NATURE AN POLUUTION DEGREE OF WATER ASSETS STUDIED BY INDUCTIVELY COUPLED PLASMA-OPTICAL EMISSION SPECTROSCOPY

Size: px
Start display at page:

Download "NATURE AN POLUUTION DEGREE OF WATER ASSETS STUDIED BY INDUCTIVELY COUPLED PLASMA-OPTICAL EMISSION SPECTROSCOPY"

Transcription

1 NATURE AN POLUUTION DEGREE OF WATER ASSETS STUDIED BY INDUCTIVELY COUPLED PLASMA-OPTICAL EMISSION SPECTROSCOPY I.Chindea, C.Mânzat*, S.Cintă-Pânzaru** Axente-Sever Theoretical HighSchool, Mediaş, Romania National Society of Natural Gases, Research Center, Mediaş, Romania Babes-Bolyai University, Optics and Spectroscopy Departament, Romania Abstract Indictuvely coupled plasma optical emission spectroscopy (ICP-OES) has been applied for detection of trace elements in environmental media of Copşa Mică region from Romania. Water samples form different drink source as well as from local rivers have been ollected and measured. Sample collection was made taking into account the possible random environmental contamination with industrial residues. The distribution degree of pollution is presented. Keywords: Inductively coupled plasma atomic emission spectrometry; heavy metals, drink water, trace element determination; integrated atom trap system, preconcentration; solvent extraction. 1. INTRODUCTION

2 The ICP-OES has recently turned into an attractive spectral method of analysis, since the acquisition and detection systems are considerably improved [1-3]. Water analysis with ICP-OES is very proper for injection in ICP [4,5]. Excepting the case of very low concetration when a preconcentration is requested, no further chemical treatments are neccesary. Although the concentration level of analyte could be different in water from sample the sample, they are however, low. In this respect, the detection limits generate large calibration range in the ICP system. The interference problems, which occur at low concentrations of Ca, Al, Mg and Fe can be managed. Moreover, analysis of elements that normally are very expensive or hard, e.g. B, S, Si, P are possible. There is only one limitation of ICP, namely that there is no possible to detect the isotope specie. The aim of this paper is to introduce the advantages of ICP-OES in pollution control of one of the damaged area of our contry, namely, Copşa Mică. II. EXPERIMENTAL Inductively coupled plasma was electrically obtained in an argon stream flowing thourgh a series of concentric quartz tubes, surronded by a coil attached by a radiofrecquency (RF) generator. During the plasma flame the gas stream (Ar) is enriched in electrons from an external source. These electrons are accelerated in the electromagnetic field produced by the RF generator, than support collision processes with the Ar atoms, resulting argon ions and a large number of electrons that will be again accelerated in the electromagnetic field. This process is running on until the gas becomes 32

3 strongly ionized (plasma) after that the electrical discharge becomes stable and selfsupported as long as the RF generator is on. The highest possible extent temperature by plasma is K. The optical system The plasma emission resulting light was focused to the entrance slit of Echelle type. The dispersion system consists both of prism and grating. A CCD detector convert the light energy into electrical energy. The detected power is directly converted through the computer into concetration. The liquid samples are introduced into the plasma as stacking aerosols in Ar stream. The aerosol sample gets into the plasma where the atomization takes place and the atoms and ions are excited. After excitaion sample atoms provide the emission spectrum. Sample holding The recipients were carefully washed in diluted HNO 3 (1/20) prior to use. Stabilization with 1% mineral acid of water sample was the applied, in order to reduce the chemisorption of trace metal ions on the surface and prevents the modifications due to the biologic activity, important for elements like Hg, As which easily enter in the biologic cycle. Sample prelevation was made taking into account the possible random environmental contamination with industrial residues. The preconcentration methods consist of evaporation, extraction with solvents, coprecipation, and ions-exchange. Filtering with a plastic membrane with 0,45 µm holes was than applied. The emission spectra have been collected 33

4 with the Perkin-Elmer, Thermo Jarrell Ash spectrometer with a resolution of 0,5 nm. 3. RESULTS AND DISCUSSIONS In order to avoid contamination in trace analysis (lower than µg/ml) high attention was given to the recipients during collecting samples. Contaminants could be however removed, when the metal extraction was made, analyzing the chelate agents, before extraction, the acids have to be redistributed and the water for analysis has to be distilled and deionized. Table 1 indicated the detection limits easily reached with the ICP system with pneumatic nebulizer. The medium values of the determined elements in river or seawater and the maximal allowed concentrations are also given. The allowed concentrations by the medical and hygenical departments in drink water are presented for comparison. A large range of elements easily determined through direct analysis (Na, K, Mg, Ca, Sr, Ba, Fe, B,S, Si) can be observed, without pre-concentration requirements. The only interferences that could appear in sweat water are due to the background introduced by Ca and Mg. This effect is however weak and can be corrected through the off peak and on peak methods. Anyway, the applied corrections present errors leading to the decrease of the sensitivity in the analysis channels and as consequence, the detection limits of several elements are gently affected. Table 2 shows these effectcs on detection limits produced by a maximum content of Ca and mg in sweat waters and in pre-concentrated (20X) water. 34

5 In order to characterize the fountainhead water quality of the region Copşa Mică, and to establish the impurity degree, there were extracted and analyzed samples from eight fountains at different distanced from the pollution source. From the physical chemistry point of vue it can say that the underground fountainhead is characterized through the high degree of minerals, specific for the fountainhead water in the field area. Analysis or the results from the collected and area classified samples including SC. SOMETRA SA plant leads to the following remaeques (see Table 3): In areas located near pollution source, the fountainhead contains Cd in concentration greater than the drink limits (STAS 1342/91). It has to be point out the presence of the sulfur quantities is greater than CMA[6]. Pb is also present in fountainhead but the quantities are located under the allowed limits, due to the low solvability at neutral values of ph (Pb becomes soluble at ph 6.3). The presence of toxic pollutants is a consequence of the metal and sulfurs soil pollution from the washed residues toward underground. The zones Copşa village, Tîrnăvioara, Micăsasa belong to the maximal polluted area. The pollution degree is decreased with the distance from the pollution source. Due to its nature, the underground has a weak versatility to selfcleaning and this fact leads to a time acquisition of pollution source. Moreover, the hygenic procedures of cleaning do not contribute to the heavy metal reduction or depollution. Obviously, the pollution degree of fountainhead is strictly dependent of the soil pollution degree [6,7]. Beneath of Copşa Mică, in addition to the pollution degree mentioned above, there is a supplementary pollution especially with heavy metals from the Industrial LAND Copşa Mică. In this area, the Pb, Cd and 35

6 Zn rich the greatest values from the entire Tîrnava Mare River. For example, Pb content is between 0,32 (year 1990) and 0,95 (year 1991), the yearly medium value being 0,6 mg/l; Cd has yearly values between 0,002 (year 1996), 0,1 (year 1990) the medium being 0,059 mg/l; Zn content, between 0,49 (1996) and 3,60 (1992), with the medium of 1,87 mg/l. During one year of normal porduction, in the Tîrnava Mare river arrive from the industrial area Copşa Mică 54 t Pb, 639 t Zn and 37 t Cd, and these values embody the river in the second and third quality class, respectively. The nitrites have values between 0,06 (1994) and 0,61 (1996), the nitrates annually maximal values of 8,85 mg/l (1992), ammonia between 0,06 (1992) and 3,22 (1991) with a medium of 1,46 mg/l. In addition, the sulfurs in this section record the greatest media value. Quantitative analysis after calibration clearly demonstrates the dangerous presence of Cd, Pb and other toxic elements in drink water sources. BIBLIOGRAFIE 1. J.A.Nobrega, Y.Gelinas, A.Krushevska, M.R.Barnes Determination of Elements in Biological and Botanical Materials by Inductively Coupled Plasma Atomic Emission and Mass Spectrometry After Extraction With a Tertiary Amine Reagent J.Anal.Atomic Spectr., Oct.01, 1997, H.Matusiewicz, M-Kopras Methods for Improving the Sensitivity in Atom Trapping Flame Atomic Absorption Spectrometry: Analytical 36

7 Scheme for the Direct Determination of Trace Elements in Beer J.Anal.Atomic Spectr., Nov.1,1997,12,11, G.J.Batterham, N.C.Munksgaard, D.L.Parry Determination of Trace Metals in Sea-water by Inductively Coupled Plasma Mass Spectrometry After Off-line Dithiocarbamate Solvent Extraction J.Anal.Atomic Spectr., Nov.1,1997,12,11, P.Thomas, J.K.Finnie, J.G.Williams Feasibility of Identication and Monitoring of Arsenic Species in Soil and Sediment Samples by Coupled High-performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry J.Anal.Atomic Spectr., Dec. 01, 1997,12,11, B.Boss Charles, J.Fredeen Kenneth Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry, Ed.Perkin Elmer 1997, International Labmate, 22,7, January S.W.Reader Guidelimes for Surface Water Quality Inorganic Chemical Substances Inland Waters Directorate, Ottawa, Canada, M.G.Lai, H.W.Weiss Anal.Chim.Acta, 143,3,

8 Table 1. The detection limits reached with the ICP system with pneumatic nebulizer Element λ Detection Medium concentration Allowed concentration [nm] limits [µg/l] rivers [µg/l] Sea [µg/l] in drink water [µg/l] Elements directly determined Na ,5*10 6 1,8*10 5 K 766, ,8*10 5 1,2*10 4 Mg 279, ,3*10 6 5*10 4 Ca 317, *10 5 1**10 5 Sr 407, Ba 455, Fe 259, B 249, S 180, ,8*10 5 8,3*10 4 Si 288, Elements determined after pre-concentration (20 X) Li 670, Be 313 0,1 0,4 6*10-4 Ve 311,1 2 0,9 2 Cr 267, ,05 50 Mo 281,6 4 1,5 10 Mr 257, Ni 231,6 8 1,

9 Cu 324, Zn 202, Al 308, P 178, Elements not determined after pre-concentration (20 X) Co 228,6 7 0,1 0,1 Ag 328,1 2 0,3 0,04 10 Cd 226,5 2 0,03 0,1 5 Hg 194,2 5 0,07 0,03 1 Pb 220, ,03 50 As 193, Sb 206, ,5 10 Bi 223,1 30 0,005 0,02 Se 196,1 80 0,2 0,4 10 Te 214,3 20 Table 2. Random errors in detection limits produced by Ca and Mg Element λ Detection Random errors [nm] limit [µg/l] Medium values in rivers [µg/l] Medium values in rivers (x 20) [µg/l] V 311,1 2 0,01 0,2 Ca 267,7 3 0,01 0,2 Ma 281,6 4 0,03 0,6 Ni 321,6 8 0,01 0,2 Zn 202,5 8 0,02 0,4 Si 288, Pb 220,3 20 0,1 2 P 178,3 10 0,03 0,6 S 180,7 80 6,1 120 Table 3. The pollutants content in fountainhead measured by ICP-OES Area Pb Cd Ag As Ca Cu In Zn Ti Sb Copşa Mică 0,0102 0,0229 0,0415 0, ,1 0,0249 0,0535 0,2883 0,0131 0,0481 fountain Copşa 0, , ,1 0,0051 0,0438 0,01 0, village fountain Prostea 0,0021 0, ,2 0,0085 0,0715 0,044 0,0126 0,0043 fountain Wevern Mediaş 0,0018 0, ,9 0,0093 0,0306 0,014 0,

10 spring Dumbrăven i fountain Iapu fountain Valea Lungă fountain Tîrnava Mare upper (Prostea) Tîrnava Mare beneath (Micăsasa) CMA (ppm) - 0, ,6 0,0105-0,0949 0, ,1 0,0049 0,0597 0,2285 0,0058 0,0008 0, ,5 0,0017 0,0638 0,0618 0,0105 0,0024-0,0003-0,002 88,24 0,0162 0,0817 0,0052 0,0006 0,0015 0,0098 0, ,97 0,124 0,052 0,0334 0,0026-0,05 0,005 0,01 0, ,05? 0,03?? 40

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Hands on mass spectrometry: ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment

Hands on mass spectrometry: ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment : ICP-MS analysis of enriched 82 Se samples for the LUCIFER experiment Max Planck Institute for Nuclear Physics, Heidelberg, Germany E-mail: mykola.stepaniuk@mpi-hd.mpg.de Stefano Nisi E-mail: stefano.nisi@lngs.infn.it

More information

Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES

Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES Fast Analysis of Water Samples Comparing Axially-and Radially- Viewed CCD Simultaneous ICP-OES Application Note Inductively Coupled Plasma-Optical Emission Spectrometers Author Tran T. Nham Introduction

More information

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ

Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Application Note Semiconductor Direct Analysis of Trace Metal Impurities in High Purity Nitric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Tokyo, Japan Introduction

More information

DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS

DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS 7 th INTERNATIONAL MULTIDISCIPLINARY CONFERENCE Baia Mare, Romania, May 17-18, 2007 ISSN-1224-3264 DETERMINATIONS OF THE POLLUTION LEVEL OF THE ENVIRONMENT WITH HEAVY METALS Mariana Dobra, Vasile Viman,

More information

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer Inductively Coupled Plasma Optical Emission Spectrometer is powerful simultaneous full

More information

Analysis Repeatability of Trace and Major Elements in a Water Sample

Analysis Repeatability of Trace and Major Elements in a Water Sample Analysis Repeatability of Trace and Major Elements in a Water Sample Agnès COSNIER HORIBA Scientific Longjumeau, France Keywords: environment Elements: Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li,

More information

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell

Trace elemental analysis of distilled alcoholic beverages using the Agilent 7700x ICP-MS with octopole collision/ reaction cell Trace elemental analysis of distilled alcoholic beverages using the Agilent 77x ICP-MS with octopole collision/ reaction cell Application note Food testing Author Glenn Woods Agilent Technologies Cheadle

More information

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive Chapter 9: End-of-Chapter Solutions 1. The following comparison provides general trends, but both atomic absorption spectroscopy (AAS) and atomic absorption spectroscopy (AES) will have analyte-specific

More information

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy. UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2004/2005 March 2005 KAA 502 Atomic Spectroscopy Time: 3 hours Please make sure this paper consists of FIVE typed pages before answering

More information

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS TECHNICAL NOTE 4322 Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS Keywords Argon gas dilution, AGD, High matrix samples, Seawater Goal To critically

More information

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater PRAMANA c Indian Academy of Sciences Vol. 76, No. 2 journal of February 2011 physics pp. 361 366 Application of total reflection X-ray fluorescence spectrometry for trace elemental analysis of rainwater

More information

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry

Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Applications of ICP-MS for Trace Elemental Analysis in the Hydrocarbon Processing Industry Fundamentals and Applications to the Petrochemical Industry Outline Some background and fundamentals of ICPMS

More information

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis

The Agilent 7700x ICP-MS Advantage for Drinking Water Analysis The Agilent 77x ICP-MS Advantage for Drinking Water Analysis Application Note Environmental Authors Steve Wilbur Agilent Technologies, Inc. 338 146th Place SE, Suite 3, Bellevue Washington, 987 USA Introduction

More information

Ch. 8 Introduction to Optical Atomic Spectroscopy

Ch. 8 Introduction to Optical Atomic Spectroscopy Ch. 8 Introduction to Optical Atomic Spectroscopy 8.1 3 major types of Spectrometry elemental Optical Spectrometry Ch 9, 10 Mass Spectrometry Ch 11 X-ray Spectrometry Ch 12 In this chapter theories on

More information

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS

Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Multi-Element Analysis of Petroleum Crude Oils using an Agilent 7900 ICP-MS Application note Energy and fuels Authors Jenny Nelson, Agilent Technologies, USA Ed McCurdy, Agilent Technologies, UK Introduction

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

Sample Analysis Design PART III

Sample Analysis Design PART III Sample Analysis Design PART III Sample Analysis Design Generating high quality, validated results is the primary goal of elemental abundance determinations It is absolutely critical to plan an ICP-MS analysis

More information

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS APPLICATION NOTE ICP - Mass Spectrometry Author Kenneth Ong PerkinElmer, Inc. Singapore Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS Introduction The control of impurity

More information

Partial Energy Level Diagrams

Partial Energy Level Diagrams Partial Energy Level Diagrams 460 nm 323 nm 610 nm 330 nm 819 nm 404 nm 694 nm 671 nm 589 / 590 nm 767 / 769 nm Lithium Sodium Potassium Gas Mixtures Maximum Temperatures, C Air-Coal Gas 1825 Air-Propane

More information

Lecture 7: Atomic Spectroscopy

Lecture 7: Atomic Spectroscopy Lecture 7: Atomic Spectroscopy 1 Atomic spectroscopy The wavelengths of absorbance and emission from atoms in the gas phase are characteristic of atomic orbitals. 2 In the lowest energy transition, the

More information

U.S. EPA SW-846 Method 6010C using the Prodigy High Dispersion ICP

U.S. EPA SW-846 Method 6010C using the Prodigy High Dispersion ICP Prodigy ICP Application Note: 1035 U.S. EPA SW-846 Method 6010C using the Prodigy High Dispersion ICP Introduction This Application Note describes the capability of the Teledyne Leeman Labs Prodigy High

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES

Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Ultra-fast determination of base metals in geochemical samples using the 5100 SVDV ICP-OES Application note Geochemistry, metals, mining Authors John Cauduro Agilent Technologies, Mulgrave, Australia Introduction

More information

ICP-OES Application Note Number 35

ICP-OES Application Note Number 35 ICP-OES Application Note Number 35 Rapid measurement of major, minor and trace levels in soils using the Varian 730-ES Vincent Calderon Varian, Inc. Introduction As part of the global strategy for sustainable

More information

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ

Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Application Note Semiconductor Analysis of Trace Metal Impurities in High Purity Hydrochloric Acid Using ICP-QQQ Authors Kazuo Yamanaka and Kazuhiro Sakai Agilent Technologies, Japan Introduction Hydrochloric

More information

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY Edited by AKBAR MONTASER George Washington University Washington, D.C. 20052, USA WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Chapter 9 Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Emission Spectroscopy Flame and Plasma Emission Spectroscopy are based upon those particles that are

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

Sample Analysis Design PART II

Sample Analysis Design PART II Sample Analysis Design PART II Sample Analysis Design Generating high quality, validated results is the primary goal of elemental abundance determinations It is absolutely critical to plan an ICP-MS analysis

More information

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces

More information

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques

ENVG FALL ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques ENVG 60500 FALL 2013 ICP-MS (Inductively Coupled Plasma Mass Spectrometry) Analytical Techniques HISTORY In the 1940s, arc and high-voltage spark spectrometry became widely utilized for metal analysis

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS Enhancing the productivity of food sample analysis with the Agilent 77x ICP-MS Application note Foods testing Authors Sebastien Sannac, Jean Pierre Lener and Jerome Darrouzes Agilent Technologies Paris,

More information

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma THE PLASMA Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces a current within a stream of Argon (Ar) gas, which

More information

Sample Analysis Design Polyatomic Interferences

Sample Analysis Design Polyatomic Interferences Sample Analysis Design Polyatomic Interferences More serious than isobaric interferences Result from possible, short-lived combination of atomic species in the plasma or during ion transfer Common recombinants

More information

a. An emission line as close as possible to the analyte resonance line

a. An emission line as close as possible to the analyte resonance line Practice Problem Set 5 Atomic Emission Spectroscopy 10-1 What is an internal standard and why is it used? An internal standard is a substance added to samples, blank, and standards. The ratio of the signal

More information

Multi Analyte Custom Grade Solution. Aluminum, Potassium, Magnesium, ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE

Multi Analyte Custom Grade Solution. Aluminum, Potassium, Magnesium, ANALYTE CERTIFIED VALUE ANALYTE CERTIFIED VALUE 1.0 ACCREDITATION / REGISTRATION INORGANIC VENTURES is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for

More information

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy Atomic Emission Spectroscopy Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Prof. Dr. Biljana Škrbić, Jelena Živančev

Prof. Dr. Biljana Škrbić, Jelena Živančev 5 th CEFSER Training Course Analysis of chemical contaminants in food and the environment Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia 7-11 May 2012 Analysis of heavy elements

More information

Ar Ar + e - INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ What+is+Plasma?+ FuncDon+of+Plasma+

Ar Ar + e - INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ What+is+Plasma?+ FuncDon+of+Plasma+ INDUCTIVELY+COUPLED+ PLASMA+SPECTROMETRY+ Applied'Analy+cal'and'Inorganic'Chemistry'Program' Department'of'Chemistry,'Faculty'of'Science' Mahidol'University' What+is+Plasma?+ Ar Ar + e - Plasma is an ionized

More information

ATOMIC SPECROSCOPY (AS)

ATOMIC SPECROSCOPY (AS) ATOMIC ABSORPTION ANALYTICAL CHEMISTRY ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy 1- Flame Atomic Absorption Spectreoscopy (FAAS) 2- Electrothermal ( Flame-less ) Atomic Absorption Spectroscopy

More information

Simple, reliable analysis of high matrix samples according to US EPA Method 6020A using the Agilent 7700x/7800 ICP-MS

Simple, reliable analysis of high matrix samples according to US EPA Method 6020A using the Agilent 7700x/7800 ICP-MS Simple, reliable analysis of high matrix samples according to US EPA Method 6020A using the Agilent 7700x/7800 ICP-MS Application note Environmental Authors Steve Wilbur, Craig Jones Agilent Technologies,

More information

Thermo Scientific icap RQ ICP-MS: Typical limits of detection

Thermo Scientific icap RQ ICP-MS: Typical limits of detection TECHNICAL NOTE 43427 Thermo Scientific icap RQ ICP-MS: Typical limits of detection Author Tomoko Vincent Keywords BEC, interference removal, KED, LOD Introduction Inductively Coupled Plasma Mass Spectrometry

More information

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS

Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Determination of challenging elements in ultrapure semiconductor grade sulfuric acid by Triple Quadrupole ICP-MS Application note Semiconductor Authors Junichi Takahashi Agilent Technologies, Japan Introduction

More information

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company

Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Fundamentals of the ICP-MS Technique and How to Resolve Issues for Pharmaceutical Materials (In 20 Minutes) Tim Shelbourn, Eli Lilly and Company Why ICP Mass Spectrometry? Ultra-trace multi-element analytical

More information

Spectroscopy Division, and * Central Workshop, Bhabha Atomic Research Centre, Trombay, Mumbai , India

Spectroscopy Division, and * Central Workshop, Bhabha Atomic Research Centre, Trombay, Mumbai , India SaÅdhanaÅ, Vol. 25, Part 1, February 2000, pp. 57±69. # Printed in India Design, fabrication and performance evaluation of a 22-channel direct reading atomic emission spectrometer using inductively coupled

More information

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Elemental analysis of river sediment using the Agilent 4200 MP-AES Elemental analysis of river sediment using the Agilent 4200 MP-AES Application note Environmental: Soils, sludges & sediments Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction

More information

Multi-Element Analysis of Cannabis using the Agilent 7800 ICP-MS

Multi-Element Analysis of Cannabis using the Agilent 7800 ICP-MS Authors Multi-Element Analysis of Cannabis using the Agilent 7800 ICP-MS Application Note Food safety Craig Jones and Jenny Nelson Agilent Technologies, USA Introduction In the U.S., marijuana remains

More information

Determination of the inorganic ion composition of standing surface water

Determination of the inorganic ion composition of standing surface water 2. Experiment Determination of the inorganic ion composition of standing surface water Objectives All the biologically important inorganic chemical parameters of standing surface water are called halobity.

More information

Trace elemental analysis solutions for your application. June 6, 2018

Trace elemental analysis solutions for your application. June 6, 2018 Trace elemental analysis solutions for your application June 6, 2018 Understanding how each technique works Components of instrument Selection Criteria Application Fields OUTLINE All these techniques can

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS Application Note Semiconductor Authors Junichi Takahashi Agilent Technologies Tokyo, Japan Abstract Ammonium hydroxide

More information

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe:

February 20, Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Job Number: S0CHG688. Dear Joe: February 20, 2012 Joe Cerniglia The International Group for Historic Aircraft Recovery (TIGHAR) Subject: ICP-MS Report Job Number: S0CHG688 Dear Joe: Please find enclosed the procedure report for the analysis

More information

U.S. EPA SW-846 Method 6010C Using the Prodigy7 High- Dispersion ICP Introduction. Application Note - AN1305. Experimental

U.S. EPA SW-846 Method 6010C Using the Prodigy7 High- Dispersion ICP Introduction. Application Note - AN1305. Experimental Application Note - AN1305 This application note describes the capability of the Teledyne Leeman Lab s Prodigy7 High-Dispersion ICP for performing analysis according to SW-846 Method 6010C. This method

More information

Test Method: CPSC-CH-E

Test Method: CPSC-CH-E UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 10901 DARNESTOWN RD GAITHERSBURG, MD 20878 Test Method: CPSC-CH-E1001-08 Standard Operating Procedure

More information

Trace Analyses in Metal Matrices Using the ELAN DRC II

Trace Analyses in Metal Matrices Using the ELAN DRC II www.perkinelmer.com Trace Analyses in Metal Matrices Using the ELAN DRC II Introduction Analyses of matrices containing high levels of metals present a challenge for ICP-MS. First, the concentrations of

More information

The Investigation of Fertilizer Analyses Using Microwave Digestion and the Agilent 720-ES

The Investigation of Fertilizer Analyses Using Microwave Digestion and the Agilent 720-ES The Investigation of Fertilizer Analyses Using Microwave Digestion and the Agilent 720-ES Application Note Inductively Coupled Plasma-Optical Emission Spectrometers Authors Christine M. Rivera Doug Shrader

More information

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures

RADIOLOGICAL CHARACTERIZATION Laboratory Procedures RADIOLOGICAL CHARACTERIZATION Laboratory Procedures LORNA JEAN H. PALAD Health Physics Research Unit Philippine Nuclear Research Institute Commonwealth Avenue, Quezon city Philippines 3-7 December 2007

More information

Direct Measurement of Trace Metals in Edible Oils by 7500cx ICP-MS with Octopole Reaction System

Direct Measurement of Trace Metals in Edible Oils by 7500cx ICP-MS with Octopole Reaction System Direct Measurement of Trace Metals in Edible Oils by 7500cx ICP-MS with Octopole Reaction System Application Note Foods Author Glenn Woods ICP-MS Specialist Agilent Technologies UK Ltd. Lakeside Business

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

Overview of X-Ray Fluorescence Analysis

Overview of X-Ray Fluorescence Analysis Overview of X-Ray Fluorescence Analysis AMPTEK, INC., Bedford, MA 01730 Ph: +1 781 275 2242 Fax: +1 781 275 3470 sales@amptek.com 1 What is X-Ray Fluorescence (XRF)? A physical process: Emission of characteristic

More information

Agilent Technologies at TIAFT 2013

Agilent Technologies at TIAFT 2013 Agilent Technologies at TIAFT 2013 Analytical approaches for the measurement of trace metals in forensic samples Funchal, Madeira September 2-6 CRIMINALISTIC TOXICOLOGY DNA INVESTIGATION DOCUMENT EXAMINATION

More information

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode

Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Determination of trace elements in ultrapure semiconductor grade sulfuric acid using the Agilent 8900 ICP-QQQ in MS/MS mode Application note Semiconductor Authors Michiko Yamanaka, Kazuo Yamanaka and Naoki

More information

Experiment 14 - Qualitative Analysis

Experiment 14 - Qualitative Analysis Introduction Qualitative analysis involves the identification of the substances in a mixture. When chemical methods are used in the identification of mixtures of metal cations, these ions are usually separated

More information

Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry

Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry Journal of Oceanography Vol. 48, pp. 283 to 292. 1992 Determination of Silicate in Seawater by Inductively Coupled Plasma Atomic Emission Spectrometry KAZUO ABE and YASUNORI WATANABE Seikai National Fisheries

More information

Determination of Phosphorus and Sulfur with Dynamic Reaction Cell ICP-MS

Determination of Phosphorus and Sulfur with Dynamic Reaction Cell ICP-MS FIELD APPLICATION REPORT ICP MASS SPECTROMETRY Determination of Phosphorus and Sulfur with Dynamic Reaction Cell ICP-MS Authors: Kenneth R. Neubauer, Ph.D. Perkin Elmer Life and Analytical Sciences 710

More information

Nuclear Magnetic Resonance (NMR)

Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) Nuclear Magnetic Resonance (NMR) The Nuclear Magnetic Resonance Spectroscopy (NMR) is one of the most important spectroscopic methods to explore the structure and dynamic

More information

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company

Key Analytical Issues: Sample Preparation, Interferences and Variability. Tim Shelbourn, Eli Lilly and Company Key Analytical Issues: Sample Preparation, Interferences and Variability Tim Shelbourn, Eli Lilly and Company Presentation Outline Sample preparation objectives and challenges Some common interferences

More information

IAEA-TECDOC-9SO. Sampling, storage

IAEA-TECDOC-9SO. Sampling, storage IAEA-TECDOC-9SO Sampling, storage The IAEA does The originating Sections of this publication in the IAEA were: Agency's Laboratories, Seibersdorf Physics Section International Atomic Energy Agency Wagramerstrasse

More information

ICP-Mass Spectrometer

ICP-Mass Spectrometer ICP-Mass Spectrometer New Mass Spectrometers The main issue: sequential vs. simultaneous Scanning, peak hopping are sequential Like viewing a photo through a peephole One pixel at a time Other parts of

More information

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER

TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 236 ABSTRACT TRACE ELEMENT ANALYSIS USING A BENCHTOP TXRF- SPECTROMETER Hagen Stosnach Röntec GmbH,

More information

Characterization of Catalysts and Surfaces. Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105

Characterization of Catalysts and Surfaces. Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105 Outline Characterization of Catalysts and Surfaces Elemental Analysis (ICP, AAS etc.) Fall Semester 2016 Bodo Hattendorf HCI G105 bodo@inorg.chem.ethz.ch Instrumental Methods for Determination of the Elements

More information

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Atomic Absorption Spectrophotometry Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Defination In analytical chemistry, Atomic absorption spectroscopy is a

More information

CHAPTER 4: ANALYTICAL INSTRUMENTATION

CHAPTER 4: ANALYTICAL INSTRUMENTATION CHAPTER 4: ANALYTICAL INSTRUMENTATION 4.1 INTRODUCTION In this section, a review of the analytical instrumentation used during sample preparation and analysis is presented which includes an overview of

More information

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy A. Evaluation of Analytical Parameters in Atomic Absorption Spectroscopy Objective The single feature that contributes most to making atomic

More information

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms

INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms INTRODUCTION Atomic fluorescence spectroscopy ( AFS ) depends on the measurement of the emission ( fluorescence ) emitted from gasphase analyte atoms that have been excited to higher energy levels by absorption

More information

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry 9.1 9A. Atomization Most fundamental for both techniques. Typical types 1. flame - burner type 2. Electrothermal graphite furnace 3. Specialized

More information

9/13/10. Each spectral line is characteristic of an individual energy transition

9/13/10. Each spectral line is characteristic of an individual energy transition Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1 Atomic Line Widths Why do atomic spectra have

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the Atom

More information

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: acquiring basic skills and solid sample meausurements

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: acquiring basic skills and solid sample meausurements Practicum Spectroscopy Fall 2010 LIM Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry: acquiring basic skills and solid sample meausurements Jorge Ferreiro, study degree Chemistry, 5 th semester,

More information

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS

Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS Determination of Chromium in Gelatin Capsules using an Agilent 7700x ICP-MS Application note Pharmaceutical Authors Miao Jing, Yingping Ni, Yanping Wang and Zhixu Zhang Agilent Technologies, China Introduction

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE C10 04/19/2013 13:34:14 Page 114 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is

More information

1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION 3.0 CERTIFIED VALUES AND UNCERTAINTIES. Assay Information:

1.0 ACCREDITATION / REGISTRATION 2.0 PRODUCT DESCRIPTION 3.0 CERTIFIED VALUES AND UNCERTAINTIES. Assay Information: 1.0 ACCREDITATION / REGISTRATION INORGANIC VENTURES is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for

More information

Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy

Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy Evrim Kilicgedik Product Specialist, Atomic Spectroscopy Agilent Technologies 04.11.2011 2011 The Atomic Spectroscopy

More information

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application

Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Direct Analysis of Photoresist Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Application Semiconductor Author Junichi Takahashi Koichi Yono Agilent Technologies, Inc. 9-1, Takakura-Cho, Hachioji-Shi,

More information

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 2 (2013) 11-17 ISSN 2299-3843 Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

More information

Single Analyte Mass Spec Solution ± µg/ml g/ml (measured at 20 ± 1 ºC) METHOD NIST SRM# SRM LOT#

Single Analyte Mass Spec Solution ± µg/ml g/ml (measured at 20 ± 1 ºC) METHOD NIST SRM# SRM LOT# 1.0 ACCREDITATION / REGISTRATION INORGANIC VENTURES is accredited to ISO Guide 34, "General Requirements for the Competence of Reference Material Producers" and ISO/IEC 17025, "General Requirements for

More information

Sources of Errors in Trace Element and Speciation Analysis

Sources of Errors in Trace Element and Speciation Analysis Sources of Errors in Trace Element and Speciation Analysis Zoltan Mester, National Research Council of Canada, Institute for National Measurement Standards Outline Definitions Sources of errors in the

More information

Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program

Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program Current State of Extraction Don t Be Deceived! Sharon F. Webb, Ph.D. Director of Quality Program Overview Factors Purpose of Dissolution Quality Objectives of Program Effectiveness of Dissolution Technique

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms 8.5A Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the

More information

Samples compliant with the WATER

Samples compliant with the WATER ENVIRONMENTAL analysis A routine method for the Quantitative Measurement of trace metals in WATER Samples compliant with the WATER Quality Standard EN ISO 17294 on the Agilent 7000 Series ICP-MS. Solutions

More information

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Debjani Banerjee Department of Chemical Engineering IIT Kanpur Introduction What is ICP-MS? Inductively Coupled Plasma Mass Spectrometry Mass spectrometry

More information

S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1

S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1 S.K. Sahoo 1 *, Z.S. Zunic 2, R. Kritsananuwat 1, H. Arae 1 and S. Mishra 1 1, Japan 2 Institute of Nuclear Sciences Vinca, Beograd, Serbia E-mail:sahoo@nirs.go.jp 3rd TRE-ICEP Veszprém-Hungary, May 16-18,

More information