Table I: Summary of the parameters and reactions included in CAPRAM 3.0 Gas phase initial concentration of organic compounds [ppb]:

Size: px
Start display at page:

Download "Table I: Summary of the parameters and reactions included in CAPRAM 3.0 Gas phase initial concentration of organic compounds [ppb]:"

Transcription

1 Table I: Summary of the parameters and reactions included in CAPRAM 3.0 Gas phase initial concentration of organic compounds [ppb]: Compound Urban Remote Marine C 2 H 5 OCHO Estimated CH 2 CH 2 CH 2 C(O)NCH Estimated Initial concentration of organic compounds in the aqueous phase [µm]: Phase transfer of organic compounds: Compound Urban Remote Marine HOOCCH 2 COO Averaged from several aerosol measurements and scaled to the C 2 O 2-2 concentration HOOCC 2 H 4 COO At ph 0 most of malonic acid and succinic acid dissociates to the monoanionic form Compound K H 298, - H / R, M atm -1 K Lit. α Lit. D g [10 5 m 2 s -1 ] 1-PrOH (Jayne et al., 1991) (Jayne et al., 1,96 (Fuller) 1991) 2-PrOH (Jayne et al., 1991) (Jayne et al., 1,96 (Fuller) 1991) 1-BuOH (Snider and Dawson, 1985) BuOH (Snider and Dawson, 1985) Trend: Smaller α with bigger compounds CH 3 CH 2 CHO (Zhou and Mopper, 1990) 0,03 = α(ch 3 CHO) 2,02 Fuller, 1986 Butanal (Zhou and Mopper, 1990) = α(propanal) Propanoic Acid 5710 (Khan et al., 1995) Butyric Acid 4700 (Khan et al., 1995) = α(ora3) CH 3 C(O)CHO 1.4 (Betterton and Hoffmann, 0.03 = α(ch 3 CHO) 1.95 (Fuller) 1988) CH 3 C(O)CH (Betterton, 1991) (Schutze and Herrmann, 2004) 2,02 (Fuller) CH 3 C(O)CH 2 CH (Zhou and Mopper, 1990) (Schutze and Herrmann, 2004) Lit (Fuller) 2

2 Compound K H 298, - H / R, M atm -1 K Lit. α Lit. D g [10 5 m 2 s -1 ] HKET 129 Meylan and Howard, = α(aceton) 1 (Fuller) CH 3 C(O)CH 2 OH DCB Estimated after the effective = α(glyoxal) 1 (Fuller) OHCCH=CHCHO Henry constant of Glyoxal CH 3 C(O)CH 2 CH(CH 3 ) (Kim et al., 2000) 0.01 Estimated 0.71 (Fuller) C 2 H 5 OCHO 2.59 Bocek, Estimated 0.93 (Fuller) CH 2 CH 2 CH 2 C(O)NCH (Kim et al., 2000) 0.01 Estimated 0.78 (Fuller) Lit. CH 2 OHCH 2 OH (Bone et al., 1983) 0.04 (Jayne et al., 1991) 1.06 (Fuller) Reaction k 298 K [M -1 s -1 ] - E A /R [K] Comments C 2 Compounds 1 OH + CH(OH) 2 COO - H 2 O + C(OH) 2 COO - 2, (Ervens et al., 2003) 2 NO 3 + CH(OH) 2 COO - C(OH) 2 COO - + NO H Calculated (Herrmann and Zellner, 3 C(OH) 2 COO - + O 2 O 2 C(OH) 2 COO Estimated like CH 2 OH + O O 2 C(OH) 2 COO - 2 CO CO H 2 O Estimated in analogy to O 2 CH 2 COO O 2 C(OH) 2 COO - 4 CO 2 + H 2 O OH Estimated in analogy to O 2 CH 2 COO O 2 C(OH) 2 COO - 2 H 2 O + 2 CO CO 2 + O Estimated in analogy to O 2 CH 2 COO O 2 C(OH) 2 COO - 2 H 2 O + CO CO 2 + O Estimated in analogy to O 2 CH 2 COO - Oxidation of 1-Propanol 8 OH + C 3 H 7 OH C 3 H 6 OH + H 2 O 3, (Ervens et al., 2003) 3

3 9 NO 3 + C 3 H 7 OH C 3 H 6 OH + NO H (Herrmann et al., 1994) 10 C 3 H 6 OH + O 2 O 2 C 3 H 6 OH Estimated after (von Sonntag, 1987) 11 O 2 C 3 H 6 OH + OH - - C 2 H 5 CH(O) + H 2 O + O Since O 2 CH 2 OH: and O 2 C 2 H 4 OH: C 3 -Radical assumedly slower (Factor 2??) 12 O 2 C 3 H 6 OH C 2 H 5 CH(O) + HO 2 52 As the C 2 -compound Oxidation of Propionaldehyde 13 OH + C 2 H 5 CH(O) C 2 H 5 C(O) + H 2 O Hesper and Herrmann, NO 3 + C 2 H 5 CH(O) C 2 H 5 C(O) + NO H In CH 3 CN (Ito et al., 1989a) 15 C 2 H 5 C(O) + O 2 C 2 H 5 C(O)O Estimated after (von Sonntag, 1987) 16 2 C 2 H 5 C(O)O 2 2 C 2 H 5 C(O)O + O Estimated after the ACO 3 recombination, (Herrmann et al., 1999) 17 C 2 H 5 C(O)O C 2 H 5 + CO (Hilborn and Pincock, 1991) 18 C 2 H 5 + O 2 ETHP Estimated after (von Sonntag, 1987) Oxidation of Propionaldehyde (hydrated form) 19 OH + C 2 H 5 CH(OH) 2 C 2 H 5 C(OH) 2 + H 2 O Hesper and Herrmann, NO 3 + C 2 H 5 CH(OH) 2 C 2 H 5 C(OH) 2 + NO H In CH 3 CN (Ito et al., 1989a) 21 C 2 H 5 C(OH) 2 + O 2 C 2 H 5 CO 2 (OH) Estimated after (von Sonntag, 1987) 22 C 2 H 5 CO 2 (OH) 2 HO 2 + C 2 H 5 COOH 1000 Estimated after (von Sonntag, 1987) Oxidation of Propanoic acid 23 OH + C 2 H 5 COOH CH 3 CHCOOH + H 2 O 3, (Ervens et al., 2003) 24 NO 3 + C 2 H 5 COOH CH 3 CHCOOH + NO H Calculated (Herrmann and Zellner, 25 CH 3 CHCOOH + O 2 CH 3 CH(O 2 )COOH Estimated after (von Sonntag, 1987) 26 2 CH 3 CH(O 2 )COOH 2 CO ETHP 1, analog to ACO 3 -Rekombination Oxidation of Propionate 27 OH + C 2 H 5 COO - CH 3 CHCOO - + H 2 O 7, (Ervens et al., 2003) 28 NO 3 + C 2 H 5 COO - CH 3 CHCOO - + NO H Calculated (Herrmann and Zellner, 4

4 29 CH 3 CHCOO - + O 2 CH 3 CH(O 2 )COO Estimated after (von Sonntag, 1987) 30 2 CH 3 CH(O 2 )COO - 2 CH 3 C(O)COO - + H 2 O Estimated in analogy to O 2 CH 2 COO CH 3 CH(O 2 )COO - CH 3 C(O)COO - + CH 3 CH(OH)COO - + O 2 1, α-hydroxy-propanoic acid: No sinks Estimated in analogy to O 2 CH 2 COO CH 3 CH(O 2 )COO H 2 O 2 CH 3 CH(O) + 2 CO OH - + H 2 O 2 1, Estimated in analogy to O 2 CH 2 COO CH 3 CH(O 2 )COO OH - + O 2 2 CH 3 C(O)COO H 2 O O 2 7, Estimated in analogy to O 2 CH 2 COO - Oxidation of 2-Propanol 34 OH + CH 3 CH(OH)CH 3 H 2 O + CH 3 C(OH)CH 3 2, (Elliot and Simsons, 1984) 35 NO 3 + CH 3 CH(OH)CH 3 CH 3 C(OH)CH 3 + NO H (Herrmann et al., 1994) 36 CH 3 C(OH)CH 3 + O 2 CH 3 C(O 2 )(OH)CH 3 1, Estimated 37 CH 3 C(O 2 )(OH)CH 3 HO 2 + CH 3 C(O)CH Estimated after (von Sonntag, 1987) Oxidation of Acetone 38 OH + CH 3 C(O)CH 3 CH 3 C(O)CH 2 + H 2 O Average of measurements within the MOST project 39 NO 3 + CH 3 C(O)CH 3 CH 3 C(O)CH 2 + NO H (Herrmann et al., 1994) 40 CH 3 C(O)CH 2 + O 2 CH 3 C(O)CH 2 OO 3, (Zegota et al., 1986) 41 2 CH 3 C(O)CH 2 OO CH 3 C(O)CHO + CH 3 C(O)CH 2 (OH) + O (Zegota et al., 1986) branching ratios after measurements within MOST by Poulain et al., 42 2 CH 3 C(O)CH 2 OO 2 CH 3 C(O)CH 2 O + O (Zegota et al., 1986)branching ratios after measurements within MOST by Poulain et al., 43 2 CH 3 C(O)CH 2 OO 2 CH 3 C(O)CHO + H 2 O (Zegota et al., 1986)branching ratios after measurements within MOST by Poulain et al., 44 CH 3 C(O)CH 2 O HCHO + CH 3 CO Estimated from the gas phase Oxidation of Hydroxy Acetone 45 CH 3 C(O)CH 2 (OH) + OH CH 3 C(O)CH(OH) + H 2 O Gligorovski and Herrmann (In Preparation) 46 NO 3 + CH 3 C(O)CH 2 (OH) CH 3 C(O)CH(OH) + NO H Calculated (Herrmann and Zellner, 47 CH 3 C(O)CH(OH) + O 2 CH 3 C(O)CH(OH)OO Estimated after (von Sonntag, 1987) 5

5 48 CH 3 C(O)CH(OH)OO CH 3 C(O)CHO + HO Estimated after OOCHOHCHOHCH 2 OH, (Bothe et al., 1978) 49 2 CH 3 C(O)CH(OH)OO H 2 O CH 3 C(O)COOH Estimated after the decay of CH 3 CH(OH)OO, (Bothe et al., 1983) Oxidation of Methylglyoxal (hydrated form) 50 CH 3 C(O)CH(OH) 2 + OH CH 3 C(O)C(OH) 2 + H 2 O Average of measurements within the MOST project 51 NO 3 + CH 3 C(O)CH(OH) 2 CH 3 C(O)C(OH) 2 + NO H Estimated 52 CH 3 C(O)C(OH) 2 + O 2 CH 3 C(O)C(OH) 2 OO Estimated after (von Sonntag, 1987) 53 CH 3 C(O)C(OH) 2 OO CH 3 C(O)COOH + HO In analogy with glyoxal, (Buxton et al., 1997)(approximation) Oxidation of Malonic acid 54 OH + CH 2 (COOH) 2 H 2 O + HOOCCHCOOH (Walling and Eltaliaw.Gm, 1973) 55 NO 3 + CH 2 (COOH) 2 HOOCCHCOOH + NO H Calculated (Herrmann and Zellner, 56 HOOCCHCOOH + O 2 HOOCCHO 2 COOH Estimated after (von Sonntag, 1987) 57 2 HOOCCHO 2 COOH HOOCC(O)COOH + HOOCCH(OH)COOH + O 2 1, Estimated in analogy to O 2 CH 2 COO HOOCCHO 2 COOH 2 HOOCC(O)COOH + H 2 O Estimated in analogy to O 2 CH 2 COO HOOCCHO 2 COOH + 2 H 2 O 2 CH(OH) 2 COOH + 2 CO 2 + H 2 O 2 1, Estimated in analogy to O 2 CH 2 COO HOOCCHO 2 COOH + 2 OH - + O 2 2 HOOCC(O)COOH + 2 O H 2 O 7, Estimated in analogy to O 2 CH 2 COO - Oxidation of Malonate (dianion) 61 OH + CH 2 (COO - ) 2 H 2 O + - OOCCHCOO - 2, (Logan, 1989) 62 NO 3 + CH 2 (COO - ) 2 - OOCCHCOO - + NO H Calculated (Herrmann and Zellner, 63 - OOCCHCOO - + O 2 - OOCCH(O 2 )COO Estimated after (von Sonntag, 1987) 6

6 1, No sinks for mesoxalate and tartronate Reaction k 298 K [M -1 s -1 ] - E A /R [K] Comments OOCCH(O 2 )COO - - OOCC(O)COO OOCCH(OH)COO - + O 2 Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COO OOCC(O)COO - + H 2 O Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COO H 2 O 2 CH(OH) 2 COO CO 2 + H 2 O OH - 1, Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COO OH - + O OOCC(O)COO O H 2 O 7, Estimated in analogy to O 2 CH 2 COO - Oxidation of Malonate (monoanion) 68 OH + - OOCCH 2 COOH H 2 O + - OOCCHCOOH 3, (Ervens et al., 2003) 69 NO OOCCH 2 COOH - OOCCHCOOH + NO H Calculated (Herrmann and Zellner, 70 - OOCCHCOOH + O 2 - OOCCH(O 2 )COOH Estimated after (von Sonntag, 1987) No sinks for mesoxalate and tartronate OOCCH(O 2 )COOH - OOCC(O)COOH + - OOCCH(OH)COOH + O 2 Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COOH 2 - OOCC(O)COOH + H 2 O Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COOH + 4 H 2 O 2 CH(OH) 2 COOH + 2 CO 2 + H 2 O OH - 1, Estimated in analogy to O 2 CH 2 COO OOCCH(O 2 )COOH + 2 OH - + O OOCC(O)COOH + 2 O H 2 O 7, Estimated in analogy to O 2 CH 2 COO - Oxidation of Pyruvic acid 75 OH + CH 3 C(O)COOH CH 2 C(O)COOH + H 2 O 1, (Ervens et al., 2003) 76 NO 3 + CH 3 C(O)COOH CH 2 C(O)COOH + NO H Calculated (Herrmann and Zellner, 77 CH 2 C(O)COOH + O 2 O 2 CH 2 C(O)COOH Estimated after (von Sonntag, 1987) 78 2 O 2 CH 2 C(O)COOH OCHC(O)COOH + HOCH 2 C(O)COOH Estimated in analogy to O 2 CH 2 COO - O O 2 CH 2 C(O)COOH 2 OCHC(O)COOH + H 2 O Estimated in analogy to O 2 CH 2 COO O 2 CH 2 C(O)COOH + 2 H 2 O 2 CH 3 CHO + H 2 O CO O Estimated in analogy to O 2 CH 2 COO - 7

7 Reaction k 298 K [M -1 s -1 ] - E A /R [K] Comments 81 2 O 2 CH 2 C(O)COOH + 2 OH O 2 2 OHCC(O)COOH + 2 O H 2 O Estimated in analogy to O 2 CH 2 COO - Oxidation of Pyruvate 82 CH 3 C(O)COO - + OH CH 2 C(O)COO - + H 2 O (Ervens et al., 2003) 83 NO 3 + CH 3 C(O)COO - CH 2 C(O)COO - + NO H Calculated (Herrmann and Zellner, 84 CH 2 C(O)COO - + O 2 OOCH 2 C(O)COO Estimated after (von Sonntag, 1987) 85 2 OOCH 2 C(O)COO - O 2 + OCHC(O)COO - + HOCH 2 C(O)COO Estimated in analogy to O 2 CH 2 COO OOCH 2 C(O)COO - H 2 O OCHC(O)COO Estimated in analogy to O 2 CH 2 COO OOCH 2 C(O)COO H 2 O 2 CH 3 CHO + 2 CO 2 + 2O 2 + Estimated in analogy to O 2 CH 2 COO - H 2 O OH OOCH 2 C(O)COO OH - + O 2 2 O OCHC(O)COO H 2 O Estimated in analogy to O 2 CH 2 COO - Oxidation of Succinic acid 89 OH + CH 2 CH 2 (COOH) 2 CHCH 2 (COOH) 2 + H 2 O 1, (Ervens et al., 2003) 90 NO 3 + CH 2 CH 2 (COOH) 2 CHCH 2 (COOH) 2 + NO H Calculated (Herrmann and Zellner, 91 CHCH 2 (COOH) 2 + O 2 O 2 CHCH 2 (COOH) Estimated after (von Sonntag, 1987) 92 2 O 2 CHCH 2 (COOH) 2 HOOCC(O)CH 2 COOH + HOOCCH(OH)CH 2 COOH + O Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COOH) 2 2 HOOCC(O)CH 2 COOH + H 2 O Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COOH) 2 2 CH(O)CH 2 COOH + 2 CO 2 + H 2 O Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COOH) OH - + O 2 2 O HOOCC(O)CH 2 COOH + 2 H 2 O Estimated in analogy to O 2 CH 2 COO - 96 OH + CH(OH) 2 CH 2 COOH C(OH) 2 CH 2 COOH + H 2 O Estimated after Glycolic acid 97 NO 3 + CH(OH) 2 CH 2 COOH C(OH) 2 CH 2 COOH + NO H Estimated after Glycolic acid 98 C(OH) 2 CH 2 COOH + O 2 CH(OH) 2 O 2 CH 2 COOH Estimated after (von Sonntag, 1987) 99 CH(OH) 2 O 2 CH 2 COOH HOOCCH 2 COOH + HO Estimated after (von Sonntag, 1987) Oxidation of Succinate (dianion) 100 OH + CH 2 CH 2 (COO - ) 2 CHCH 2 (COO - ) 2 + H 2 O (Ervens et al., 2003) 8

8 101 NO 3 + CH 2 CH 2 (COO - ) 2 CHCH 2 (COO - ) 2 + NO H Calculated (Herrmann and Zellner, 102 CHCH 2 (COO - ) 2 + O 2 O 2 CHCH 2 (COO - ) Estimated after (von Sonntag, 1987) O 2 CHCH 2 (COO - ) 2 - OOCC(O)CH 2 COO OOCCH(OH)CH 2 COO - + O Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COO - ) 2 2 OOCC(O)CH 2 COO - + H 2 O Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COO - ) 2 + 2H 2 O 2 CH(O)CH 2 COO CO 2 + H 2 O OH - 1, Estimated in analogy to O 2 CH 2 COO O 2 CHCH 2 (COO - ) 2 + O OH OOCC(O)CH 2 COO O H 2 O 7, Estimated in analogy to O 2 CH 2 COO OH + CH(OH) 2 CH 2 COO - C(OH) 2 CH 2 COO - + H 2 O Estimated after Glycolate 108 NO 3 + CH(OH) 2 CH 2 COO - C(OH) 2 CH 2 COO - + NO H Estimated after Glycolate 109 C(OH) 2 CH 2 COO - + O 2 CH(OH) 2 O 2 CH 2 COO Estimated after (von Sonntag, 1987) 110 CH(OH) 2 O 2 CH 2 COO - HOOCCH 2 COO - + HO Estimated after (von Sonntag, 1987) Oxidation of Succinate (monoanion) 111 OH + HOOCCH 2 CH 2 COO - HOOCCHCH 2 COO - + H 2 O estimated: k Dianion = k Monoanion Calculated (Herrmann and Zellner, 112 NO 3 + HOOCCH 2 CH 2 COO - HOOCCHCH 2 COO - +NO H HOOCCHCH 2 COO - + O 2 HOOCCH(O 2 )CH 2 COO Estimated after (von Sonntag, 1987) HOOCCH(O 2 )CH 2 COO - HOOCC(O)CH 2 COO - + HOOCCH(OH)CH 2 COO - + O Estimated in analogy to O 2 CH 2 COO HOOCCH(O 2 )CH 2 COO - 2 HOOCC(O)CH 2 COO - + H 2 O 2 1, Estimated in analogy to O 2 CH 2 COO HOOCCH(O 2 )CH 2 COO H 2 O 2 CH(O)CH 2 COOH + 2 CO 2 + H 2 O OH - 1, Estimated in analogy to O 2 CH 2 COO HOOCCH(O 2 )CH 2 COO - + 2OH - + O 2 2 HOOCC(O)CH 2 COO O H 2 O 7, Estimated in analogy to O 2 CH 2 COO - Oxidation of Lactic acid 118 OH + CH 3 CHOHCOOH CH 3 COHCOOH + H 2 O 4, (Adams et al., 1965) 9

9 119 NO 3 + CH 3 CHOHCOOH CH 3 COHCOOH + NO H Calculated (Herrmann and Zellner, 120 CH 3 COHCOOH + O 2 CH 3 CO 2 OHCOOH Estimated after (von Sonntag, 1987) 121 CH 3 CO 2 OHCOOH CH 3 C(O)COOH + HO Estimated after Isopropanol (von Sonntag, 1987) Oxidation of Lactate 122 OH + CH 3 CHOHCOO - CH 3 COHCOO - + H 2 O (Logan, 1989) 123 NO 3 + CH 3 CHOHCOO - CH 3 COHCOO - + NO H Calculated (Herrmann and Zellner, 124 CH 3 COHCOO - + O 2 CH 3 CO 2 OHCOO Estimated after (von Sonntag, 1987) 125 CH 3 CO 2 OHCOO - CH 3 C(O)COO - + HO Estimated after Isopropanol (von Sonntag, 1987) Oxidation of Glycolic acid 126 CH 2 OHCOOH + OH CHOHCOOH + H 2 O (Scholes and Willson, 1967) 127 NO 3 + CH 2 OHCOOH CHOHCOOH + NO H Calculated (Herrmann and Zellner, 128 CHOHCOOH + O 2 O 2 CHOHCOOH Estimated after (von Sonntag, 1987) 129 O 2 CHOHCOOH + H 2 O HO 2 + CH(OH) 2 COOH 52 Estimated after Ethanol, (von Sonntag, 1987) Oxidation of Glycolate 130 CH 2 OHCOO - + OH CHOHCOO - + H 2 O (Logan, 1989) 131 NO 3 + CH 2 OHCOO - CHOHCOO - + NO H Calculated (Herrmann and Zellner, 132 CHOHCOO - + O 2 O 2 CHOHCOO Estimated after (von Sonntag, 1987) 133 O 2 CHOHCOO - + H 2 O HO 2 + CH(OH) 2 COO - 52 Estimated after Ethanol, (von Sonntag, 1987) Reactions of the peroxyl radical formed from acetic acid 134 O 2 CH 2 COOH + HO 2 HO 2 CH 2 COOH + O = k (HO 2 + HO 2 ) (Bielski et al., 1985) 10

10 135 - O 2 CH 2 COOH + O 2 + H + HO 2 CH 2 COOH + O = k (HO 2 + O - 2 ) (Bielski et al., 1985) 136 O 2 CH 2 COOH + HSO HO 2 CH 2 COOH + SO = k (CH 3 O 2 + HSO - 3 ) (Herrmann et al., 1999) 137 O 2 CH 2 COO - + HO 2 HO 2 CH 2 COO - + O = k(ho 2 + O - 2 ) (Bielski et al., 1985) 138 O 2 CH 2 COO - + O H + HO 2 CH 2 COO - + O = k (HO 2 + O 2 - ) (Bielski et al., 1985) 139 O 2 CH 2 COO - + HSO - 3 HO 2 CH 2 COO SO = k (CH 3 O 2 + HSO - 3 ) (Herrmann et al., 1999) Oxidation of Acetic acid hydroxyperoxide 140 HO 2 CH 2 COOH + OH O 2 CH 2 COOH + H 2 O = k (OH + H 2 O 2 ) 141 NO 3 + HO 2 CH 2 COOH HO 2 CHCOOH + NO H Calculated (Herrmann and Zellner, 142 HO 2 CH 2 COOH + Fe 2+ + H 2 O Fe 3+ + CH 2 (OH)COOH + OH + 50 = k (Fe 2+ + H 2 O 2 ) OH - Oxidation of acetate hydroxyperoxide 143 HO 2 CH 2 COO - + OH O 2 CH 2 COO - + H 2 O = k (OH + H 2 O 2 ) 144 NO 3 + HO 2 CH 2 COO - O 2 CH 2 COO - NO H = k ( NO 3 + H 2 O 2 ) 145 HO 2 CH 2 COO - + Fe 2+ Fe 3+ + CH 2 (OH)COO - + OH + OH - 50 = k (Fe 2+ + H 2 O 2 ) Oxidation of 1-Butanol 146 OH + CH 3 CH 2 CH 2 CH 2 OH H 2 O + CH 3 CH 2 CH 2 CHOH Hesper and Herrmann, (Shastri and Huie, 1990) 147 NO 3 + CH 3 CH 2 CH 2 CH 2 OH CH 3 CH 2 CH 2 CHOH + NO H CH 3 CH 2 CH 2 CHOH + O 2 CH 3 CH 2 CH 2 CHO 2 OH Estimated after (von Sonntag, 1987) 149 CH 3 CH 2 CH 2 CHO 2 OH CH 3 CH 2 CH 2 CHO + HO Estimated after (von Sonntag, 1987) Oxidation of Butyraldehyde 150 CH 3 CH 2 CH 2 CHO + OH CH 3 CH 2 CH 2 CO + H 2 O Hesper and Herrmann, NO 3 + CH 3 CH 2 CH 2 CHO CH 3 CH 2 CH 2 CO + NO H Calculated (Herrmann and Zellner, 152 CH 3 CH 2 CH 2 CO + O 2 CH 3 CH 2 CH 2 COO Estimated after (von Sonntag, 1987) CH 3 CH 2 CH 2 COO 2 2 CH 3 CH 2 CH 2 C(O)O + O Estimated after the ACO 3 recombination, (Herrmann et al., 1999) 11

11 154 CH 3 CH 2 CH 2 C(O)O CH 3 CH 2 CH 2 + CO Estimated after CH 3 CH 2 C(O)O (Hilborn and Pincock, 1991) 155 CH 3 CH 2 CH 2 + O 2 CH 3 CH 2 CH 2 O Estimated after (von Sonntag, 1987) CH 3 CH 2 CH 2 O 2 2 CH 3 CH 2 CH 2 O + O Estimated after ETHP, (Herrmann et al., 1999) 157 CH 3 CH 2 CH 2 O + O 2 C 2 H 5 CH(O) + HO Estimated CH 3 CH 2 CH 2 O 2 C 2 H 5 CH(O) + C 3 H 7 OH + O Estimated after ETHP, (Herrmann et al., 1999) Oxidation of Butyraldehyde (hydrated form) 159 CH 3 CH 2 CH 2 CH(OH) 2 + OH CH 3 CH 2 CH 2 C (OH) Hesper and Herrmann, Calculated (Herrmann and Zellner, 160 NO 3 + CH 3 CH 2 CH 2 CH(OH) 2 CH 3 CH 2 CH 2 C (OH) 2 + NO H CH 3 CH 2 CH 2 C (OH) 2 + O 2 CH 3 CH 2 CH 2 CO 2 (OH) Estimated after (von Sonntag, 1987) 162 CH 3 CH 2 CH 2 CO 2 (OH) 2 CH 3 CH 2 CH 2 COOH + HO Estimated after (von Sonntag, 1987) Oxidation of Butyric acid 163 CH 3 CH 2 CH 2 COOH + OH CH 3 CH 2 CHCOOH + H 2 O 2, (Scholes and Willson, 1967) 164 NO 3 + CH 3 CH 2 CH 2 COOH CH 3 CH 2 CHCOOH + NO H Calculated (Herrmann and Zellner, 165 CH 3 CH 2 CHCOOH + O 2 CH 3 CH 2 CHO 2 COOH Estimated after (von Sonntag, 1987) CH 3 CH 2 CHO 2 COOH 2 CH 3 CH 2 C(O)COOH + H 2 O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CHO 2 COOH CH 3 CH 2 C(O)COOH + CH 3 CH 2 CHOHCOOH + O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CHO 2 COOH 2 CH 3 CH 2 CHO + 2 CO 2 + H 2 O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CHO 2 COOH + 2 OH - + O 2 2 CH 3 CH 2 C(O)COOH + 2 O H 2 O Estimated in analogy to O 2 CH 2 COO - Oxidation of Butyrate 170 CH 3 CH 2 CH 2 COO - + OH CH 3 CH 2 CHCOO - + H 2 O (Anbar et al., 1966) 171 NO 3 + CH 3 CH 2 CH 2 COO - CH 3 CH 2 CHCOO - + NO H Calculated (Herrmann and Zellner, 12

12 172 CH 3 CH 2 CHCOO - + O 2 CH 3 CH 2 CHO 2 COO Estimated after (von Sonntag, 1987) CH 3 CH 2 CH(O 2 )COO - 2 CH 3 CH 2 C(O)COO - + H 2 O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CH(O 2 )COO - CH 3 CH 2 C(O)COO - + CH 3 CH 2 CHOHCOO - + O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CH(O 2 )COO H 2 O 2 CH 3 CH 2 CHO + 2 CO OH - + H 2 O Estimated in analogy to O 2 CH 2 COO CH 3 CH 2 CH(O 2 )COO OH - + O 2 2 CH 3 CH 2 C(O)COO O H 2 O Estimated in analogy to O 2 CH 2 COO - Oxidation of 2-Butanol 177 CH 3 CH 2 CHOHCH 3 + OH CH 3 CH 2 COHCH 3 + H 2 O Hesper and Herrmann, NO 3 + CH 3 CH 2 CHOHCH 3 CH 3 CH 2 COHCH 3 + NO H Calculated (Herrmann and Zellner, 179 CH 3 CH 2 COHCH 3 + O 2 CH 3 CH 2 C(O 2 )(OH)CH Estimated after (von Sonntag, 1987) 180 CH 3 CH 2 C(O 2 )(OH)CH 3 HO 2 + CH 3 C(O)CH 2 CH (vonsonntag et al., 1997) Oxidation of Methyl Ethyl Ketone 181 CH 3 C(O)CH 2 CH 3 + OH CH 3 C(O)CHCH 3 + H 2 O Average of measurements within the MOST project 182 CH 3 C(O)CH 2 CH 3 + OH CH 2 C(O)CH 2 CH 3 + H 2 O Average of measurements within the MOST project 183 NO 3 + CH 3 C(O)CH 2 CH 3 CH 3 C(O)CHCH 3 + NO H Calculated (Herrmann and Zellner, 184 NO 3 + CH 3 C(O)CH 2 CH 3 CH 2 C(O)CH 2 CH 3 + NO H Calculated (Herrmann and Zellner, 185 CH 3 C(O)CHCH 3 + O 2 CH 3 C(O)CH(OO)CH (Glowa et al., 2000) CH 3 C(O)CH(OO)CH 3 O CH 3 C(O)CHOCH (Glowa et al., 2000) branching ratios after measurements within MOST by Poulain et al., CH 3 C(O)CH(OO)CH 3 H 2 O CH 3 C(O)C(O)CH (Glowa et al., 2000) branching ratios after measurements within MOST by Poulain et al., 13

13 188 CH 3 C(O)CHOCH 3 CH 3 CHO + CH 3 CO 1.3E Estimated after gas phase rate const. (Baldwin et al., 1977) Oxidation of 2,3-Butanedione 189 CH 3 C(O)C(O)CH 3 + OH CH 3 C(O)C(O) CH 2 + H 2 O k(298) after Gligorovski and Herrmann, 2004 Branching ratio estimated based on the gas phase reaction (Christensen et al., 190 CH 3 C(O)C(O)CH 3 + OH CH 3 COOH + CH 3 CO k(298) after Gligorovski and Herrmann, 2004 Branching ratio estimated based on the gas phase reaction (Christensen et al., 191 CH 3 C(O)C(O)CH 3 + NO 3 CH 3 C(O)C(O) CH 2 + NO H Calculated (Herrmann and Zellner, 192 CH 3 C(O)C(O)CH 3 + NO 3 CH 3 C(O)NO 3 + CH 3 CO Calculated (Herrmann and Zellner, 193 CH 3 C(O)C(O) CH 2 + O 2 CH 3 C(O)C(O) CH 2 OO Estimated after (von Sonntag, 1987) CH 3 C(O)C(O) CH 2 OO 2 CH 3 C(O)C(O)CH 2 O + O k(298) estimated after the CH 3 C(O)OO recombination 195 CH 3 C(O)C(O) CH 2 OO + CH 3 C(O)OO CH 3 C(O)O + CH 3 C(O)C(O)CH 2 O + O k(298) estimated after the CH 3 C(O)OO recombination 196 CH 3 C(O)C(O)CH 2 O CH 3 CO + HCHO + CO 1.3E k 1st estimated after reac CH 2 C(O)CH 2 CH 3 + O 2 OOCH 2 C(O)CH 2 CH By analogy with acetone OOCH 2 C(O)CH 2 CH 3 O OCH 2 C(O)CH 2 CH By analogy with acetone 199 OCH 2 C(O)CH 2 CH 3 HCHO + C(O)CH 2 CH 3 1.3E By analogy with reac C(O)CH 2 CH 3 + H 2 O C(OH) 2 CH 2 CH By analogy with CH 3 CO (Schuchmann and Vonsonntag, 1988) 201 C(OH) 2 CH 2 CH 3 C(O)CH 2 CH 3 + H 2 O 3E+4 By analogy with CH 3 C(OH) 2 (Schuchmann and Vonsonntag, 1988) 202 C(OH) 2 CH 2 CH 3 + O 2 OOC(OH) 2 CH 2 CH 3 2E+9 Estimated after (von Sonntag, 1987) 203 C(O)CH 2 CH 3 + O 2 OOC(O)CH 2 CH 3 2E+9 Estimated after (von Sonntag, 1987) 204 OOC(OH) 2 CH 2 CH 3 CH 3 CH 2 C(O)OH + HO 2 1E+6 Estimated 14

14 Oxidation of 1,4-Dioxo Butene 205 OH + OHCCH=CHCHO OHCCH(OH)CH CHO = k (Maleic acid), (Cabelli and Bielski, 1985) 206 OHCCH(OH)CH CHO + O 2 OHCCH(OH)CHO 2 CHO Estimated after (von Sonntag, 1987) OHCCH(OH)CHO 2 CHO OHCCHOHC(O)CHO + OHCCHOHCHOHCHO + O 2 Oxidation of 2-Hydroxy, 3,4-Dioxo Butyraldehyde 208 OHCCH(OH)C(O)CHO + OH OC CH(OH)C(O)CHO + H 2 O 209 OHCCH(OH)C(O)CHO + NO 3 OC CH(OH)C(O)CHO NO H Formation of keto and hydroxy species = k (2 ETHP) Estimated after Glyoxal, (Buxton et al., 1997) Calculated (Herrmann and Zellner, 210 OC CH(OH)C(O)CHO + O 2 OCO 2 CH(OH)C(O)CHO Estimated after (von Sonntag, 1987) 211 OCO 2 CH(OH)C(O)CHO + H 2 O HOOCCH(OH)C(O)CHO + HO 2 Oxidation of 2-Hydroxy, 3,4-Dioxo Butyric acid 212 HOOCCH(OH)C(O)CHO + OH HOOCCH(OH)C(O)C O + H 2 O 1000 Estimated after (von Sonntag, 1987) 3, = k (Glyoxylic acid), (Ervens et al., 2003) k(298) is eventually overestimated, because k was set according to the fully hydrated form Calculated, (Herrmann and Zellner, 213 HOOCCH(OH)C(O)CHO + NO 3 HOOCCH(OH)C(O)C O + NO H HOOCCH(OH)C(O)C O + O 2 HOOCCH(OH)C(O)C(O)O Estimated after (von Sonntag, 1987) 215 HOOCCH(OH)C(O)C(O)O 2 + H 2 O 1000 Estimated after (von Sonntag, 1987) HOOCCH(OH)C(O)COOH + HO HOOCCHOHC(O)COOH CO 2 + CH 2 OHC(O)COOH Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of 2-Hydroxy, 3,4-Dioxo Butyrate OOCCH(OH)C(O)CHO + OH - OOCCH(OH)C(O)C O = k (Glyoxylate), (Ervens et al., 2003) H 2 O OOCCH(OH)C(O)CHO + NO 3 - OOCCH(OH)C(O)C O = k (Glyoxylate) NO H OOCCH(OH)C(O)C O + O 2 - OOCCH(OH)C(O)C(O)O Estimated after (von Sonntag, 1987) 15

15 220 - OOCCH(OH)C(O)C(O)O 2 + H 2 O - OOCCH(OH)C(O)COOH Estimated after (von Sonntag, 1987) HO OOCCHOHC(O)COOH CO 2 + CH 2 OHC(O)COO Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of 2,3-Dihydroxy, 4-Oxo Butyraldehyde 222 OHCCH(OH)CH(OH)CHO + OH OC CH(OH)CH(OH)CHO + H 2 O Estimated after Glyoxal, (Buxton et al., 1997) 223 OHCCH(OH)CH(OH)CHO + NO 3 OC CH(OH)CH(OH)CHO + NO H Calculated (Herrmann and Zellner, 224 OC CH(OH)CH(OH)CHO + O 2 OCO 2 CH(OH)CH(OH)CHO Estimated after (von Sonntag, 1987) 225 OCO 2 CH(OH)CH(OH)CHO + H 2 O 1000 Estimated after (von Sonntag, 1987) HOOCCH(OH)CH(OH)CHO + HO 2 Oxidation of 2,3-Dihydroxy, 4-Oxo Butyric acid 226 HOOCCH(OH)CH(OH)CHO + OH HOOCCH(OH)CH(OH)C O + H 2 O Estimated after Malic acid (Gligorovski and Herrmann 2004) 227 HOOCCH(OH)CH(OH)CHO + NO 3 HOOCCH(OH)CH(OH)C O + NO H Calculated (Herrmann and Zellner, 228 HOOCCH(OH)CH(OH)C O + O Estimated after (von Sonntag, 1987) HOOCCH(OH)CH(OH)C(O)O HOOCCH(OH)CH(OH)C(O)O 2 + H 2 O 1000 Estimated after (von Sonntag, 1987) HOOCCH(OH)CH(OH)COOH + HO 2 Oxidation of 2,3-Dihydroxy, 4-Oxo Butyrate OOCCH(OH)CH(OH)CHO + OH OOCCH(OH)CH(OH)C O + H 2 O Estimated after Malate (Gligorovski and Herrmann 2004) OOCCH(OH)CH(OH)CHO + NO 3 - OOCCH(OH)CH(OH)C O + NO H = BDE (Malonate) Calculated (Herrmann and Zellner, OOCCH(OH)CH(OH)C O + O 2 - OOCCH(OH)CH(OH)C(O)O Estimated after (von Sonntag, 1987) OOCCH(OH)CH(OH)C(O)O 2 + H 2 O - OOCCH(OH)CH(OH)COOH + HO 2 Oxidation of Ethylene Glycol 1000 Estimated after (von Sonntag, 1987) 16

16 234 CH 2 OHCH 2 OH + OH C HOHCH 2 OH + H 2 O 1, Source for Hydroxyacetaldehyde (Adams et al., 1965) 235 CH 2 OHCH 2 OH + NO 3 C HOHCH 2 OH + NO H (Ito et al., 1989b) 236 C HOHCH 2 OH + O 2 O 2 CH(OH)CH 2 OH Estimated after (von Sonntag, 1987) 237 O 2 CH(OH)CH 2 OH OHCCH 2 OH + HO (von Sonntag, 1987) Oxidation of Glycolaldehyde 238 OHCCH 2 OH + OH CH 2 OHC O + H 2 O = k (CH 3 CHO) (Schuchmann and Vonsonntag, 1988) 239 OHCCH 2 OH + NO 3 CH 2 OHC O + NO H Estimated 240 CH 2 OHC O + O 2 CH 2 OHCO 2 O Estimated after (von Sonntag, 1987) 241 CH 2 OHCO 2 O + H 2 O CH 2 OHCOOH + HO Estimated after Ethylene Glycol (von Sonntag, 1987) Oxidation of Glycolaldehyde (hydrated form) 242 (OH) 2 CHCH 2 OH + OH (OH) 2 C CH 2 OH = k (CH 3 CH(OH) 2 ) (Schuchmann and Vonsonntag, 1988) 243 OHCCH 2 OH + NO 3 CH 2 OHC O + NO H Estimated 244 (OH) 2 C CH 2 OH + O 2 (OH) 2 CO 2 CH 2 OH Estimated after (von Sonntag, 1987) 245 (OH) 2 CO 2 CH 2 OH OC(OH)CH 2 OH + HO Estimated after Ethylene Glycol (von Sonntag, 1987) Oxidation of 3-Hydroxy Pyruvic acid 246 HOCH 2 C(O)COOH + OH HOC HC(O)COOH + H 2 O 5, =k (Glycolic acid), (Scholes and Willson, 1967) 247 HOCH 2 C(O)COOH + NO 3 HOC HC(O)COOH + NO H Calculated (Herrmann and Zellner, 248 HOC HC(O)COOH + O 2 HOCO 2 HC(O)COOH Estimated after (von Sonntag, 1987) 249 HOCO 2 HC(O)COOH OHCC(O)COOH + HO Estimated after Isopropanol, (von Sonntag, 1987) 250 OHCC(O)COOH + H 2 O CH 3 CH(O) + CO 2 + O Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of 3-Hydroxy Pyruvate 251 HOCH 2 C(O)COO - + OH HOC HC(O)COO - + H 2 O =k (Glycolate), (Logan, 1989) 17

17 252 HOCH 2 C(O)COO - + NO 3 HOC HC(O)COO - + NO H = BDE (Glycolate) Calculated (Herrmann and Zellner, 253 HOC HC(O)COO - + O 2 HOCO 2 HC(O)COO Estimated after (von Sonntag, 1987) 254 HOCO 2 HC(O)COO - OHCC(O)COO - + HO Estimated after Isopropanol, (von Sonntag, 1987) 255 OHCC(O)COO - + H 2 O CH(O)CH(O) + CO 2 + OH Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of 3-Oxo, Pyruvic acid 256 OHCC(O)COOH + OH OC C(O)COOH + H 2 O 3, = k (Glyoxylic acid) (Ervens et al., 2003) Additional source of mesoxalic acid 257 OHCC(O)COOH + NO 3 OC C(O)COOH + NO H Calculated (Herrmann and Zellner, 258 OC C(O)COOH + O 2 OCO 2 C(O)COOH Estimated after (von Sonntag, 1987) 259 OCO 2 C(O)COOH + H 2 O HOOCC(O)COOH + HO Estimated after Isopropanol, Von Sonntag, 1987 Oxidation of 3-Oxo, Pyruvate 260 OHCC(O)COO - + OH OC C(O)COO - + H 2 O = k (Glyoxylate) (Ervens et al., 2003) Additional source of mesoxalate 261 OHCC(O)COO - + NO 3 OC C(O)COO - + NO H = BDE (Glyoxylate) Calculated (Herrmann and Zellner, 262 OC C(O)COO - + O 2 OCO 2 C(O)COO Estimated after (von Sonntag, 1987) 263 OCO 2 C(O)COO - + H 2 O HOOCC(O)COO - + HO Estimated after Isopropanol, Von Sonntag, 1987 Oxidation of Malic acid 264 HOOCCH(OH)CH 2 COOH + OH HOOCC (OH)CH 2 COOH Gligorovski and Herrmann, H 2 O 265 HOOCCH(OH)CH 2 COOH + NO HOOCC (OH)CH 2 COOH + NO H + Calculated, Herrmann and Zellner HOOCC (OH)CH 2 COOH + O 2 HOOCCO 2 (OH)CH 2 COOH Estimated after (von Sonntag, 1987) 18

18 267 HOOCCO 2 (OH)CH 2 COOH HOOCC(O)CH 2 COOH + HO Estimated after (von Sonntag, 1987) Oxidation of Malate 268 HOOCCH(OH)CH 2 COO - + OH HOOCC (OH)CH 2 COO Gligorovski and Herrmann, 2004 H 2 O 269 HOOCCH(OH)CH 2 COO - + NO 3 HOOCC (OH)CH 2 COO - + NO H Calculated (Herrmann and Zellner, 270 HOOCC (OH)CH 2 COO - + O 2 HOOCCO 2 (OH)CH 2 COO Estimated after (von Sonntag, 1987) 271 HOOCCO 2 (OH)CH 2 COO - HOOCC(O)CH 2 COO - + HO Estimated after (von Sonntag, 1987) Oxidation of Oxalacetic acid 272 HOOCC(O)CH 2 COOH + OH HOOCC(O)CH COOH + H 2 O = k ( C 2 H 4 (COOH) 2 ) (Ervens et al., 2003) 273 HOOCC(O)CH 2 COOH + NO 3 HOOCC(O)CH COOH + NO H Calculated (Herrmann and Zellner, 274 HOOCC(O)CH COOH + O 2 HOOCC(O)CH(O 2 )COOH Estimated after (von Sonntag, 1987) HOOCC(O)CH(O 2 )COOH HOOCC(O)CH(OH)COOH + HOOCC(O)C(O)COOH + O 2 1, Formation from Keto- und Hydroxyacids = k (2 ETHP) 276 HOOCC(O)C(O)COOH CO 2 + OHCC(O)COOH Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) 277 HOOCC(O)CH(OH)COOH CO 2 + OHCCH(OH)COOH Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) 278 OH + OHCCH(OH)COOH OHCC(OH)COOH Estimated after Lactic acid Estimated after Lactic acid 279 NO 3 + OHCCH(OH)COOH OHCC(OH)COOH + NO H OHCC(OH)COOH + O 2 OHCC(OH)O 2 COOH Estimated after (von Sonntag, 1987) 281 OHCC(OH)O 2 COOH OHCC(O)COOH + HO Estimated after (von Sonntag, 1987) Oxidation of Oxalacetate 282 HOOCC(O)CH 2 COO - + OH HOOCC(O)CH COO - + H 2 O = k ( C 2 H 4 (COO - ) 2 ) (Ervens et al., 2003) 283 HOOCC(O)CH 2 COO - + NO 3 HOOCC(O)CH COO NO = k (HOOCCH 2 CH 2 COO - ) + H HOOCC(O)CH COO - + O 2 HOOCC(O)CH(O 2 )COO Estimated after (von Sonntag, 1987) 19

19 285 2 HOOCC(O)CH(O 2 )COO - HOOCC(O)CH(OH)COO - + HOOCC(O)C(O)COO - + O 2 1, Formation from Keto- und Hydroxyacids = k (2 ETHP) 286 HOOCC(O)C(O)COO - CO 2 + OHCC(O)COO Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) 287 HOOCC(O)CH(OH)COO - CO 2 + OHCCH(OH)COO Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) 288 OH + OHCCH(OH)COO - OHCC(OH)COO - + H 2 O Estimated after Lactate 289 NO 3 + OHCCH(OH)COO - OHCC(OH)COO - + NO H Estimated after Lactate 290 OHCC(OH)COO - + O 2 OHCC(OH)O 2 COO Estimated after (von Sonntag, 1987) 291 OHCC(OH)O 2 COO - OHCC(O)COO - + HO Estimated after (von Sonntag, 1987) Oxidation of Tartronic acid 292 HOOCCH(OH)COOH + OH HOOCC (OH)COOH + H 2 O (Schuchmann et al., 1995) Calculated (Herrmann and Zellner, HOOCCH(OH)COOH + NO 3 HOOCC (OH)COOH + NO 3 + H HOOCC (OH)COOH + O 2 HOOCCO 2 (OH)COOH Estimated after (von Sonntag, 1987) 295 HOOCCO 2 (OH)COOH HOOCC(O)COOH + HO Estimated after Isopropanal (von Sonntag, 1987) 296 HOOCC(O)COOH + H 2 O CO 2 + CH(OH) 2 COOH Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of Tartronate 297 HOOCCH(OH)COO - + OH HOOCC (OH)COO - + H 2 O (Schuchmann et al., 1995) = k (HOOCCH COO - ) 298 HOOCCH(OH)COO - + NO 3 HOOCC (OH)COO - + NO H HOOCC (OH)COO - + O 2 HOOCCO 2 (OH)COO Estimated after (von Sonntag, 1987) 300 HOOCCO 2 (OH)COO - HOOCC(O)COO - + HO Estimated after Isopropanal (von Sonntag, 1987) 301 HOOCC(O)COO - + H 2 O CO 2 + CH(OH) 2 COO Estimated after (Guthrie, 2002) and (Guthrie and Jordan, 1972) Oxidation of Methyl Isobutyl Ketone 302 CH 3 C(O)CH 2 CH(CH 3 ) 2 + OH CH 3 C(O)CHCH(CH 3 ) 2 + H 2 O Average of measurements within the MOST project 303 CH 3 C(O)CH 2 CH(CH 3 ) 2 + OH CH 3 C(O)CH 2 C(CH 3 ) 2 + H 2 O Average of measurements within the MOST project 20

20 304 NO 3 + CH 3 C(O)CH 2 CH(CH 3 ) 2 CH 3 C(O)CHCH(CH 3 ) NO H + Calculated (Herrmann and Zellner, Calculated (Herrmann and Zellner, 305 NO 3 + CH 3 C(O)CH 2 CH(CH 3 ) 2 CH 3 C(O)CH 2 C(CH 3 ) 2 + NO H CH 3 C(O)CHCH(CH 3 ) 2 + O 2 CH 3 C(O)CH(OO)CH(CH 3 ) Estimated after (von Sonntag, 1987) CH 3 C(O)CH(OO)CH(CH 3 ) 2 O CH 3 C(O)CHOCH(CH 3 ) Estimated after CH 3 C(O)CH 2 OO; branching ratios after measurements within MOST by Poulain et al., CH 3 C(O)CH(OO)CH(CH 3 ) 2 H 2 O CH 3 C(O)C(O)CH(CH 3 ) CH 3 C(O)CH(OO)CH(CH 3 ) 2 O 2 + CH 3 C(O)C(O)CH(CH 3 ) 2 + CH 3 C(O)CH(OH)CH(CH 3 ) Estimated after CH 3 C(O)CH 2 OO; branching ratios after measurements within MOST by Poulain et al., Estimated after CH 3 C(O)CH 2 OO; branching ratios after measurements within MOST by Poulain et al., 310 CH 3 C(O)CHOCH(CH 3 ) 2 CH 3 CO + H(O)CCH(CH 3 ) By analogy with acetone and with the gas phase (Mellouki et al., ) 311 CH 3 C(O)CH 2 C(CH 3 ) 2 + O 2 CH 3 C(O)CH 2 C(OO)(CH 3 ) Estimated after (von Sonntag, 1987) CH 3 C(O)CH 2 C(OO)(CH 3 ) 2 O CH 3 C(O)CH 2 CO(CH 3 ) Estimated 313 CH 3 C(O)CH 2 CO(CH 3 ) 2 CH 3 C(O)CH 3 + CH 3 COCH By analogy with the gas phase, (Mellouki et al., ) By analogy with t-butanol 314 CH 3 C(O)CH 2 CO(CH 3 ) 2 CH 2 C(O)CH 2 C(OH)(CH 3 ) By analogy with the gas phase, (Mellouki et al., ) 315 CH 2 C(O)CH 2 C(OH)(CH 3 ) 2 + O 2 OOCH 2 C(O)CH 2 C(OH)(CH 3 ) By analogy with acetone OOCH 2 C(O)CH 2 C(OH)(CH 3 ) 2 H 2 O By analogy with acetone H(O)CC(O)CH 2 C(OH)(CH 3 ) OOCH 2 C(O)CH 2 C(OH)(CH 3 ) 2 O By analogy with acetone H(O)CC(O)CH 2 C(OH)(CH 3 ) 2 + CH 2 (OH)C(O)CH 2 C(OH)(CH 3 ) OOCH 2 C(O)CH 2 C(OH)(CH 3 ) 2 O By analogy with acetone OCH 2 C(O)CH 2 C(OH)(CH 3 ) OCH 2 C(O)CH 2 C(OH)(CH 3 ) 2 H(O)CC(O)CH 2 C(OH)(CH 3 ) 2 + CH 2 (OH)C(O)CH 2 C(OH)(CH 3 ) By analogy with acetone 21

21 320 OCH 2 C(O)CH 2 C(OH)(CH 3 ) 2 HCHO + C(O)CH 2 C(OH)(CH 3 ) By analogy with acetone By analogy with the gas phase (Mellouki et al.) 321 C(O)CH 2 C(OH)(CH 3 ) 2 OHCCH 2 C(OH)CH 3 CH By analogy with CH 3 C(O)CH 2 CO(CH 3 ) OHCCH 2 C(OH)CH 3 CH 2 + O 2 OHCCH 2 C(OH)CH 3 CH 2 O Estimated after (von Sonntag, 1987) OHCCH 2 C(OH)CH 3 CH 2 O 2 OHCCH 2 C(OH)CH 3 CH 2 OH Estimated after OHCCH 2 C(OH)CH 3 CHO + O 2 OOCH 2 C(O)CH 2 C(OH)(CH 3 ) C 2 H 5 OCHO + H 2 O C 2 H 5 OH + HCOOH (Mata-Segreda, 2000) 325 C 2 H 5 OCHO + H 3 O + C 2 H 5 OH + HCOOH + H (Mata-Segreda, 2000) Oxidation of Ethyl Formate 326 C 2 H 5 OCHO + OH C 2 H 5 OC (O) + H 2 O Average of measurements within the MOST project 327 C 2 H 5 OCHO + OH CH 3 CHOCHO + H 2 O Average of measurements within the MOST project 328 NO 3 + C 2 H 5 OCHO C 2 H 5 OC (O) + NO H Calculated (Herrmann and Zellner, 329 NO 3 + C 2 H 5 OCHO CH 3 CHOCHO + NO H Calculated (Herrmann and Zellner, 330 C 2 H 5 OC (O) + O 2 C 2 H 5 OC(O)OO Estimated after (von Sonntag, 1987) 331 C 2 H 5 OC(O)OO + H 2 O C 2 H 5 OH + CO 2 + HO Estimated after reaction C 2 H 5 OC(O)OO + H 3 O + C 2 H 5 OH + CO 2 + HO 2 + H Estimated after reaction C 2 H 5 OC(O)OO C 2 H 5 OC(O)O + ½ O Estimated based on product studies carried out within MOST by Poulain et al., 334 CH 3 CH 2 OC(O)O C 2 H 5 O + CO Wang CH 3 CH 2 OC(O)O CH 2 CH 2 OC(O)OH Estimated CH 3 CH(OO )OH H 2 O CH 3 C(O)OH (Neta et al., 1990) 337 CH 2 CH 2 OC(O)OH + O 2 OOCH 2 CH 2 OC(O)OH Estimated OOCH 2 CH 2 OC(O)OH 2 OCH 2 CH 2 OC(O)OH + O Estimated 339 OCH 2 CH 2 OC(O)OH HCHO + CH 2 OC(O)OH Estimated in analogy with CH 3 C(O)CH 2 O 340 CH 2 OC(O)OH HCHO + COOH Estimated in analogy with CH 3 C(O)CH 2 O 341 CH 3 C HOCHO + O 2 CH 3 CH(OO )OCHO Estimated after (von Sonntag, 1987) 22

22 342 CH 3 CH(OO )OCHO + H 2 O CH 3 CH(OO )OH + HCOOH In analogy with Ethyl Formate, (Mata-Segreda, 2000) 343 CH 3 CH(OO )OCHO + H 3 O + CH 3 CH(OO )OH + HCOOH + H In analogy with Ethyl Formate, (Mata-Segreda, 2000) Oxidation of N Methyl Pyrrolidinone 344 CH 2 CH 2 CH 2 C(O)NCH 3 + OH CH 2 CH 2 C(O)NCH 3 CH + H 2 O Average of measurements within the MOST project 345 CH 2 CH 2 CH 2 C(O)NCH 3 + OH CH 2 CH 2 CH 2 C(O)NC H 2 + H 2 O Average of measurements within the MOST project 346 NO 3 + CH 2 CH 2 CH 2 C(O)NCH 3 CH 2 CH 2 C(O)NCH 3 CH + NO H Calculated (Herrmann and Zellner, 347 NO 3 + CH 2 CH 2 CH 2 C(O)NCH 3 CH 2 CH 2 CH 2 C(O)NC H 2 + NO H Calculated (Herrmann and Zellner, 348 CH 2 CH 2 C(O)NCH 3 CH + O 2 CH 2 CH 2 C(O)NCH 3 CHO Estimated after (von Sonntag, 1987) CH 2 CH 2 C(O)NCH 3 CHO 2 2 CH 2 CH 2 C(O)NCH 3 CHO + O k(298) estimated after the ethyl peroxy radical (Herrmann et al., 1999) 350 CH 2 CH 2 C(O)NCH 3 CHO + O 2 CH 2 CH 2 C(O)NCH 3 C(O) + HO k(298) estimated after the reaction CH3CH2O + O2 (214 in CAPRAM 2.4) 351 CH 2 CH 2 C(O)NCH 3 C(O) + OH CH 2 CH 2 C(O)NC H 2 C(O) Estimated after NMP H 2 O 352 NO 3 + CH 2 CH 2 C(O)NCH 3 C(O) CH 2 CH 2 C(O)NC H 2 C(O) NO H + Calculated (Herrmann and Zellner, in (Gligorovski and Herrmann, 2004) (3) 353 CH 2 CH 2 C(O)NC H 2 C(O) + O 2 CH 2 CH 2 C(O)NCH 2 OO C(O) Estimated after (von Sonntag, 1987) CH 2 CH 2 C(O)NCH 2 OO C(O) + O 2 2 CH 2 CH 2 C(O)NHC(O) k(298) estimated after the ethyl peroxy 2 CO 2 + H 2 O 2 radical (Herrmann et al., 1999) 355 CH 2 CH 2 CH 2 C(O)NC H 2 + O 2 CH 2 CH 2 CH 2 C(O)NCH 2 O Estimated after (von Sonntag, 1987) CH 2 CH 2 CH 2 C(O)NCH 2 O 2 + O 2 2 CH 2 CH 2 C(O)NHCH k(298) estimated after the ethyl peroxy CO 2 + H 2 O 2 radical (Herrmann et al., 1999) 357 CH 2 CH 2 C(O)NHCH 2 + OH CH 2 CH 2 C(O)NHC H + H 2 O Estimated after NMP Estimated after NMP 358 NO 3 + CH 2 CH 2 C(O)NHCH 2 CH 2 CH 2 C(O)NHC H + NO H CH 2 CH 2 C(O)NHC H + O 2 CH 2 CH 2 C(O)NHCHO Estimated after (von Sonntag, 1987) 23

23 360 2 CH 2 CH 2 C(O)NHCHO 2 2 CH 2 CH 2 C(O)NHCHO + O k(298) estimated after the ethyl peroxy radical (Herrmann et al., 1999) 361 CH 2 CH 2 C(O)NHCHO + O 2 CH 2 CH 2 C(O)NHC(O) + HO k(298) estimated after the reaction CH3CH2O + O2 (214 in CAPRAM 2.4) HO 2 elimination from CH 3 C(OH) 2 O CH 3 C(OH) 2 O 2 CH 3 COOH + HO Estimated after (von Sonntag, 1987) Remarks: (1) : Contribution of H-abs back calculated using correlation for the reaction of NO 3 with aliphatic compounds in aqueous solution (Herrmann and Zellner, where the BDEs were derived from the correlation reported in (Gligorovski and Herrmann, 2004) for the reaction of OH with organic compounds. (2) : Calculated using the correlation for the reaction of NO3 with aliphatic compounds in aqueous solution (Herrmann and Zellner,. The BDEs determined with Benson s incremental method. (3) : Contribution of H-abs back calculated using correlation for the reaction of NO 3 with aliphatic compounds in aqueous solution (Herrmann and Zellner, where the BDEs were derived from the correlation (gas-phase) reported in (Gligorovski and Herrmann, 2004) for the reaction of OH with organic compounds. Equilibrium reactions: Equilibrium K Ea/R k for k back Comments E1 HOOCCH 2 COO - H + + CH 2 (COO - ) 2 2, , Lit.: Handb. Of Org. Comp. T-dependency between 0 and 30 C E2 CH 3 C(O)COOH H + + CH 3 C(O)COO - 3, , Lit.: Handb. Of Org. Comp. E3 CH 3 CH 2 COOH H + + CH 3 CH 2 COO - 1, , T-dependency between 5 and 20 C E4 CH 3 C(O)CHO + H 2 O CH 3 C(O)CH(OH) , (Betterton and Hoffmann, 1988) k hin as for Glyoxal E5 C 2 H 4 (COOH) 2 H +- + OOCC 2 H 4 COOH 6, , OOCC 2 H 4 COOH H +- + C 2 H 4 (COO - ) 2 2, , , E6 E7 CH 3 CHOHCOOH CH 3 CHOHCOO - + H , α-hydroxy-propionate is formed by the recombination of the propionate peroxy radical. No sinks implemented until now for α-hydroxy- Propionate = K, k (Propanoic acid) E8 CH 2 OHCOOH CH 2 OHCOO - + H + 1, , (Lide, 1995) E9 CH 3 CH 2 CH 2 COOH CH 3 CH 2 CH 2 COO - + 1, , (Lide, 1995)

24 Estimated after the second step dissociation Estimated after oxalacetic acid (Lide, 1995) Equilibrium K Ea/R k for k back Comments H + E10 ACO 3 + H 2 O CH 3 C(OH) 2 O Estimated in analogy with the acetyl radical E11 HO 2 CH 2 COOH HO 2 CH 2 COO - + H Estimated after acetic acid (Lide, 1995) E12 HOOCCH(OH)C(O)CHO - OOCCH(OH)C(O)CHO + H + constant of tartaric acid (Lide, 1995) E13 HOOCCHOHC(O)COOH - OOCCHOHC(O)COOH + H + E14 CH 2 OHC(O)COOH CH 2 OHC(O)COO Estimated after pyruvic acid (Lide, 1995) + H + E15 HOOCCH(OH)CH(OH)CHO Estimated after the second step dissociation - OOCCH(OH)CH(OH)CHO + H + constant of tartaric acid (Lide, 1995) E16 HOOCCH(OH)CH(OH)COOH (Lide, 1995) - OOCCH(OH)CH(OH)COOH + H (Lide, 1995) E17 OHCC(O)COOH OHCC(O)COO - + H Estimated after pyruvic acid (Lide, 1995) E18 HOOCC(O)COOH HOOCC(O)COO - + H (Albalat et al., 1989) E19 HOOCCH(OH)CH 2 COOH (Lide, 1995) HOOCCH(OH)CH 2 COO - + H + E20 HOOCCH(OH)CH 2 COO - - OOCCH(OH)CH 2 COO - + H + E21 HOOCC(O)CH 2 COOH (Lide, 1995) HOOCC(O)CH 2 COO - + H + E22 HOOCC(O)CH 2 COO (Lide, 1995) - OOCC(O)CH 2 COO - E23 HOOCC(O)C(O)COOH HOOCC(O)CH 2 COO - + H + E24 HOOCCH(OH)COOH HOOCCH(OH)COO - + H + E25 HOOCCH(OH)COO OOCCH(OH)COO - + H Estimated after mesoxalic acid (Albalat et al., 1989) (Campi, 1963) (Campi, 1963) E26 HOOCCH 2 COOH HOOCCH 2 COO - + H Smith and Marthell, 1989 E27 CH 3 CH 2 C(O)COOH CH 3 CH 2 C(O)COO Ojelund and Wadso, H + E28 OHCCH(OH)COOH Estimated after Propanoic acid OHCCH(OH)COO - + H + E29 OHCCH 2 COOH OHCCH 2 COO - + H Estimated after Propanoic acid E30 C 2 H 5 CH(O) + H 2 O C 2 H 5 CH(OH) Xu et al., 1992 k back estimated after acetaldehyde E31 CH 3 CH 2 CH 2 CHO + H 2 O CH 3 CH 2 CH 2 CH(OH) Xu et al., 1992 k back estimated after acetaldehyde

25 Equilibrium K Ea/R k for k back Comments E32 OHCCH 2 OH + H 2 O (OH) 2 CHCH 2 OH Betterton and Hoffmann 1988 k back estimated after acetaldehyde E33 OHCCH 2 COOH + H 2 O Estimated after acetaldehyde CH(OH) 2 CH 2 COOH E34 OHCCH 2 COO - + H 2 O CH(OH) 2 CH 2 COO Estimated after acetaldehyde Photolysis rates: Reaction j max Reference P1 HO 2 CH 2 COOH OH + OCH 2 COOH 7, Photochemical rate constant estimated equal to J(H 2 O 2 ) References: Adams, G.E., Boag, J.W., Currant, J. and Michael, B.D., Absolute rate constants for the reaction of the hydroxyl radical with organic compounds. In: M. Ebert, J.P. Keen, A.J. Swallow and J.H. Baxendale (Editors), Pulse Radiolysis. Academic Press, London, pp Albalat, R., Claret, J., Gomez, E., Muller, C. and Sarret, M., Electrocatalytic Oxidation of Mesoxalic Acid on a Polycrystalline Platinum-Electrode in Acid- Medium. Electrochimica Acta, 34(5): Anbar, M., Meyerste.D and Neta, P., Reactivity of Aliphatic Compounds Towards Hydroxyl Radicals. Journal of the Chemical Society B-Physical Organic(8): 742-&. Baldwin, A.C., Barker, J.R., Golden, D.M. and Hendry, D.G., Photochemical Smog - Rate Parameter Estimates and Computer Simulations. Journal of Physical Chemistry, 81(25): Betterton, E.A., The Partitioning of Ketones between the Gas and Aqueous Phases. Atmospheric Environment Part a-general Topics, 25(8): Betterton, E.A. and Hoffmann, M.R., Henry Law Constants of Some Environmentally Important Aldehydes. Environmental Science & Technology, 22(12): Bielski, B.H.J., Cabelli, D.E., Arudi, R.L. and Ross, A.B., Reactivity of Ho2/O-2 Radicals in Aqueous-Solution. Journal of Physical and Chemical Reference Data, 14(4): Bone, R., Cullis, P. and Wolfenden, R., Solvent Effects on Equilibria of Addition of Nucleophiles to Acetaldehyde and the Hydrophilic Character of Diols. Journal of the American Chemical Society, 105(5): Bothe, E., Schuchmann, M.N., Schultefrohlinde, D. and Vonsonntag, C., Ho2 Elimination from Alpha-Hydroxyalkylperoxyl Radicals in Aqueous-Solution. Photochemistry and Photobiology, 28(4-5): Bothe, E., Schuchmann, M.N., Schultefrohlinde, D. and Vonsonntag, C., Hydroxyl Radical-Induced Oxidation of Ethanol in Oxygenated Aqueous-Solutions - a Pulse-Radiolysis and Product Study. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 38(2): Butler, J.A.V. and Ramchandani, C.N., Solubility of nonelectrolytes. II. Effect of the polar group on the free energy of hydration of aliphatic compounds. Journal of the Chemical Society: Buxton, G.V., Malone, T.N. and Salmon, G.A., Oxidation of glyoxal initiated by (OH)-O-. in oxygenated aqueous solution. Journal of the Chemical Society- Faraday Transactions, 93(16): Cabelli, D.E. and Bielski, B.H.J., A Pulse-Radiolysis Study of Some Dicarboxylic-Acids of the Citric-Acid Cycle - the Kinetics and Spectral Properties of the Free-Radicals Formed by Reaction with the Oh Radical. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 40(12):

26 Campi, E., Ann. Chim., 53: 96. Christensen, L.K. et al., Kinetics and mechanism of the reactions of 2,3-butadione with F and Cl atoms, UV absorption spectra of CH3C(O)C(O)CH2 center dot and CH3C(O)C(O)CH2O2 center dot radicals, and atmospheric fate of CH3C(O)C(O)CH2O center dot radicals. Journal of Physical Chemistry A, 102(45): Elliot, A.J. and Simsons, A.S., Rate Constants for Reactions of Hydroxyl Radicals as a Function of Temperature. Radiation Physics and Chemistry, 24(2): Ervens, B., Gligorovski, S. and Herrmann, H., Temperature-dependent rate constants for hydroxyl radical reactions with organic compounds in aqueous solutions. Physical Chemistry Chemical Physics, 5(9): Fuller, E.N., Diffusion Coefficients for Binary Gas Systems at Low Pressures: Empirical Correlations. Mc Graw Hill, New York, 587 pp. Gligorovski, S. and Herrmann, H., Glowa, G., Driver, P. and Wren, J.C., Irradiation of MEK - II: A detailed kinetic model for the degradation under of 2-butanone in aerated aqueous solutions steady-state gamma-radiolysis conditions. Radiation Physics and Chemistry, 58(1): Guthrie, J.P., Uncatalyzed and amine catalyzed decarboxylation of acetoacetic acid: An examination in terms of no barrier theory. Bioorganic Chemistry, 30(1): Guthrie, J.P. and Jordan, F., Amine-Catalyzed Decarboxylation of Acetoacetic Acid - Rate Constant for Decarboxylation of Beta-Imino Acid. Journal of the American Chemical Society, 94(26): Herrmann, H., Exner, M. and Zellner, R., Reactivity Trends in Reactions of the Nitrate Radical (No3) with Inorganic and Organic Cloudwater Constituents. Geochimica Et Cosmochimica Acta, 58(15): Herrmann, H., Reese, A., Ervens, B., Wicktor, F. and Zellner, R., Laboratory and modelling studies of tropospheric multiphase conversions involving some C1 and C2 peroxyl radicals. Physics and Chemistry of the Earth Part B-Hydrology Oceans and Atmosphere, 24(3): Herrmann, H. and Zellner, R., Reactions of NO 3 - radicals in aqueous solution. In: Z.B. Alfassi (Editor), N-Centered Radicals. Wiley, New York, pp Hilborn, J.W. and Pincock, J.A., Rates of Decarboxylation of Acyloxy Radicals Formed in the Photocleavage of Substituted 1-Naphthylmethyl Alkanoates. Journal of the American Chemical Society, 113(7): Ito, O., Akiho, S. and Iino, M., 1989a. Kinetics for Reactions of the Nitrate Radical (No3.) with Aldehydes in Acetonitrile. Journal of Physical Chemistry, 93(10): Ito, O., Akiho, S. and Iino, M., 1989b. Kinetic-Study for Reactions of Nitrate Radical (No3.) with Alcohols in Solutions. Bulletin of the Chemical Society of Japan, 62(5): Jayne, J.T. et al., Uptake of Gas-Phase Alcohol and Organic-Acid Molecules by Water Surfaces. Journal of Physical Chemistry, 95(16): Khan, I., Brimblecombe, P. and Clegg, S.L., Solubilities of Pyruvic-Acid and the Lower (C-1-C-6) Carboxylic-Acids - Experimental-Determination of Equilibrium Vapor-Pressures above Pure Aqueous and Salt-Solutions. Journal of Atmospheric Chemistry, 22(3): Kim, B.R., Kalis, E.M., DeWulf, T. and Andrews, K.M., Henry's law constants for paint solvents and their implications on volatile organic compound emissions from automotive painting. Water Environment Research, 72(1): Lide, D.R., Handbook of Chemistry and Physics. Lide, D. R., Boca Raton. Logan, S.R., Redox Reactions of Organic Radicals with Ferrocene Ferricenium Species in Aqueous-Solution.1. Radicals Derived from Carboxylic-Acids. Journal of the Chemical Society-Perkin Transactions 2(7): Mata-Segreda, J.F., Spontaneous hydrolysis of ethyl formate: Isobaric activation parameters. International Journal of Chemical Kinetics, 32(1): Neta, P., Huie, R.E. and Ross, A.B., Rate Constants for Reactions of Peroxyl Radicals in Fluid Solutions. Journal of Physical and Chemical Reference Data, 19(2): Saxena, P. and Hildemann, L.M., Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry, 24(1): Scholes, G. and Willson, R.L., Gamma-Radiolysis of Aqueous Thymine Solutions - Determination of Relative Reaction Rates of Oh Radicals. Transactions of the Faraday Society, 63(540P): 2983-&. 27

TOWARDS A MORE DETAILED DESCRIPTION OF TROPOSPHERIC AQUEOUS PHASE ORGANIC CHEMISTRY: CAPRAM 3.0 ELECTRONIC SUPPLEMENTAL MATERIAL (ESM)

TOWARDS A MORE DETAILED DESCRIPTION OF TROPOSPHERIC AQUEOUS PHASE ORGANIC CHEMISTRY: CAPRAM 3.0 ELECTRONIC SUPPLEMENTAL MATERIAL (ESM) TWARDS A MRE DETAILED DESRIPTIN F TRPSPERI AQUEUS PASE RGANI EMISTRY: APRAM 30 errmann 1 *, A Tilgner 1, P Barzaghi 1, Z Majdik 1, S Gligorovski 1, L Poulain 2 and A Monod 2 1 Leibniz Institut für Troposphärenforschung,

More information

Laboratory simulation for the aqueous OH-oxidation of methyl vinyl ketone and methacrolein: Significance to the in-cloud SOA production

Laboratory simulation for the aqueous OH-oxidation of methyl vinyl ketone and methacrolein: Significance to the in-cloud SOA production Laboratory simulation for the aqueous OHoxidation of methyl vinyl ketone and methacrolein: Significance to the incloud SOA production X. Zhang, Z. M. Chen, and Y. Zhao State Key Laboratory of Environmental

More information

Supplementary Material for: A Comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase

Supplementary Material for: A Comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase Supplementary Material for: A Comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase S. A. Epstein and S. A. Nizkorodov, * Department of Chemistry, University of California,

More information

CAPRAM MODELLING OF THE PHYSICO-CHEMICAL CLOUD PROCESSING OF TROPOSPHERIC AEROSOLS

CAPRAM MODELLING OF THE PHYSICO-CHEMICAL CLOUD PROCESSING OF TROPOSPHERIC AEROSOLS CAPRAM MODELLING OF THE PHYSICO-CHEMICAL CLOUD PROCESSING OF TROPOSPHERIC AEROSOLS A. Tilgner 1 *, R. Wolke 1 and H. Herrmann 1 1 Leibniz-Institut für Troposphärenforschung, Permoserstr. 15, D-04318 Leipzig,

More information

Tropospheric OH chemistry

Tropospheric OH chemistry Tropospheric OH chemistry CO Oxidation mechanism: CO + OH CO 2 + H, H + O 2 + M HO 2 + M, HO 2 + NO OH + NO 2 NO 2 + hν (+O 2 ) NO + O 3 Initiation step Propagation Net: CO + 2 O 2 CO 2 + O 3 HO 2 + HO

More information

Chapter 23 Aldehydes and Ketones

Chapter 23 Aldehydes and Ketones Chapter 23 Aldehydes and Ketones Ketones are common solvents for quickdrying paints. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison, and Susan

More information

Reference M atm -1 H / R,

Reference M atm -1 H / R, Table 1a: Henry's Law Constants of halogen containing compounds Species K H 298, M atm 1 H / R, K 1 BrO 48 K H 1 =K H 4 2 ClO 926 K H 2 =K H 5 3 HBr 0.72 6077 Sander and Crutzen, 1996 4 HOBr 48 Sander

More information

Hydroxyl radical induced degradation of aromatic molecules

Hydroxyl radical induced degradation of aromatic molecules Hydroxyl radical induced degradation of aromatic molecules 1 Poorest source of hydroxyl radical Radiolysis of water H 2 O H 2 O + + e H 2 O H 2 O* H 2 O + + H 2 O H 3 O + + OH e + nh 2 O e aq H 2 O* OH

More information

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. Consider the following reaction sequence. CH 3 CH 3 CH 3 Step 1

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

Aqueous-Phase Chemistry in TM4-ECPL: SOA Formation via Cloud Processes Stelios Myriokefalitakis 1 Kostas Tsigaridis 2,3 Maria Kanakidou 1

Aqueous-Phase Chemistry in TM4-ECPL: SOA Formation via Cloud Processes Stelios Myriokefalitakis 1 Kostas Tsigaridis 2,3 Maria Kanakidou 1 TM meeting, Heraklion, June 2010 Aqueous-Phase Chemistry in TM4-ECPL: SOA Formation via Cloud Processes Stelios Myriokefalitakis 1 Kostas Tsigaridis 2,3 Maria Kanakidou 1 1 Environmental Chemical Processes

More information

*P51939A0124* Pearson Edexcel WCH04/01. P51939A 2018 Pearson Education Ltd.

*P51939A0124* Pearson Edexcel WCH04/01. P51939A 2018 Pearson Education Ltd. Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Unit 4: General Principles of Chemistry I Rates, Equilibria and Further

More information

Q. No. 4 Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives o cresol p cresol 2, 4 dihydroxy tolu

Q. No. 4 Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives o cresol p cresol 2, 4 dihydroxy tolu Q. No. 1 Glycerine has One primary and two secondary OH groups One secondary and two primary OH groups Three primary OH groups Three secondary OH groups Q. No. 2 The structural formula of cyclohexanol

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch16_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which type of compound does not contain a carbonyl group? ketone B) aldehyde C) amine D)

More information

Appendix B: Aqueous chemistry and gas-phase halogen chemistry

Appendix B: Aqueous chemistry and gas-phase halogen chemistry 1 Appendix B: Aqueous chemistry and gasphase halogen chemistry SANFORD SILLMAN, FRANK MARSIK, KHALID I. ALWALI, GERALD J. KEELER AND MATTHEW S. LANDIS* Department of Atmospheric, Oceanic and Space Sciences

More information

Ch 22 Carbonyl Alpha ( ) Substitution

Ch 22 Carbonyl Alpha ( ) Substitution Ch 22 Carbonyl Alpha () Substitution The overall reaction replaces an H with an E + The acid-catalyzed reaction has an enol intermediate The base-catalyzed reaction has an enolate intermediate Keto-Enol

More information

Objective 14. Develop synthesis strategies for organic synthesis.

Objective 14. Develop synthesis strategies for organic synthesis. Objective 14. Develop synthesis strategies for organic synthesis. Skills: Draw structure ID structural features and reactive sites (alpha C, beta C, LG, etc.) ID Nu - and E + use curved arrows to show

More information

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5)

CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) CHM 5423 Atmospheric Chemistry Notes on reactions of organics in the troposphere (Chapter 5) 5.1 Introduction In general, the lifetime of a molecule in the troposphere is governed by a variet of processes.

More information

Atmospheric Oxidation Mechanisms of Unsaturated Oxygenated VOCs

Atmospheric Oxidation Mechanisms of Unsaturated Oxygenated VOCs Atmospheric Oxidation Mechanisms of Unsaturated Oxygenated VOCs R. Thévenet, G. Thiault, E. Vésine, G. Laverdet, A. Mellouki, G. Le Bras LCSR-CNRS-1C, Avenue de la recherche scientifique 4571, Orléans,

More information

Radiolysis of Aqueous Ethanol in the Presence of CO

Radiolysis of Aqueous Ethanol in the Presence of CO Radiolysis of Aqueous Ethanol in the Presence of CO Hyoung-Ryun Park * and Nikola Getoff Institut für Theoretische Chemie und Strahlenchemie der Universität Wien und Ludwig-Boltzmann-Institut für Strahlenchemie

More information

Conditions of the Simulations

Conditions of the Simulations Conditions of the Simulations Location: 44.4N, 73.9W, z = 1.5 km, Whiteface Mountain (WFM) summit Start time: 1730 (5:30 pm) local time September 17, 2016 End time: 1500 (3 pm) local time September 18,

More information

Chemistry Assessment Unit A2 1

Chemistry Assessment Unit A2 1 Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2012 Chemistry Assessment Unit A2 1 assessing Periodic Trends and Further Organic, Physical and Inorganic Chemistry AC212

More information

Radiation Processing. Chemical Effects

Radiation Processing. Chemical Effects Radiation Processing Chemical Effects Reactions ofhydrated Electron Major Reactions of e-aq H 2 0 1. e- aq + N 2 0 N 2 + {)H Used to detect/estimate e- aq and to increase OH yield 2. e- aq + O 2 2-...

More information

DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM OUTLINE

DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM OUTLINE DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM OUTLINE DESCRIPTION OF MECHANISM MECHANISM GENERATION SYSTEM ESTIMATION METHODS MECHANISM EVALUATION LUMPED MECHANISM FOR AIRSHED MODELS UPDATED

More information

Aromatic Hydrocarbons

Aromatic Hydrocarbons Aromatic Hydrocarbons Aromatic hydrocarbons contain six-membered rings of carbon atoms with alternating single and double carbon-carbon bonds. The ring is sometimes shown with a circle in the center instead

More information

Chemistry *P42992A0128* Pearson Edexcel P42992A

Chemistry *P42992A0128* Pearson Edexcel P42992A Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Unit 4: General Principles of Chemistry I Rates, Equilibria and Further

More information

1. What is the major organic product obtained from the following sequence of reactions?

1. What is the major organic product obtained from the following sequence of reactions? CH320 N N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. Carefully record your answers on the Scantron

More information

CH 320/328 N Summer II 2018

CH 320/328 N Summer II 2018 CH 320/328 N Summer II 2018 HW 1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. (5 pts each) 1. Which

More information

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid

1) Which type of compound does not contain a carbonyl group? A) ketone B) aldehyde C) amine D) ester E) carboxylic acid 1) Which type of compound does not contain a carbonyl group? ketone aldehyde amine ester carboxylic acid 2) Which functional group contains a carbonyl group and a hydroxyl group bonded to the same carbon

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: CO 2, N 2, H 2 0, CH 4 O C 2.58Ǻ

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application

CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D14, 4426, doi:10.1029/2002jd002202, 2003 CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application

More information

Modeling of the formation of short-chain acids in propane flames

Modeling of the formation of short-chain acids in propane flames Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc, 1, A.A. Konnov 2, J.L. Jaffrezo 3 and M. Legrand 3 1 Département de Chimie-Physique des Réactions, CNRS-INPL, Nancy,

More information

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser

Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Chemistry 2030 Introduction to Organic Chemistry Fall Semester 2013 Dr. Rainer Glaser Examination #4 Enols and Aldol Reaction, Carboxylic Acids and Carboxylic Acid Derivatives. Thursday, November 14, 2013,

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Chemistry Assessment Unit A2 1

Chemistry Assessment Unit A2 1 Centre Number 71 Candidate Number ADVANCED General Certificate of Education 2008 Chemistry Assessment Unit A2 1 assessing Module 4: Further Organic, Physical and Inorganic Chemistry [A2C11] A2C11 THURSDAY

More information

CHEMISTRY 1A Fall 2010 Final Exam Key

CHEMISTRY 1A Fall 2010 Final Exam Key CHEMISTRY 1A Fall 2010 Final Exam Key YOU MIGHT FIND THE FOLLOWING USEFUL; 0.008314 kj H E ( n)rt R = K mol 0.00418 kj q C cal m w T g C H rxn = H f (products) H f (reactants) Electronegativities H 2.2

More information

Interfaces Between Gas Phase Mechanisms and Aqueous Chemistry

Interfaces Between Gas Phase Mechanisms and Aqueous Chemistry Interfaces Between Gas Phase Mechanisms and Aqueous Chemistry Hartmut Herrmann with Andreas Tilgner, Paolo Barzaghi, Dirk Hoffmann, Yoshi Iinuma and laf Böge Leibniz-Institut für Troposphärenforschung

More information

DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM

DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM DEVELOPMENT AND EVALUATION OF THE SAPRC-99 CHEMICAL MECHANISM W. P. L. Carter Air Pollution Research Center University of California, Riverside, CA 92521 ALL MECHANISMS DESIGN OBJECTIVES CAN BE USED IN

More information

Reactions of Chapter 10 Worksheet and Key

Reactions of Chapter 10 Worksheet and Key 1) Alcohol Fermentation Reactions of Chapter 10 Worksheet and Key Alcohol fermentation is a series of chemical reaction that convert sugar molecules, such a glucose, into ethanol and C 2. The overall reaction

More information

Assessment Schedule 2016 Chemistry: Demonstrate understanding of the properties of organic compounds (91391)

Assessment Schedule 2016 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) NCEA Level 3 Chemistry (91391) 2016 page 1 of 6 Assessment Schedule 2016 Chemistry: Demonstrate understanding of the properties of organic compounds (91391) Evidence Statement Q Evidence Achievement Achievement

More information

Organic Chemistry. It s all about the charges!

Organic Chemistry. It s all about the charges! Organic Chemistry It s all about the charges! Hydrocarbons So far, we ve mostly looked at hydrocarbons: alkanes, alkenes, alkynes, and benzene. Hydrocarbons are NON-polar molecules: the C-H bond has an

More information

3) Between aldehyde and ketones which one is confirmed using Tollen s reagent.

3) Between aldehyde and ketones which one is confirmed using Tollen s reagent. UNIT ALDEHYDES KETONES AND CARBOXYLIC ACIDS ) What are aldehydes? Aldehydes are the organic compounds containing carbonyl group,linked with one hydrogen and one alkyl /aryl group. ) What are carboxylic

More information

Aldehydes and Ketones. Dr. Munther A. M. Ali

Aldehydes and Ketones. Dr. Munther A. M. Ali Aldehydes and Ketones Dr. Munther A. M. Ali ALDYHYDES AND KETONES Aldehydes are compounds of the general formula RCHO Ketones are compounds of the general formula RR'CO Aldehydes A ketone Both aldehydes

More information

For more info visit Aldehyde and Ketones. Preparation of Aldehydes. a. Oxidation of primary alcohols

For more info visit  Aldehyde and Ketones. Preparation of Aldehydes. a. Oxidation of primary alcohols Aldehyde and Ketones Preparation of Aldehydes a. Oxidation of primary alcohols Preparation of Ketones: a) Oxidation of Secondary alcohols: d) With Organometallics Reactions of Aldehydes and Ketones: a)

More information

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal

9. Which compound is an alcohol? A) methanol C) butane B) ethyne D) propanal 1. Given the structural formulas for two organic compounds: The differences in their physical and chemical properties are primarily due to their different A) number of hydrogen atoms B) number of carbon

More information

ATMOSPHERIC CHEMISTRY OF SELECTED HYDROXYCARBONYLS. Sara M. Aschmann, Janet Arey and Roger Atkinson

ATMOSPHERIC CHEMISTRY OF SELECTED HYDROXYCARBONYLS. Sara M. Aschmann, Janet Arey and Roger Atkinson ATMOSPHERIC CHEMISTRY OF SELECTED HYDROXYCARBONYLS Sara M. Aschmann, Janet Arey and Roger Atkinson Air Pollution Research Center University of California Riverside, CA 92521, U.S.A. Introduction Volatile

More information

SAN JOSE CITY COLLEGE INTRODUCTION TO CHEMISTRY 32B Spring March 9, 2009 Chapters 13, 14 and 17 Bettelheim, Brown, March

SAN JOSE CITY COLLEGE INTRODUCTION TO CHEMISTRY 32B Spring March 9, 2009 Chapters 13, 14 and 17 Bettelheim, Brown, March SAN JOSE CITY COLLEGE INTRODUCTION TO CHEMISTRY 32B Spring 2009 Name: ID#: Instructor: Dr. T. Johnson Time Allowed:1h 20 min March 9, 2009 Chapters 13, 14 and 17 Bettelheim, Brown, March 108 Points LEARNING

More information

Question er Mark Guidance 1 (a) (i) proton donor 1 ALLOW H + donor

Question er Mark Guidance 1 (a) (i) proton donor 1 ALLOW H + donor Question er Mark Guidance (a) (i) proton donor ALLOW H + donor (ii) (the proportion of) dissociation Correct equation for any of the four acids: C 6 H 5 COOH H + + C 6 H 5 COO OR CH 3 COOH H + + CH 3 COO

More information

Objective 14. Develop synthesis strategies for organic synthesis.

Objective 14. Develop synthesis strategies for organic synthesis. Objective 14. Develop synthesis strategies for organic synthesis. Skills: Draw structure ID structural features and reactive sites (alpha C, beta C, LG, etc.) ID Nu - and E + use curved arrows to show

More information

BIOB111_CHBIO - Tutorial activities for session 9

BIOB111_CHBIO - Tutorial activities for session 9 BIOB111_CHBIO - Tutorial activities for session 9 General topics for week 5 Session 9 Physical properties and chemical reactions of organic compounds (functional groups: alcohols, phenols, ethers, aldehydes,

More information

NH 2 O O O O OCH (6 pts) Provide an acceptable name for each of the following compounds: NH 2 COOH HOOC COOH. piperidine

NH 2 O O O O OCH (6 pts) Provide an acceptable name for each of the following compounds: NH 2 COOH HOOC COOH. piperidine CEMISTRY 314-01 MIDTERM # 4 April 1, 2003 Statistics: Average: 87 pts (72%); ighest: 116 pts (97%); Lowest: 49 pts (41%) umber of students performing at or above average: 13 (62%) 1. (9 pts) Mark as true

More information

Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including synoptic assessment)

Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including synoptic assessment) Write your name here Surname Other names Edexcel GCE Centre Number Chemistry Advanced Unit 4: General Principles of Chemistry I Rates, Equilibria and Further Organic Chemistry (including synoptic assessment)

More information

Atmospheric oxidation pathways of propane and its by-products: Acetone, acetaldehyde, and propionaldehyde

Atmospheric oxidation pathways of propane and its by-products: Acetone, acetaldehyde, and propionaldehyde JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007566, 2007 Atmospheric oxidation pathways of propane and its by-products: Acetone, acetaldehyde, and propionaldehyde Claudette M. Rosado-Reyes

More information

Daisuke Minakata and John Crittenden

Daisuke Minakata and John Crittenden Linear Free Energy Relationships for the Aqueous Phase Hydroxyl Radical Reactions with Ionized Species: Experimental and Theoretical Studies ACS Boston Fall Meeting August. nd, 00 Daisuke Minakata and

More information

Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles

Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles doi:10.5194/acp-10-8219-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary

More information

Chemistry Assessment Unit A2 1

Chemistry Assessment Unit A2 1 Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2013 Chemistry Assessment Unit A2 1 assessing Periodic Trends and Further Organic, Physical and Inorganic Chemistry AC212

More information

Hydroperoxyl radical (HO 2

Hydroperoxyl radical (HO 2 GEOPHYSICAL RESEARCH LETTERS, VOL 30, NO 24, 2297, doi:101029/2003gl018572, 2003 Hydroperoxyl radical (HO 2 ) oxidizes dibromide radical anion ( 2 )to bromine (Br 2 ) in aqueous solution: Implications

More information

ALCOHOLS AND PHENOLS

ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS ALCOHOLS AND PHENOLS Alcohols contain an OH group connected to a a saturated C (sp3) They are important solvents and synthesis intermediates Phenols contain an OH group connected to

More information

STATUS OF RESEARCH ON VOC REACTIVITY IN THE UNITED STATES. William P. L. Carter

STATUS OF RESEARCH ON VOC REACTIVITY IN THE UNITED STATES. William P. L. Carter STATUS OF RESEARCH ON VOC REACTIVITY IN THE UNITED STATES by William P. L. Carter Statewide Air Pollution Research Center and College of Engineering, Center for Environmental Research and Technology University

More information

Chemistry Assessment Unit A2 1

Chemistry Assessment Unit A2 1 Centre Number 71 Candidate Number ADVANCED General Certificate of Education January 2011 Chemistry Assessment Unit A2 1 assessing Periodic Trends and Further Organic, Physical and Inorganic Chemistry [AC212]

More information

HW #5: 16.20, 16.28, 16.30, 16.32, 16.40, 16.44, 16.46, 16.52, 16.60, 16.62, 16.64, 16.68

HW #5: 16.20, 16.28, 16.30, 16.32, 16.40, 16.44, 16.46, 16.52, 16.60, 16.62, 16.64, 16.68 hemistry 131 Lecture 10: Aldehydes and Ketones: Structure, Nomenclature, Physical Properties, and Reactivity hapter 16 in McMurry, Ballantine, et. al. 7 th edition W #5: 16.20, 16.28, 16.30, 16.32, 16.40,

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

International School of Johannesburg. Diploma Chemistry. Organic Chemistry (HL) Revision Questions. D. ( HNCH 2 CH 2 NHCOCH 2 NH ) (Total 1 mark)

International School of Johannesburg. Diploma Chemistry. Organic Chemistry (HL) Revision Questions. D. ( HNCH 2 CH 2 NHCOCH 2 NH ) (Total 1 mark) International School of Johannesburg Diploma Chemistry Organic Chemistry (HL) Revision Questions 1. The compounds H 2 NCH 2 CH 2 NH 2 and HOOCCH 2 COOH react to form a polymer. What is the structure of

More information

Chapter 19 Introduction to Organic Chemistry

Chapter 19 Introduction to Organic Chemistry Chapter 19 Introduction to Organic Chemistry 1 19.1 The beginnings of organic chemistry large number of remarkably stable compounds consist of C, H, O and N organic compounds no organic compounds had been

More information

14.1 Aldehydes and Ketones Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

14.1 Aldehydes and Ketones Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings Chapter 14 Aldehydes, Ketones, and Chiral Molecules 14.1 Aldehydes and Ketones Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings Carbonyl Group in Aldehydes A carbonyl group and

More information

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS Unit - 12 ALDEHYDES, KETONES AND CARBOXYLIC ACIDS 1. Indicate the electrophilic and nucleophilic centres in acetaldehyde. 2. Write the IUPAC names of the following organic compounds : 122 XII Chemistry

More information

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser

Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Chemistry 2050 Introduction to Organic Chemistry Fall Semester 2011 Dr. Rainer Glaser Examination #4 Make-Up Carbonyl Compounds and Amines. Wednesday, November 30, 2011, 10 10:50 am Name: Answer Key Question

More information

BELZONA PRODUCT DATA G504 CHEMICAL RESISTANCE OF BELZONA 5892

BELZONA PRODUCT DATA G504 CHEMICAL RESISTANCE OF BELZONA 5892 Alcohols, Aldehydes and Ketones Organic Acids Inorganic Acids BELZONA RODUCT DATA 504 CHEICAL RESISTANCE OF BELZONA 5892 10% * - Hydrochloric acid HCl 5% * - (647-01-0) 1% * - hosphoric acid (orthophosphoric

More information

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence? N_HW1 N_HW1 Multiple Choice Identify the choice that best completes the statement or answers the question. There is only one correct response for each question. 1. What is the purpose of the H 2 O in this

More information

On the Photolysis of simple Anions and neutral Molecules as Sources of O-/ OH, SOx- and Cl in Aqueous Solution

On the Photolysis of simple Anions and neutral Molecules as Sources of O-/ OH, SOx- and Cl in Aqueous Solution 1 Electronic Supplementary Material (ESM) to On the Photolysis of simple Anions and neutral Molecules as Sources of O/ OH, SOx and Cl in Aqueous Solution Hartmut Herrmann LeibnizInstitut für Troposphärenforschung

More information

Basic Organic Chemistry

Basic Organic Chemistry Basic rganic hemistry ourse code: EM 12162 (Pre-requisites : EM 11122) hapter 06 hemistry of Aldehydes & Ketones Dr. Dinesh R. Pandithavidana ffice: B1 222/3 Phone: (+94)777-745-720 (Mobile) Email: dinesh@kln.ac.lk

More information

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY CHEMICAL KINETICS EDITED BY C.H. BAMFORD M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C., F.R.S. Campbell-Brown Professor of Industrial Chemistry, Uniuersity of Liverpool AND C.F.H. TIPPER Ph.D. (Bristol), D.Sc.

More information

SECTION A. 1. Which is general formula of aldehyde and ketone? (c) CnHnO

SECTION A. 1. Which is general formula of aldehyde and ketone? (c) CnHnO SEM 4 SLE UNIT 5 SECTION A 1. Which is general formula of aldehyde and ketone? (a) CnH2n+1O (b) CnH2nO (c) CnHnO (d) CnH2n+2O Ans: (b) CnH2nO 2. Propanal and propan- 2- one are which type of isomers? (a)

More information

SAMPLE PAPER-1 Q 1. Q 2. Q 3. Write IUPAC name of: C 6H 5 NHCOCH 3 1. Q 4. What is Kraft temperature? 1

SAMPLE PAPER-1 Q 1. Q 2. Q 3. Write IUPAC name of: C 6H 5 NHCOCH 3 1. Q 4. What is Kraft temperature? 1 Q. Q. SAMPLE PAPER- Class-XII Sub-Chemistry Time : hrs. M.M.70 Instructions:-. All Questions are compulsory. Question No to 8 are very short answer questions carrying mark each.. Question No 9 to 8 are

More information

Tropospheric Aqueous Phase Chemistry Laboratory and Modelling Studies

Tropospheric Aqueous Phase Chemistry Laboratory and Modelling Studies Tropospheric Aqueous Phase Chemistry Laboratory and Modelling Studies Hartmut Herrmann, B. Ervens, J. Hesper and F. Wicktor Institut für Troposphärenforschung Permoserstr.15, 04318 Leipzig Overview Results

More information

HW #3: 14.26, 14.28, 14.30, 14.32, 14.36, 14.42, 14.46, 14.52, 14.56, Alcohols, Ethers and Thiols

HW #3: 14.26, 14.28, 14.30, 14.32, 14.36, 14.42, 14.46, 14.52, 14.56, Alcohols, Ethers and Thiols Chemistry 131 Lecture 8: Alcohols, Ethers and Sulfur Analogs: Structure, Nomenclature, Physical Properties, and Chemical Reactivity Chapter 14 in McMurry, Ballantine, et. al. 7 th edition HW #3: 14.26,

More information

F325 Mark Scheme June 2011

F325 Mark Scheme June 2011 F325 Mark Scheme June 2011 1 (a) (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound IGNORE 'Energy needed' OR energy required from its gaseous ions (under standard

More information

Regents review Organic chemistry

Regents review Organic chemistry 2011-2012 1. Which structural formula represents a saturated hydrocarbon? 2. Which molecule contains ten hydrogen atoms? A) butane B) butene C) propane D) propene 3. A double carbon-carbon bond is found

More information

CHEM4. (JAN13CHEM401) WMP/Jan13/CHEM4. General Certificate of Education Advanced Level Examination January 2013

CHEM4. (JAN13CHEM401) WMP/Jan13/CHEM4. General Certificate of Education Advanced Level Examination January 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination January 2013 Question 1 2 Mark

More information

BRCC CHM102 Chapter 17 Notes Class Notes Page 1 of 8

BRCC CHM102 Chapter 17 Notes Class Notes Page 1 of 8 BR HM102 hapter 17 Notes lass Notes Page 1 of 8 hapter 17 Aldehydes and Ketones arbonyl group - found in fats, carbohydrates, proteins, nucleic s, and other important biological compounds. * Aldehydes

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

CHEMICAL RESISTANCE TABLE

CHEMICAL RESISTANCE TABLE Page 1 of 14 The data given in the extensive Table below is the current best state of information known to Nylact. Polymer compatibility with solvents other than those in this chart may arise: the General

More information

2. An aldehyde can be obtained by the dehydrogenation of an alcohol. The catalyst used in the reaction is

2. An aldehyde can be obtained by the dehydrogenation of an alcohol. The catalyst used in the reaction is Class: 12 Subject: Chemistry Topic: Organic Chemistry of O compounds No. of Questions: 20 Duration: 60 Min Maximum Marks: 60 1. Rectified spirit is converted to absolute alcohol taking advantage of the

More information

Derived copy of Bis2A 02.2 Appendix I Working with functional groups: Aldehydes, Ketones Carboxylic Acids and Esters *

Derived copy of Bis2A 02.2 Appendix I Working with functional groups: Aldehydes, Ketones Carboxylic Acids and Esters * OpenStax-CNX module: m56835 1 Derived copy of Bis2A 02.2 Appendix I Working with functional groups: Aldehydes, Ketones Carboxylic Acids and Esters * Erin Easlon Based on Bis2A 02.2 Appendix I Working with

More information

CHEM 1412 SAMPLE FINAL EXAM

CHEM 1412 SAMPLE FINAL EXAM CHEM 1412 SAMPLE FINAL EXAM PART I - Multiple Choice (2 points each) 1. In which colligative property(ies) does the value decrease as more solute is added? A. boiling point B. freezing point and osmotic

More information

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2 PX212SP14 Practice Exam II / Spring 2014 1. Which of the following statements are characteristic of acids? 1. They are proton donors. 2. They react with bases to produce a salt and water. 3. They taste

More information

Supplementary Material. compounds the atmospheric oxidation mechanism for 8:2 FTOH shown in Table 1 was

Supplementary Material. compounds the atmospheric oxidation mechanism for 8:2 FTOH shown in Table 1 was Supplementary Material From the available kinetic and mechanistic data for 8:2 FTOH and analogous compounds the atmospheric oxidation mechanism for 8:2 FTOH shown in Table 1 was constructed. For convenience,

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

Organic Chemistry, 7e (Bruice) Chapter 2 Acids and Bases: Central to Understanding Organic Chemistry

Organic Chemistry, 7e (Bruice) Chapter 2 Acids and Bases: Central to Understanding Organic Chemistry Organic Chemistry, 7e (Bruice) Chapter 2 Acids and Bases: Central to Understanding Organic Chemistry 1) Which of the following is not a conjugate acid-base pair? A) H2O, HO- B) H2O, H3O+ C) HSO4 -, H2SO4

More information

Basic radical reactions in water treatment by ionizing radiation

Basic radical reactions in water treatment by ionizing radiation Basic radical reactions in water treatment by ionizing radiation By: László Wojnárovits Selectivity, rate constants, main reactions Do up the buttons again Gomboljuk újra a kabátot! 1 General believes:

More information

CHEM 242 ETHERS, EPOXIDES, AND SULFIDES CHAP 17 ASSIGN

CHEM 242 ETHERS, EPOXIDES, AND SULFIDES CHAP 17 ASSIGN CHEM 242 ETHERS, EPOXIDES, AND SULFIDES CHAP 17 ASSIGN 1. Which of the following is the correct name of the compound below? A) benzyl ethyl ether B) ethyl phenyl ether C) ethylbenzene ether D) ethoxy phenoxy

More information

CHEMISTRY

CHEMISTRY CHEMISTRY PAPER 1 (THEY) (Maximum marks: 70) (Time allowed: Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) All questions

More information

MOSTLY ALCOHOLS. Question 2, 2017 The structure of a molecule of an organic compound, threonine, is shown below.

MOSTLY ALCOHOLS. Question 2, 2017 The structure of a molecule of an organic compound, threonine, is shown below. MOSTLY ALCOHOLS Modified Question 1, 2017 A chemistry class was learning about the chemistry of haloalkanes. They were researching the effect of heat and concentrated potassium hydroxide in ethanol, conc.

More information

CEE 697z Organic Compounds in Water and Wastewater

CEE 697z Organic Compounds in Water and Wastewater Print version CEE 697z Organic Compounds in Water and Wastewater Structure Activity Models for PPCPs Lecture #26 TOrCs A few PPCPs Removal by ozone Problem ~9,000,000 organic compounds known About 80,000

More information

Structure-activity relationships for the development of MCM/GECKOA mechanisms

Structure-activity relationships for the development of MCM/GECKOA mechanisms Atmospheric Chemical Mechanisms, Davis, December 2018 Structure-activity relationships for the development of MCM/GECKOA mechanisms Acknowledgement: Bernard Aumont Richard Valorso, Marie Camredon LISA

More information

CEE 697z Organic Compounds in Water and Wastewater

CEE 697z Organic Compounds in Water and Wastewater Print version CEE 697z Organic Compounds in Water and Wastewater Structure Activity Models for PPCPs Lecture #26 TOrCs A few PPCPs Removal by ozone Problem ~9,000,000 organic compounds known About 80,000

More information

Modeling secondary organic aerosol formation through cloud processing of organic compounds

Modeling secondary organic aerosol formation through cloud processing of organic compounds Modeling secondary organic aerosol formation through cloud processing of organic compounds J. Chen, R. J. Griffin, A. Grini, Pierre Tulet To cite this version: J. Chen, R. J. Griffin, A. Grini, Pierre

More information