4. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in mixtures of hydrogen isotopes with noble gases, J. Phys. (U.K.) B8, 1575 (1975).

Size: px
Start display at page:

Download "4. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in mixtures of hydrogen isotopes with noble gases, J. Phys. (U.K.) B8, 1575 (1975)."

Transcription

1 Research papers. 1. M. P. Saksena, Paras M. Agrawal, and Harminder, Distribtion of relaxation times and ultrasonic absorption in ammonia, Indian J. Pure & Applied Physics 11, 563 (1973). 2. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in polar gases, J. Chem. Phys. 61, 848 (1974). 3. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in H2 and D2 due to collisions with noble gas atoms, Chem. Phys. Lett. 32, 123 (1975). 4. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in mixtures of hydrogen isotopes with noble gases, J. Phys. (U.K.) B8, 1575 (1975). 5. Paras M. Agrawal and M. P. Saksena, Rotational relaxation in HD-inert gas mixtures, J. Chem. Phys. 65, 550 (1976). 6. Paras M. Agrawal and L. M. Raff, Consideration of the exit channel velocity effect upon inelastic cross sections computed by the infinite- order-sudden approximation, J. Chem. Phys. 74, 3292 (1981). 7. Paras M. Agrawal and L. M. Raff, Calculation of reaction probabilities and rate coefficients for collinear three-body exchange reaction using time-dependent wave packet methods, J. Chem. Phys. 74, 5076 (1981). 8. Paras M. Agrawal and L. M. Raff, IOSA investigations of the effects of potential surface topography upon elastic and inelastic scattering and rotational relaxation in the (He, CO2) system, J. Chem. Phys. 75, 2163 (1981). 9. R. Viswanathan, Paras M. Agrawal and L. M. Raff, Comparison of modified infinite order sudden theory with the experimentally measured state-to-state cross sections for R-T energy transfer in Ar-HF, J. Chem. Phys. 75, 3860 (1981). 10. Paras M. Agrawal and L. M. Raff, A semiclassical wavepacket model for the investigation of elastic and inelastic gassurface scattering, J. Chem. Phys. 77, 3946 (1982). 1

2 11. Paras M. Agrawal, N. C. Agrawal, R. Viswanathan and L. M. Raff, Rate calculations from timedependent wavepacket methods: The relationship of the pure state and canonical total reaction probability, J. Chem. Phys. 80, 760 (1984). 12. Paras M. Agrawal, V. Mohan and N. Sathyamurthy, Time-dependent wave mechanical study of the wings to the Lyman- á line in atomic hydrogen + molecular hydrogen reactive collisions, Chem. Phys. Lett. 114, 343 (1985). 13. Paras M. Agrawal and N. C. Agrawal, Rotational energy transfer in the rigid rotor CO2-Ar system and the energy dependence of the parameters of the power-gap law, Chem. Phys. Let. 117, 451 (1985). 14. Paras M. Agrawal and N. C. Agrawal, Integral inelastic cross sections for the rotational energy transfer in CO2-Ar system, Current Science (India) 54, 689 (1985). 15. Paras M. Agrawal, N. C. Agrawal and Vinod Garg, Power-gap law and the dynamical constraints on the angular momentum transfer in rotationally inelastic molecular collisions, Chem. Phys. Let. 118, 213, (1985). 16. C. B. Smith, L. M. Raff and Paras M. Agrawal, Semiclassical wavepacket studies of elastic and inelastic atom-surface scattering from a 3D model surface, J. Chem. Phys. 83, 1411 (1985). 17. Paras M. Agrawal, N. C. Agrawal and V. Garg, Dynamical constraints on the angular momentum transfer in rotationally inelastic molecular collisions, J. Chem. Phys. 83, 4444 (1985). 18. Paras M. Agrawal and Vinod Garg, Rotational energy transfer in CO2-He system and the two parameter power-gap model, Indian J. Pure & Applied Physics 23, 392 (1985). 19. Paras M. Agrawal and V. Garg, On the validity of the power-gap law and the exponential-gap law for rotational energy transfer in CO2-He system, Acta Physica Polonica A69, 103 (1986). 2

3 20. Paras M. Agrawal and N. C. Agrawal, Dynamical constraints on the angular momentum transfer between polar molecules, Chem. Phys. Let. 122, 37 (1985). 21. Paras M. Agrawal, L. M. Raff, and D. L. Thompson, Effect of the lattice model on the dynamics of dissociative chemisorption of H2 on a Si(111) surface, Surface Science 188, 402 (1987). 22. M. Jezercak, Paras M. Agrawal, C. B. Smith and L. M. Raff, Wave packet studies of gas-surface inelastic scattering and desorption rates, J. Chem. Phys. 88, 1264 (1988). 23. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Computational Studies of Heterogeneous Reactions of SiH2 on Si(111) surfaces, Surface Science 195, 283 (1988). 24. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Computational studies of SiH2 + SiH2 recombination reaction dynamics on a global potential surface fitted to ab initio and experimental data, J. Chem. Phys. 88, 5948 (1988). 25. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Trajectory studies of unimolecular reactions of Si2H4 and SiH2 on a global potential surface fitted to ab initio and experimental data, J. Chem. Phys. 89, 741 (1988). 26. M. Jezercak, Paras M. Agrawal, D. L. Thompson and L. M. Raff, A perturbation-trajectory method for the study of gas-surface collision dynamics, J. chem. Phys. 90, 3363 (1989). 27. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Computational studies of heterogeneous reactions of SiH2 on reconstructed Si(111)-(7x7) and Si(111)-(1x1) surfaces, J. Chem. Phys. 91, 5021 (1989). 28. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Variational phase-space theory studies of Siliconatom diffusion on reconstructed Si(111)-(7x7) surfaces, J. Chem. Phys. 91, 6463 (1989). 29. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Unimolecular dissociation dynamics of disilane, J. Chem. Phys. 92, 1069(1990). 3

4 30. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Comparison of silicon-atom diffusion on the dimer-adatom-stacking fault and Binning et al. Models of the reconstructed Si(111)-(7x7) surface, J. Chem. Phys. 94, 6243 (1991). 31. Paras M. Agrawal and Vinod Gard, The dependence of rotationally inelastic cross sections on the parameters of the potential, Current Science 61, 43 (1991). 32. Paras M. Agrawal, V. Garg, and K. R. Patidar, Rotationally inelastic cross-sections and parameters of the potential energy surface, Indian Journal of Pure and Applied Physics 31, 187(1993). 33. Paras M. Agrawal V. Garg, and K. R. Patidar, Rotationally inelastic cross sections and the parameters of the potential, Chem. Phys. Let. 208, 204 (1993). 34. Paras M. Agrawal, V. Garg, and K. R. Patidar, Potential parameters and energy dependence of rotational energy transfer in molecular systems, Acta Physica Polonica 84, 247 (1993). 35. Paras M. Agrawal, K. R. Patidar, and N. K. Dabkara, Potential energy surface for NO-He system from the state-to-state rate coefficients, Indian Journal of Pure and Applied Physics 32, 750 (1994). 36. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Theoretical investigation of nonstatistical dynamics, energy transfer, and intramolecular vibrational relaxation in isomerization reactions of matrixisolated HONO/Xe, J. Chem. Phys 101, 9937(1994). 37. Paras M. Agrawal, D. L. Thompson and L. M. Raff, Theoretical studies of the effects of matrix composition, lattice temperature, and isotopic substitution on isomerization reactions of matrix-isolated HONO/Ar, J. Chem. Phys. 102, 7000 (1995). 38. Paras M. Agrawal, D. C. Sorescu, L. M. Raff, and S. A. Abrash, Theoretical investigations of vinyl bromide dissociation in Xe and Kr matrices, J. Phys. Chem., 99, (1995). 39. Paras M. Agrawal, D. C. Sorescu, R. D. Kay, D. L. Thompson, L. M. Raff, J. B. Conrey and A. K. Jameson, Spectral line shapes in systems undergoing continuous frequency modulation, 4

5 J. Chem. Phys. 105, 2686 (1996). 40. Paras M. Agrawal, N. K. Dabkara, and S. Tilwankar, Rotational energy transfer in NO-Ar system and the validity of different forms of the potential, Chem. Phys. Let. 266, 481 (1997). 41. Paras M. Agrawal, N. K. Dabkara, and S. Tilwankar, Rotational energy transfer in NO-Ar system and the validity of the pairwise sum of the potential, Indian Journal of Pure and Applied Physics 35, 299 (1997). 42. Paras M. Agrawal, S. Tilwankar, and N. K. Dabkara, The hard ellipsoid potential model and the limit of rotational energy transfer in molecular collisions, J. Chem. Phys. 108, 4854 (1998). 43. Paras M. Agrawal and S. Tilwankar, Rotational energy transfer in molecular collisions and parameters of power-gap law, Acta Physica Polonica A93, 451 (1998). 44. N. K. Dabkara and Paras M. Agrawal, The maximum limit of rotational energy transfer in collisions of N2 with Ne and the power-gap law, Chem. Phys. Let. 299, 125 (1999). 45. Paras M. Agrawal, D. C. Sorescu, B. M. Rice and D. L. Thompson, A model for predicting the solubility of RDX in supercritical CO2: Isothermal- Isobaric Monte Carlo simulations, Fluid Phase Equilibria 155, 177 (1999). 46. Paras M. Agrawal, B. M. Rice, D. C. Sorescu, and D. L. Thompson, NPT-MC simulations of enhanced solubility of RDX in polar-modified supercritical CO2, Fluid Phase Equilibria 166, 1 (1999). 47. Paras M. Agrawal, B. M. Rice, D. C. Sorescu, and D. L. Thompson, Models for predicting solubilities of trinitrotluene (TNT) and 1,3,5-trinitro- 1,3,5-s-triazine (RDX) in supercritical CO2: isothermalisobaric Monte Carlo simulations, Fluid Phase Equilibria , 139 (2001). 48. Seong K. Kim, J. M. White, Paras M. Agrawal and D. L. Thompson, J. Chem. Phys. 115, 7657 (2001). 5

6 49. Paras M. Agrawal, B. M. Rice, and D. L. Thompson, Predicting trends in rate parameters for selfdiffusion on FCC metal surfaces, Surface Science 515, 21 (2002). 50. Paras M. Agrawal, Betsy M. Rice and Donald L. Thompson, Molecular Dynamics Study on the Effects of Voids and Pressure in Defect- Nucleated Melting Simulations, J. Chem. Phys. 118, (2003). 51. Paras M. Agrawal, Betsy M. Rice and Donald L. Thompson, Molecular Dynamics Study of the Melting of Nitromethane, J. Chem. Phys., 119, (2003). 6

The maximum amount of rotational energy transfer in F 2 -He system and hard ellipsoid potential model.

The maximum amount of rotational energy transfer in F 2 -He system and hard ellipsoid potential model. IOSR Journal of Applied Physics (IOSR-JAP) ISSN: 2278-4861. Volume 2, Issue 5 (Nov. - Dec. 2012), PP 01-05 The maximum amount of rotational energy transfer in F 2 -He system and hard ellipsoid potential

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Their Origin and Determination By GEOFFREY C. MAITLAND Senior Research Scientist Schlumberger Cambridge Research, Cambridge MAURICE RIGBY Lecturer in the Department of Chemistry King's

More information

Cross Sections: Key for Modeling

Cross Sections: Key for Modeling Cross Sections: Key for Modeling Vasili Kharchenko Department of Physics, University of Connecticut Harvard-Smithsonian Center for Astrophysics, Cambridge, USA 1. Introduction: a) non-thermal atoms and

More information

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas

State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas State-to-State Kinetics of Molecular and Atomic Hydrogen Plasmas MARIO CAPITELLI Department of Chemistry, University of Bari (Italy) CNR Institute of Inorganic Methodologies and Plasmas Bari (Italy) MOLECULAR

More information

Molecular Aggregation

Molecular Aggregation Molecular Aggregation Structure Analysis and Molecular Simulation of Crystals and Liquids ANGELO GAVEZZOTTI University of Milano OXFORD UNIVERSITY PRESS Contents PART I FUNDAMENTALS 1 The molecule: structure,

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

Foundations of Chemical Kinetics. Lecture 19: Unimolecular reactions in the gas phase: RRKM theory

Foundations of Chemical Kinetics. Lecture 19: Unimolecular reactions in the gas phase: RRKM theory Foundations of Chemical Kinetics Lecture 19: Unimolecular reactions in the gas phase: RRKM theory Marc R. Roussel Department of Chemistry and Biochemistry Canonical and microcanonical ensembles Canonical

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Chapter VI: Ionizations and excitations

Chapter VI: Ionizations and excitations Chapter VI: Ionizations and excitations 1 Content Introduction Ionization in gases Ionization in solids Fano factor 2 Introduction (1) Ionizations created by charged particles (incident particles or particles

More information

Brazilian Journal of Physics, vol. 36, no. 3A, September,

Brazilian Journal of Physics, vol. 36, no. 3A, September, Brazilian Journal of Physics, vol. 36, no. 3A, September, 2006 725 Effects of Molecular Rovibrational States and Surface Topologies for Molecule-Surface Interaction: Chemisorption Dynamics of D 2 Collision

More information

(12) Large local energy fluctuations in water. H. Tanaka and I. Ohmine, J. Chem. Phys., 87, (1987).115

(12) Large local energy fluctuations in water. H. Tanaka and I. Ohmine, J. Chem. Phys., 87, (1987).115 (01) Free energy of mixing, phase stability, and local composition in Lennard-Jones liquid mixtures. K. Nakanishi, Susumu Okazaki, K. Ikari, T. Higuchi, and J. Chem. Phys., 76, 629-636 (1982). 91 (02)

More information

Properties of Individual Nanoparticles

Properties of Individual Nanoparticles TIGP Introduction technology (I) October 15, 2007 Properties of Individual Nanoparticles Clusters 1. Very small -- difficult to image individual nanoparticles. 2. New physical and/or chemical properties

More information

A GENERAL TRANSFORMATION TO CANONICAL FORM FOR POTENTIALS IN PAIRWISE INTERMOLECULAR INTERACTIONS

A GENERAL TRANSFORMATION TO CANONICAL FORM FOR POTENTIALS IN PAIRWISE INTERMOLECULAR INTERACTIONS 1 A GENERAL TRANSFORMATION TO CANONICAL FORM FOR POTENTIALS IN PAIRWISE INTERMOLECULAR INTERACTIONS Jay R. Walton Department of Mathematics, Texas A & M University College Station, TX, USA Luis A. Rivera-Rivera,

More information

Errors in electron - molecule collision calculations (at low energies)

Errors in electron - molecule collision calculations (at low energies) e - Errors in electron - molecule collision calculations (at low energies) Jonathan Tennyson University College London Outer region Inner region IAEA May 2013 Electron processes: at low impact energies

More information

PRINCIPLES OF ADSORPTION AND REACTION ON SOLID SURFACES

PRINCIPLES OF ADSORPTION AND REACTION ON SOLID SURFACES PRINCIPLES OF ADSORPTION AND REACTION ON SOLID SURFACES Richard I. Masel Department of Chemical Engineering University of Illinois at Urbana-Champaign Urbana, Illinois A WILEY-INTERSCIENCE PUBLICATION

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

Direct Molecular Simulation of Hypersonic Flows

Direct Molecular Simulation of Hypersonic Flows Direct Molecular Simulation of Hypersonic Flows Thomas E. Schwartzentruber Aerospace Engineering & Mechanics University of Minnesota UMN Students and Researchers: Savio Poovathingal 1 Paul Norman 3 Chonglin

More information

Estimations of Rotational Relaxation Parameters in Diatomic Gases

Estimations of Rotational Relaxation Parameters in Diatomic Gases Estimations of Rotational Relaxation Parameters in Diatomic Gases Vladimir V. Riabov Department of Mathematics and Computer Science, Rivier College, 420 S. Main St., Nashua, NH 03060, USA Abstract: The

More information

Academic and Research Staff. Dr. C.H. Becker Dr. R.A. Gottscho Dr. M.L. Zimmerman Dr. T.A. Brunner Dr. A. Morales-Mori Dr. W.H.

Academic and Research Staff. Dr. C.H. Becker Dr. R.A. Gottscho Dr. M.L. Zimmerman Dr. T.A. Brunner Dr. A. Morales-Mori Dr. W.H. V. ATOMIC RESONANCE AND SCATTERING Academic and Research Staff Prof. D. Kleppner Prof. D.E. Pritchard Dr. T.W. Ducas* Dr. M.B. Elbel Dr. J.R. Rubbmark Dr. J.A. Serri Dr. C.H. Becker Dr. R.A. Gottscho Dr.

More information

Rotational-translational relaxation effects in diatomic-gas flows

Rotational-translational relaxation effects in diatomic-gas flows Rotational-translational relaxation effects in diatomic-gas flows V.V. Riabov Department of Computer Science, Rivier College, Nashua, New Hampshire 03060 USA 1 Introduction The problem of deriving the

More information

Emily A. Carter. REPORT DOCUMENTATION PAGE OM8 No F 03 C) S

Emily A. Carter. REPORT DOCUMENTATION PAGE OM8 No F 03 C) S SECURITY CLASSIFICATION OF THIS PAGE la. REPORT SECURITY CLASSIFICATION Unclassified RN Form Approved REPORT DOCUMENTATION PAGE OM8 No. 0704.0188 lb. RESTRICTIVE MARKINGS 2a. SECURITY CLASSIFICATION AUTHORITY

More information

Neutron and X-ray Scattering Studies

Neutron and X-ray Scattering Studies Neutron and X-ray Scattering Studies Alexis G. Clare NYSCC Alfred NY Clare@alfred.edu clare@alfred.edu Scattering Studies4 1 Outline Review interpreting correlation functions Some more examples Inelastic

More information

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Polarization in Noble Gases, October 8-13, 2017 Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Pierre-Jean Nacher Geneviève Tastevin Laboratoire Kastler-Brossel ENS

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

Concepts in Surface Physics

Concepts in Surface Physics M.-C. Desjonqueres D. Spanjaard Concepts in Surface Physics Second Edition With 257 Figures Springer 1. Introduction................................. 1 2. Thermodynamical and Statistical Properties of

More information

Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene

Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene Notes Bull. Korean Chem. Soc. 2005, Vol. 26, No. 8 1269 Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene Jongbaik Ree, * Yoo

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Vibrationally Mediated Bond Selective Dissociative Chemisorption of HOD on Cu(111) Supporting Information

Vibrationally Mediated Bond Selective Dissociative Chemisorption of HOD on Cu(111) Supporting Information Submitted to Chem. Sci. 8/30/202 Vibrationally Mediated Bond Selective Dissociative Chemisorption of HOD on Cu() Supporting Information Bin Jiang,,2 Daiqian Xie,,a) and Hua Guo 2,a) Institute of Theoretical

More information

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS

DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS THERMAL SCIENCE: Year 07, Vo., No. 6B, pp. 85-858 85 DETERMINATION OF THE POTENTIAL ENERGY SURFACES OF REFRIGERANT MIXTURES AND THEIR GAS TRANSPORT COEFFICIENTS Introduction by Bo SONG, Xiaopo WANG *,

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

An Introduction to Chemical Kinetics

An Introduction to Chemical Kinetics An Introduction to Chemical Kinetics Michel Soustelle WWILEY Table of Contents Preface xvii PART 1. BASIC CONCEPTS OF CHEMICAL KINETICS 1 Chapter 1. Chemical Reaction and Kinetic Quantities 3 1.1. The

More information

Multiple Choices: Choose the best (one) answer. Show in bold. Multiple Choices: Choose the best answer. The correct answer is shown in bold character.

Multiple Choices: Choose the best (one) answer. Show in bold. Multiple Choices: Choose the best answer. The correct answer is shown in bold character. HCCS CHEM 1405 PRACTICE EXAM IV: 5 th, 6 th and 7 th editions of Corwin s Introductory Chemistry textbook Multiple Choices: Choose the best (one) answer. Show in bold. Multiple Choices: Choose the best

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta?

Particle Behavior of Light 1. Calculate the energy of a photon, mole of photons 2. Find binding energy of an electron (know KE) 3. What is a quanta? Properties of Electromagnetic Radiation 1. What is spectroscopy, a continuous spectrum, a line spectrum, differences and similarities 2. Relationship of wavelength to frequency, relationship of E to λ

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

1.3 Molecular Level Presentation

1.3 Molecular Level Presentation 1.3.1 Introduction A molecule is the smallest chemical unit of a substance that is capable of stable, independent existence. Not all substances are composed of molecules. Some substances are composed of

More information

Coherent elastic and rotationally inelastic scattering of N 2,O 2, and CH 4 froma10kcu 111 surface

Coherent elastic and rotationally inelastic scattering of N 2,O 2, and CH 4 froma10kcu 111 surface JOURNAL OF CHEMICAL PHYSICS VOLUME 113, NUMBER 20 22 NOVEMBER 2000 Coherent elastic and rotationally inelastic scattering of N 2,O 2, and CH 4 froma10kcu 111 surface T. Andersson, F. Althoff, P. Linde,

More information

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2

ATOMS. Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 ATOMS Central field model (4 quantum numbers + Pauli exclusion) n = 1, 2, 3,... 0 l n 1 (0, 1, 2, 3 s, p, d, f) m l l, m s = ±1/2 Spectroscopic notation: 2S+1 L J (Z 40) L is total orbital angular momentum

More information

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules

Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules Supplementary Fig. 1. Progress of the surface mediated Ullmann coupling reaction using STM at 5 K. Precursor molecules (4-bromo-1-ethyl-2-fluorobenzene) are dosed on a Cu(111) surface and annealed to 80

More information

Monte Carlo Modelling of Hot Particle Coronae

Monte Carlo Modelling of Hot Particle Coronae ling of Hot Particle Coronae H. Lichtenegger Space Research Institute, Austrian Academy of Sciences, Graz, Austria N2 Workshop, Helsinki/FMI 29-31 Oct 2007 1 Goal 3D Monte Carlo model of hot particle coronae

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques Loughborough University Institutional Repository Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques This item was submitted to Loughborough University's

More information

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model M. S. Pindzola, D. Mitnik, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849

More information

PH 548 Atomistic Simulation Techniques

PH 548 Atomistic Simulation Techniques PH 548 Atomistic Simulation Techniques Lectures: Lab: 2-0-2-6 Tuesday 12-1 PM Thursday 12-1 PM Monday 2-5 PM P. K. Padmanabhan PH548: Two Excellent Books How to do it? 1 2 F 12 F 23 3 F i = F ij j i F

More information

Development of a Water Cluster Evaporation Model using Molecular Dynamics

Development of a Water Cluster Evaporation Model using Molecular Dynamics Development of a Water Cluster Evaporation Model using Molecular Dynamics Arnaud Borner, Zheng Li, Deborah A. Levin. Department of Aerospace Engineering, The Pennsylvania State University, University Park,

More information

Cynthia J. Jameson University of Illinois at Chicago

Cynthia J. Jameson University of Illinois at Chicago 19 F NMR The temperature dependence of chemical shifts: mechanisms and contributions Cynthia J. Jameson University of Illinois at Chicago T 1 outline the intramolecular shielding surface temperature dependence

More information

Vibrationally resolved ion-molecule collisions

Vibrationally resolved ion-molecule collisions Vibrationally resolved ion-molecule collisions CRP: Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion plasma Predrag Krstic Physics Division, Oak

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 02 Capabilities of Classical Molecular Simulation These notes created by David Keffer, University of Tennessee, Knoxville, 2009. Outline Capabilities of Classical

More information

THERMODYNAMICS AND TRANSPORT PROPERTIES OF ABLATED SPECIES

THERMODYNAMICS AND TRANSPORT PROPERTIES OF ABLATED SPECIES THERMODYNAMICS AND TRANSPORT PROPERTIES OF ABLATED SPECIES A D Angola 1,2, G. Colonna 2, L. D. Pietanza 2, M. Capitelli 2, F. Pirani 3, E. Stevanato 4 and A. Laricchiuta 2 1 Scuola di Ingegneria, Università

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Module 5: "Adsoption" Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption.

Module 5: Adsoption Lecture 25: The Lecture Contains: Definition. Applications. How does Adsorption occur? Physisorption Chemisorption. The Lecture Contains: Definition Applications How does Adsorption occur? Physisorption Chemisorption Energetics Adsorption Isotherms Different Adsorption Isotherms Langmuir Adsorption Isotherm file:///e

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Lecture 6: High Voltage Gas Switches

Lecture 6: High Voltage Gas Switches Lecture 6: High Voltage Gas Switches Switching is a central problem in high voltage pulse generation. We need fast switches to generate pulses, but in our case, they must also hold off high voltages before

More information

Electronic Processes on Semiconductor Surfaces during Chemisorption

Electronic Processes on Semiconductor Surfaces during Chemisorption Electronic Processes on Semiconductor Surfaces during Chemisorption T. Wolkenstein Translatedfrom Russian by E. M. Yankovskii Translation edited in part by Roy Morrison CONSULTANTS BUREAU NEW YORK AND

More information

Dynamical Monte-Carlo Simulation of Surface Kinetics

Dynamical Monte-Carlo Simulation of Surface Kinetics Dynamical Monte-Carlo Simulation of Surface Kinetics V. Guerra and J. Loureiro Centro de Física dos Plasmas, Instituto Superior Técnico, 1049-001 Lisboa, Portugal Abstract. This wor presents a theoretical

More information

Model Question Paper PART A ANSWER ALL QUESTIONS:

Model Question Paper PART A ANSWER ALL QUESTIONS: Std: XI Standard Subject: Chemistry ANSWER ALL QUESTIONS: Model Question Paper PART A Time: 2.30 hours Max Marks: 75 Marks (15X1=15) 1. Which one of the following is a standard for atomic mass? a) 6 C

More information

Lecture 3 Vacuum Science and Technology

Lecture 3 Vacuum Science and Technology Lecture 3 Vacuum Science and Technology Chapter 3 - Wolf and Tauber 1/56 Announcements Homework will be online from noon today. This is homework 1 of 4. 25 available marks (distributed as shown). This

More information

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma F. Bosi 1, M. Magarotto 2, P. de Carlo 2, M. Manente 2, F. Trezzolani 2, D. Pavarin 2, D. Melazzi 2, P. Alotto 1, R. Bertani 1 1 Department

More information

AR-7781 (Physical Chemistry)

AR-7781 (Physical Chemistry) Model Answer: B.Sc-VI th Semester-CBT-602 AR-7781 (Physical Chemistry) One Mark Questions: 1. Write a nuclear reaction for following Bethe s notation? 35 Cl(n, p) 35 S Answer: 35 17Cl + 1 1H + 35 16S 2.

More information

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates.

1. I can use Collision Theory to explain the effects of concentration, particle size, temperature, and collision geometry on reaction rates. Chemical Changes and Structure Learning Outcomes SECTION 1 Controlling the Rate. Subsection (a) Collision Theory 1. I can use Collision Theory to explain the effects of concentration, particle size, temperature,

More information

Formation of the simplest stable negative molecular ion H 3. in interstellar medium

Formation of the simplest stable negative molecular ion H 3. in interstellar medium Formation of the simplest stable negative molecular ion H 3 in interstellar medium V. Kokoouline 1,2, M. Ayouz 1, R. Guerout 1, M. Raoult 1, J. Robert 1, and O. Dulieu 1 1 Laboratoire Aimé Cotton, CNRS,

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model PHYSICAL REVIEW E, VOLUME 65, 056402 Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model Annemie Bogaerts* and Renaat Gijbels Department of Chemistry, University

More information

Collisional energy transfer modeling in non-equilibrium condensing flows

Collisional energy transfer modeling in non-equilibrium condensing flows Collisional energy transfer modeling in non-equilibrium condensing flows Natalia Gimelshein, Ingrid Wysong and Sergey Gimelshein ERC, Inc, Edwards AFB, CA 93524 Propulsion Directorate, Edwards AFB, CA

More information

Surface diffusion control of the photocatalytic oxidation in air/tio2 heterogeneous reactors

Surface diffusion control of the photocatalytic oxidation in air/tio2 heterogeneous reactors Phys. Chem. Comm. 5 (2002) 161-164 Surface diffusion control of the photocatalytic oxidation in air/tio2 heterogeneous reactors Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164

More information

High pressure core structures of Si nanoparticles for solar energy conversion

High pressure core structures of Si nanoparticles for solar energy conversion High pressure core structures of Si nanoparticles for solar energy conversion S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli [Phys. Rev. Lett. 11, 4684 (213)] NSF/Solar DMR-135468 NISE-project

More information

Au-C Au-Au. g(r) r/a. Supplementary Figures

Au-C Au-Au. g(r) r/a. Supplementary Figures g(r) Supplementary Figures 60 50 40 30 20 10 0 Au-C Au-Au 2 4 r/a 6 8 Supplementary Figure 1 Radial bond distributions for Au-C and Au-Au bond. The zero density regime between the first two peaks in g

More information

Reaction dynamics of molecular hydrogen on silicon surfaces

Reaction dynamics of molecular hydrogen on silicon surfaces PHYSICAL REVIEW B VOLUME 54, NUMBER 8 Reaction dynamics of molecular hydrogen on silicon surfaces P. Bratu Max-Planck-Institut für Quantenoptik, D-85740 Garching, Germany W. Brenig Physik-Department, Technische

More information

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites

The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites The Impact of Sodium Cations on the Adsorption of Carbon Dioxide in Zeolites Meghan Thurlow and Daniela Kohen Carleton College, Northfield, MN Introduction Separation of CO 2 from multi-species gas emissions

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Chemistry B11 Chapter 3 Atoms

Chemistry B11 Chapter 3 Atoms Chapter 3 Atoms Element: is a substance that consists of identical atoms (hydrogen, oxygen, and Iron). 116 elements are known (88 occur in nature and chemist have made the others in the lab). Compound:

More information

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section

R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Calculation of Atomic Data for Plasma Modeling: Introduction and Atomic Structure Part 1 R. Clark, D. Humbert, K. Sheikh Nuclear Data Section Overview Plasmas in fusion research Data needs for plasma modeling

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study

Thermodynamic behaviour of mixtures containing CO 2. A molecular simulation study Thermodynamic behaviour of mixtures containing. A molecular simulation study V. Lachet, C. Nieto-Draghi, B. Creton (IFPEN) Å. Ervik, G. Skaugen, Ø. Wilhelmsen, M. Hammer (SINTEF) Introduction quality issues

More information

The Ozone Isotope Effect. Answers and Questions

The Ozone Isotope Effect. Answers and Questions The Ozone Isotope Effect Answers and Questions The Ozone Isotope Effect Answers and Questions Dynamical studies of the ozone isotope effect: A status report Ann. Rev. Phys. Chem. 57, 625 661 (2006) R.

More information

Review Chemistry Paper 1

Review Chemistry Paper 1 Atomic Structure Topic Define an atom and element. Use scientific conventions to identify chemical symbols Identify elements by chemical symbols Define compound Use chemical formulae to show different

More information

Elements, Compounds Mixtures Physical and Chemical Changes

Elements, Compounds Mixtures Physical and Chemical Changes Elements, Compounds Mixtures Physical and Chemical Changes Fundamentals of Chemistry 1 Classification of Matter Matter is any substance having distinct physical characteristics and chemical properties.

More information

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum

Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Numerical Simulation of the Rarefied Gas Flow through a Short Channel into a Vacuum Oleg Sazhin Ural State University, Lenin av.5, 6283 Ekaterinburg, Russia E-mail: oleg.sazhin@uralmail.com Abstract. The

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

Quantum Monte Carlo Study of the Equation of State and Vibrational Frequency Shifts of Solid para-hydrogen

Quantum Monte Carlo Study of the Equation of State and Vibrational Frequency Shifts of Solid para-hydrogen Quantum Monte Carlo Study of the Equation of State and Vibrational Frequency Shifts of Solid para-hydrogen Lecheng Wang, Robert J. Le Roy and Pierre-Nicholas Roy Chemistry Department, University of Waterloo

More information

CHEMISTRY Matter and Change. Chapter 12: States of Matter

CHEMISTRY Matter and Change. Chapter 12: States of Matter CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click

More information

Molecular Driving Forces

Molecular Driving Forces Molecular Driving Forces Statistical Thermodynamics in Chemistry and Biology SUBGfittingen 7 At 216 513 073 / / Ken A. Dill Sarina Bromberg With the assistance of Dirk Stigter on the Electrostatics chapters

More information

Axion detection by atomic/molecular transitions

Axion detection by atomic/molecular transitions Axion detection by atomic/molecular transitions Dark matter axions may cause transitions between atomic states Due to very low interaction cross section, it necessary to look for axion induced transition

More information

Simulation of the cathode surface damages in a HOPFED during ion bombardment

Simulation of the cathode surface damages in a HOPFED during ion bombardment Simulation of the cathode surface damages in a HOPFED during ion bombardment Hongping Zhao, Wei Lei, a Xiaobing Zhang, Xiaohua Li, and Qilong Wang Department of Electronic Engineering, Southeast University,

More information

GAS-SURFACE INTERACTIONS

GAS-SURFACE INTERACTIONS Page 1 of 16 GAS-SURFACE INTERACTIONS In modern surface science, important technological processes often involve the adsorption of molecules in gaseous form onto a surface. We can treat this adsorption

More information

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3

D. De Fazio, T. V. Tscherbul 2, S. Cavalli 3, and V. Aquilanti 3 D. De Fazio, T. V. Tscherbul, S. Cavalli 3, and V. Aquilanti 3 1 Istituto di Struttura della Materia C.N.R., 00016 Roma, Italy Department of Chemistry, University of Toronto, M5S 3H6, Canada 3 Dipartimento

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES BONDING & INTERMOLECULAR FORCES Page 1 INTERMOLECULAR FORCES Intermolecular forces (van der Waals forces) relative weak interactions that occur between molecules. Most of the physical properties of gases,

More information

31704 Dynamic Monte Carlo modeling of hydrogen isotope. reactive-diffusive transport in porous graphite

31704 Dynamic Monte Carlo modeling of hydrogen isotope. reactive-diffusive transport in porous graphite 31704 Dynamic Monte Carlo modeling of hydrogen isotope reactive-diffusive transport in porous graphite * R. Schneider a, A. Rai a, A. Mutzke a, M. Warrier b,e. Salonen c, K. Nordlund d a Max-Planck-Institut

More information

Density-Functional Theory and Chemistry in One Dimension

Density-Functional Theory and Chemistry in One Dimension Density-Functional Theory and Chemistry in One Dimension Pierre-François Loos Research School of Chemistry, Australian National University, Canberra, Australia 14ème Rencontre des Chimistes Théoriciens

More information

Microcanonical unimolecular rate theory at surfaces. III. Thermal dissociative chemisorption of methane on Pt 111 and detailed balance

Microcanonical unimolecular rate theory at surfaces. III. Thermal dissociative chemisorption of methane on Pt 111 and detailed balance THE JOURNAL OF CHEMICAL PHYSICS 123, 094707 2005 Microcanonical unimolecular rate theory at surfaces. III. Thermal dissociative chemisorption of methane on Pt 111 and detailed balance A. Bukoski, H. L.

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Liquids and Solutions

Liquids and Solutions Liquids and Solutions Physical Chemistry Tutorials Mark Wallace, Wadham College mark.wallace@chem.ox.ac.uk CRL Floor 1 Office 1 Phone (2)75467 Taken from Thomas Group Website, Problems 1. The answers are

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information