An Introduction to Organic Compounds Chapter : An Introduction to Organic Compounds I. FUNCTIONAL GROUPS: Functional groups with similar structure/reactivity may be "grouped" together. A. Functional Groups With Carbon-Carbon Multiple Bonds.

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

CHM 292 Final Exam Answer Key

CHM 292 Final Exam Answer Key CHM 292 Final Exam Answer Key 1. Predict the product(s) of the following reactions (5 points each; 35 points total). May 7, 2013 Acid catalyzed elimination to form the most highly substituted alkene possible

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination Alkyl halides react with a nucleophile in one of two ways. Either they eliminate an X to form an alkene, or they undergo a substitution with the nucleophile, Nu,

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Section Practice Exam II Solutions

Section Practice Exam II Solutions Paul Bracher Chem 30 Section 7 Section Practice Exam II s Whether problems old r problems new, You d better practice, r you ll fail exam II. -- Anonymous TF Problem 1 a) Rank the following series of electrophiles

More information

Chapter 19 Carboxylic Acids

Chapter 19 Carboxylic Acids Carboxylic acids have the formula RCO2H. Nomenclature Chapter 19 Carboxylic Acids For the parent alkane, drop the terminal e and add the suffix oic acid. The parent alkane is the longest continuous chain

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Chapter 12: Carbonyl Compounds II

Chapter 12: Carbonyl Compounds II Chapter 12: Carbonyl Compounds II Learning bjectives: 1. Recognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

Ethers. Synthesis of Ethers. Chemical Properties of Ethers Page 1 of 6 like alcohols are organic derivatives of water, but lack the labile -OH group. As a result, ethers, except for epoxides, are usually not very reactive and are often used as solvents for organic

More information

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution

Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Chapter 20 Carboxylic Acid Derivatives Nucleophilic Acyl Substitution Nomenclature: In carboxylic acid chlorides, anhydrides, esters and amides, the parent is the carboxylic acid. In each case be sure

More information

Lecture 9: Addition to σ*

Lecture 9: Addition to σ* hemistry 201: rganic eaction chanisms Lecture 9: Addition to σ* B fast A not so fast σ* π* δ - δ δ - E M p Addition to σ* orbital leads to bond cleavage ydrogen atoms are always attached to something.

More information

R.M. Williams. S Me O R H

R.M. Williams. S Me O R H C549.M. Williams xidations in ynthetic rganic Chemistry The Moffat and wern xidation eactions The classical Moffat oxidation (see: Pfitzner, K.E.; Moffatt, J.G., J. Am. Chem. oc. 1963, 85, 3027~3028),

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives) arbonyls (h 16-19 ketones and aldehydes and carboxylic acids derivatives) +δ -δ ' - sp 2 - trigonal planar (120 0 ) - strongly polarized double bond eactivity? addition nucleophilic 1 Nucleophilic Addition

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Carboxylic Acids & Their Derivatives. Organic Chemistry, 2nd Edition David R. Klein

Carboxylic Acids & Their Derivatives. Organic Chemistry, 2nd Edition David R. Klein Carboxylic Acids & Their Derivatives Organic Chemistry, 2nd Edition David R. Klein Introduction to Carboxylic Acids Carboxylic acids are compounds with a -COOH group. These compounds are abundant in nature,

More information

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4

Chem 634. Pericyclic Reactions. Reading: CS-B Chapter 6 Grossman Chapter 4 Chem 634 Pericyclic eactions eading: CS-B Chapter 6 Grossman Chapter 4 Pericyclic eactions Definition: Continuous, concerted reorganization of electrons cyclic transition state no intermediate, single

More information

COMMUNICATIONS PIERRE DESLONGCHAMPS,~ CLAUDE LEBREUX, AND ROLAND TAILLEFER

COMMUNICATIONS PIERRE DESLONGCHAMPS,~ CLAUDE LEBREUX, AND ROLAND TAILLEFER The Importance of Conformation of the Tetrahedral Intermediate in the Hydrolysis of Amides. Selective Cleavage of the Tetrahedral Intermediate Controlled by Orbital Orientation1 PIERRE DESLONGCHAMPS,~

More information

Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail

Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail b-elimination Reactions Overview dehydration of alcohols: X = H; Y = OH dehydrohalogenation of alkyl halides: X = H; Y = Br, etc. X C

More information

Chem 263 Notes March 2, 2006

Chem 263 Notes March 2, 2006 Chem 263 Notes March 2, 2006 Average for the midterm is 102.5 / 150 (approx. 68%). Preparation of Aldehydes and Ketones There are several methods to prepare aldehydes and ketones. We will only deal with

More information

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH +

Homework problems Chapters 6 and Give the curved-arrow formalism for the following reaction: CH 3 OH + H 2 C CH + omework problems hapters 6 and 7 1. Give the curved-arrow formalism for the following reaction: : 3 - : 2 : 3 2-3 3 2. In each of the following sets, arrange the compounds in order of decreasing pka and

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Intramolecular strategies and stereoelectronic effects. Glycosides hydrolysis revisited

Intramolecular strategies and stereoelectronic effects. Glycosides hydrolysis revisited Pure&App/. Chern.,Vol. 65, No. 6, pp. 1161-1178,1993. Printed in Great Britain. @ 1993 UPAC ntramolecular strategies and stereoelectronic effects. Glycosides hydrolysis revisited Pierre Deslonechamus Dkpartement

More information

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements

REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements - 1 - REARRANGEMENTS NOTES Mechanistic Aspects of Rearrangements Nature of the Rearrangement It can vary from being truly stepwise to migration occurring in concert with initial ionisation. These two situations

More information

Total synthesis of Spongistatin

Total synthesis of Spongistatin Literature Semminar 1. Introduction: Total synthesis of Spongistatin Chen Zhihua (M2) Isolation: Pettit et al. J. rg. Chem. 1993, 58, 1302. Kitagawa et al. Tetrahedron Lett. 1993, 34, 1993. Fusetani et

More information

Structure and Reactivity: Prerequired Knowledge

Structure and Reactivity: Prerequired Knowledge Structure and eactivity: Prerequired Knowledge!!! The concepts presented in this summary are required for lecture and examination!!! 1. Important Principles in rganic Chemistry In general, structures which

More information

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA

Chapter 5. Nucleophilic aliphatic substitution mechanism. by G.DEEPA Chapter 5 Nucleophilic aliphatic substitution mechanism by G.DEEPA 1 Introduction The polarity of a carbon halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY

UNIVERSITY OF MANITOBA DEPARTMENT OF CHEMISTRY PAGE 1 of 7 UNIVERSITY F MANITBA DEPARTMENT F CEMISTRY 2.339 STRUCTURAL TRANSFRMATINS IN RGANIC CEMISTRY FINAL EAMINATIN Dr. Phil ultin Thursday December 14, 2000. NAME: ANSWERS STUDENT NUMBER: 1) (15

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: Z-enolates: M 2 M 2 syn 2 C 2 favored 2 M 2 anti disfavored E-enolates: M 2 2 C 3 C 3 C 2 favored 2 M M disfavored In

More information

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R

water methanol dimethyl ether Ether can only act as a hydrogen bond acceptor H-bond acceptor O R Chapter 14: Ethers and Epoxides; Thiols and Sulfides 14.1 Introduction to Ethers An ether group is an oxygen atom that is bonded to two carbons. The ether carbons can be part of alkyl, aryl, or vinyl groups.

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

Organometallic Reagents

Organometallic Reagents Making - bonds rganometallic eagents [hapter 3 Section 3.4; http://ochem.jsd.claremont.edu/tutorials.htm#] alletrin I (aid ) creating - bonds allows for making larger organic molecules from smaller molecules

More information

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile.

Real life example 1 Let s look at this series of chloroalcohols, and how fast the chloride gets displaced by an external nucleophile. Class 2 Carbocations Last time we talked about neighboring group participation in substitution reactions. I want to start today by talking about a few more real life examples. Real life example 1 Let s

More information

Answers to Hour Examination #3, Chemistry 302X, 2006

Answers to Hour Examination #3, Chemistry 302X, 2006 Answers to our Examination #, Chemistry 02X, 2006 1. (a). That SN2 shown just can t happen with the required inversion. The back of that methyl group is not reachable by the putative nucleophile, the pi

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Problem Set 2: Reactions of Carbocations - KEY

Problem Set 2: Reactions of Carbocations - KEY Problem Set 2: eactions of Carbocations - KEY Due Tuesday, 10/11/16 1. a. Formation of 1 and 2 silyl ethers is always high-yielding, but selective silylation of a single hydroxyl group can be challenging.

More information

Chem 263 March 7, 2006

Chem 263 March 7, 2006 Chem 263 March 7, 2006 Aldehydes and Ketones Aldehydes and ketones contain a carbonyl group, in which the carbon atom is doubly bonded to an oxygen atom. The carbonyl group is highly polarized, with a

More information

Summary of π Bond Chemistry

Summary of π Bond Chemistry Chapter 10 Summary of π Bond Chemistry to π C=C 13.01 Chapter 11 at π C=C to π C=C Chapter 1 LG at π C=C Chapter 13 at α position C= activates position ow does C= activation α position? Via or. E base

More information

Chemistry III (Organic): An Introduction to Reaction Stereoelectronics. LECTURE 6 1,2-Rearrangements & Fragmantations

Chemistry III (Organic): An Introduction to Reaction Stereoelectronics. LECTURE 6 1,2-Rearrangements & Fragmantations 1 Chemistry III (rganic): An Introduction to Reaction Stereoelectronics LECTURE 6 1,2-Rearrangements & Fragmantations Alan C. Spivey a.c.spivey@imperial.ac.uk Nov 2015 2 Format & scope of lecture 6 Ionic

More information

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five. Chem 232 D. J. Wardrop wardropd@uic.edu Problem Set 6 Answers Question 1. nly five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those

More information

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide?

CHE 275 NUCLEOPHILIC SUBSTITUTUION CHAP 8 ASSIGN. 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? CHE 275 NUCLEPHILIC SUBSTITUTUIN CHAP 8 ASSIGN 1. Which best depicts the partial charges on methyl bromide and sodium methoxide? 2. Which of the following would be the best (most reactive) nucleophile

More information

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides.

Ch.10 Alkyl Halides. Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. Ch.10 Alkyl alides Organic halides are valuable as industrial solvents, inhaled anesthetics in medicine, refrigerants, and pesticides. F F C C F Trichloroethylene (a solvent) alothane (an inhaled anesthetic)

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

ORGANIC - CLUTCH CH ALCOHOLS, ETHERS, EPOXIDES AND THIOLS

ORGANIC - CLUTCH CH ALCOHOLS, ETHERS, EPOXIDES AND THIOLS !! www.clutchprep.com CONCEPT: ALCOHOL NOMENCLATURE Glycols: Alcohols with two hydroxyls are called ; with three hydroxyls are called Always give most priority to the OH group. EXAMPLE: Provide the correct

More information

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides* Pure Appl. Chem., Vol. 76, No. 3, pp. 651 656, 2004. 2004 IUPAC Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

More information

Chapter 8 Alkyl Halides and Elimination Reactions

Chapter 8 Alkyl Halides and Elimination Reactions Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 8 Alkyl Halides and Elimination Reactions Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Nucleophilic Substitution & Elimination Chemistry 1

Nucleophilic Substitution & Elimination Chemistry 1 ucleophilic Substitution & Elimination hemistry 1 What kind of mechanisms are possible? What is the major mechanism occuring? Write in ALL mechanism details (lone pairs, formal charge, curved arrows, etc.).

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Dr. Mohamed El-Newehy

Dr. Mohamed El-Newehy By Dr. Mohamed El-Newehy Chemistry Department, College of Science, King Saud University http://fac.ksu.edu.sa/melnewehy Carboxylic acids and Their Derivatives 1 Structure of Carboxylic Acids -The functional

More information

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds*

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds* Pure Appl. Chem., Vol. 72, No. 9, pp. 1715 1719, 2000. 2000 IUPAC Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds* O. G. Kulinkovich

More information

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid Chapter 8: Ethers and Epoxides Diethyl ether in starting fluid 8.1 Nomenclature of Ethers Ethers are usually named by giving the name of each alkyl or aryl group, in alphabetical order, followed by the

More information

Hydrolysis of Esters

Hydrolysis of Esters Base Catalyzed ydrolysis of Esters Et 2 / - _ Et Essentially irreversible ydroxide ion attacks the carbonyl carbon and displaces the alkoxide Electronic effects play a big role because a ü is attack an

More information

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent Copper-Catalyzed eaction of Alkyl Halides with Cyclopentadienylmagnesium eagent Mg 1) cat. Cu(Tf) 2 i Pr 2, 25 o C, 3 h 2) H 2, Pt 2 Masahiro Sai, Hidenori Someya, Hideki Yorimitsu, and Koichiro shima

More information

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl.

New bond. ph 4.0. Fischer esterification. New bond 2 O * New bond. New bond H 2N. New C-C bond. New C-C bond. New C-C bond. O Cl. Iverson C 0N KRE Table: For use in synthesis problems, count carbons in products and starting materials then identify location(s) of new s, especially C-C or C=C s. With that information, use the following

More information

( ) Reac%on Rates and Temperature N A. = exp ΔE /k N B. Boltzmann law: At higher temperatures, more molecules have enough energy to react.

( ) Reac%on Rates and Temperature N A. = exp ΔE /k N B. Boltzmann law: At higher temperatures, more molecules have enough energy to react. eac%on ates and Temperature Boltzmann law: B A ( ) = exp ΔE /k B T! B E A At higher temperatures, more molecules have enough energy to react. Thus, reac;on rates increase with temperature: Arrhenius Equa%on

More information

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes

Reversible Additions to carbonyls: Weak Nucleophiles Relative Reactivity of carbonyls: Hydration of Ketones and Aldehydes Reversible Additions to carbonyls: Weak Nucleophiles Weak nucleophiles, such as water, alcohols, and amines, require acid or base catalysis to undergo addition to carbonyl compounds Relative Reactivity

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

CYCLOBUTADIENE IN ORGANIC SYNTHESIS

CYCLOBUTADIENE IN ORGANIC SYNTHESIS Lit. Seminar 061129 CYCLBUTADIENE IN GANIC SYNTESIS Usage of Unstable Intermediate: Cyclobutadiene as A Case 0. Introduction (C) 3 Fe 2 steps Kenzo YAMATSUGU (M2) (+)-Asteriscanolide difficulty to use

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information