TOPOLOGICAL CRITERIA FOR SAFE OPTIMIZATION OF POTENTIALLY RUNAWAY PROCESSES

Size: px
Start display at page:

Download "TOPOLOGICAL CRITERIA FOR SAFE OPTIMIZATION OF POTENTIALLY RUNAWAY PROCESSES"

Transcription

1 DIPARTIMENTO DI CHIMICA, MATERIALI ED INGEGNERIA CHIMICA "Giulio NATTA INNOVHUB STAZIONI SPERIMENTALI PER L INDUSTRIA Divisione Stazione Sperimentale per i Combustibili Seminario Aspetti innovativi in materia di rischi di incidenti rilevanti Varese, 14 Novembre 2011 TOPOLOGICAL CRITERIA FOR SAFE OPTIMIZATION OF POTENTIALLY RUNAWAY PROCESSES *, Marco Derudi*, Renato Rota*, Angelo Lunghi**, Christian Pasturenzi** *Politecnico di Milano - Dip. di Chimica, Materiali e Ingegneria Chimica G. Natta - CFALab via Mancinelli Milano Italy **INNOVHUB STAZIONI SPERIMENTALI PER L INDUSTRIA - Divisione Stazione Sperimentale per i Combustibili viale De Gasperi S. Donato Milanese, Italy

2 ACCIDENTS IN CHEMICAL INDUSTRIES Over 100 accidents per year occur in a typical European country in chemical industries. CAUSES 36% Chemical incompatibility 35% Runaway reactions 10% Instable substances 19% Unidentified A statistical analysis, performed by U.S. Chemical Safety and Hazard Investigation Board, shows that a large amount of accidents occurs in exothermic chemical reactors during desired synthesis runs. 2

3 THE PROBLEM RUNAWAY EXOTHERMIC PHENOMENON caused by a temperature loss of control 3

4 RUNAWAY DYNAMICS: PREVIEW T ( C) Desired Reaction Secondary Reaction T max MTSR MAT T p MTSR > MAT Q r /C p,mix =ΔT ad T p : process temperature MTSR: Maximum Temperature due to Synthesis Reaction in adiabatic conditions MAT: Maximum Allowable Temperature T max : Maximum temperature due to secondary reaction TMR: Time to Maximum Rate of temperature increase T amb Reaction carried out in adiabatic conditions Thermal loss of control TMR t 4

5 T2 LABORATORIES ACCIDENT 5

6 T2 LABORATORIES ACCIDENT T2 plant after reactor explosion 6

7 T2 LABORATORIES ACCIDENT Control room 7

8 T2 LABORATORIES ACCIDENT A nearby factory 8

9 T2 LABORATORIES ACCIDENT On the road 9

10 T2 LABORATORIES ACCIDENT Runaway reaction Production of MCMT Metalation Reaction (reactants: MCPD dimer, Na - solvent: diglyme) Substitution Reaction Carbonylation Reaction 10

11 T2 LABORATORIES ACCIDENT Reactor Layout and Control System Software View 11

12 RUNAWAY DYNAMICS T ( C) Desired Reaction Secondary Reaction T max MTSR MAT T p MTSR > MAT Q r /C p,mix =ΔT ad T p : process temperature MTSR: Maximum Temperature due to Synthesis Reaction in adiabatic conditions MAT: Maximum Allowable Temperature T max : Maximum temperature due to secondary reaction TMR: Time to Maximum Rate of temperature increase T amb Reaction carried out in adiabatic conditions Thermal loss of control TMR t 12

13 STATE OF THE ART In order to face the runaway problem : 1- Studies aimed to determine the MARGINAL IGNITION boundary set of operating conditions at which RUNAWAY occurs - Methods based on PARAMETRIC SENSITIVITY (e.g. Morbidelli et al., Parametric Sensitivity in Chemical Systems, 1999) - Methods based on CHAOS THEORY (e.g. Zaldivar et al., A general criterion to define runaway limits in chemical reactors, 2003) 2- Studies aimed to determine the QFS operating region high safety and productivity - Methods based on CO-REACTANT ACCUMULATION MINIMIZATION (e.g. Molga and Westerterp, No More Runaways in Fine Chemical Reactors, 2004) 13

14 THE LIMITS - Limits of the methods belonging to first group: They are not able to detect safe and productive operating conditions (QFS) - Limits of the methods belonging to the second group: They are able to treat only systems involving a single reaction 14

15 ENTERPRISES REQUIREMENTS Chemical enterprises treat complex reacting systems and want to achieve these goals: 1- High productivity 2- Safe conditions 3- Low kinetic and thermo-chemical investigation costs SAFE PROCESS OPTIMIZATION A problem not be faced yet 15

16 MAIN AIM OF THE WORK Development of safe, reliable and low-cost OPTIMIZATION PROCEDURES able to treat COMPLEX REACTING SYSTEMS (e.g. multiple and chain reactions) for ISOPERIBOLIC SEMIBATCH REACTORS 16

17 WORK OUTLINE 1- Development of a TOPOLOGICAL THEORY and a non-arbitrary definition of high productive operating conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of a generalized OPTIMIZATION PROCEDURE based on the topological theory 4- Development of an EXPERIMENTAL topological OPTIMIZATION PROCEDURE 5- CONCLUSIONS 17

18 WORK OUTLINE 1- Development of a TOPOLOGICAL THEORY and a non-arbitrary definition of high productive operating conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of a generalized OPTIMIZATION PROCEDURE based on the topological theory 4- Development of an EXPERIMENTAL topological OPTIMIZATION PROCEDURE 5- CONCLUSIONS 18

19 TOPOLOGICAL APPROACH What is TOPOLOGY? Topology studies the base properties of n- dimensional objects called manifolds, namely the properties that depend only on the fold; distances, which are fundamental to study the geometry of an object, are ignored. Möbius Strip Klein Bottle Umbilic Torus 19

20 TOPOLOGICAL APPROACH How can TOPOLOGY be useful for safe process optimization? 20

21 21 TOPOLOGICAL CRITERION THEORY Let us consider the following system of ODEs that describes a generic isoperibolic SB process: R B X D Desired Product M P Dosed Reactant 0 0, , 1 1 0, 0. 1,2,...,,,,, cool i i eff cool NR j j ad j NR j j j j i C I N i d d d d d d d d f RE Da d d exo i

22 TOPOLOGICAL CRITERION THEORY The solution is a monodimensional variety called: TRAJECTORY Phase Space 2 It is not important how many dependent variables 1 define a point of the trajectory because a trajectory is always a finite lenght line... and all finite lines are homeomorphic each other 22

23 TOPOLOGICAL APPROACH How a TRAJECTORY evolves changing one system constitutive parameter (as t dos ) or initial condition (as T cool )? It evolves exhibiting the same limited set of physical phenomena 23

24 TOPOLOGICAL CRITERION THEORY Let us generate the phase portraits (PPs) corresponding to this ODEs system when T cool (or t dos ) is varied and a consecutive reactions (or an emulsion polymerization) scheme is implemented. T cool t dos 24

25 TOPOLOGICAL APPROACH No NOTABLE PROPERTIES can be detected observing such PPs... We need a MATHEMATICAL TRICK 25

26 TOPOLOGICAL CRITERION THEORY Considering that our aims are: - System Thermal Characterization - Maximization of reactor productivity we can decide to explore the trajectory evolution only looking for: - Temperature - Conversion with respect to the desired product and we can generate a 2D-chart called X-space 26

27 TOPOLOGICAL CURVE... which reports the maximum of each trajectory with respect to temperature as a function of the X-conversion at such a maximum. T cool t dos 27

28 TOPOLOGICAL APPROACH TOPOLOGICAL CURVES for the following reacting schemes have been generated: 1- Single Reaction with autocatalytic behavior 2- Single Reaction without autocatalytic behavior 3- Two Consecutive Reactions (the first with autocatalytic behavior) 4- Chain Reactions (solution and emulsion homopolymerizations) 5- Autocatalytic Catalyzed Reactions 28

29 CHARACTER OF THE INVERSION POINTS T cool Topological Curve t dos Topological Curve 1- Transition RW before t dos 1- Transition RW after t dos RW after t dos RW before t dos RW before t dos RW before t dos 2- QFS 2- QFS QFS QFS RW after t dos QFS 3- Runaway QFS 3- Starving STV 29

30 QFS TOPOLOGICAL CRITERION THEOREM Theorem: Independently on which is the topological curve generating parameter Whenever an inversion of the topological curve with a concavity towards right is observed a QFS boundary is detected Corollary: The QFS inversion represents an intrinsic behavior of the system 30

31 THEORETICAL VALIDATION of the COROLLARY Topological Criterion intrinsicity validation through parametric sensitivity Two consecutive reactions: nitric acid oxidation of 2-octanol to 2-octanone 31

32 WORK OUTLINE 1- Development of a TOPOLOGICAL THEORY and a non-arbitrary definition of high productive operating conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of a generalized OPTIMIZATION PROCEDURE based on the topological theory 4- Development of an EXPERIMENTAL topological OPTIMIZATION PROCEDURE 5- CONCLUSIONS 32

33 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 1: Emulsion Homopolymerization of Vinyl Acetate thermally initiated by KPS DSC characterization KPS SLS PVA MAT parameter Laboratory tests (50 ml) at different monomer dosing rates Minimum Boiling Point: EMAT = 83 C 33

34 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 1: Emulsion Homopolymerization of Vinyl Acetate thermally initiated by KPS Kinetics and other parameters Determination of kinetic and constitutive model parameters through fitting of T vs. t isoperibolic RC1 data (test at t dos = 10 min) 34

35 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 1: Emulsion Homopolymerization of Vinyl Acetate thermally initiated by KPS Topological Evaluation Dosing times [min] Topological Classification RUN RW RUN 2 10 RW RUN RW/QFS RUN 4 15 QFS RUN 5 30 STV 35

36 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 1: Emulsion Homopolymerization of Vinyl Acetate thermally initiated by KPS Experimental Classification RUN 1 RW boiling foam RUN 2 RW RUN 3 RW/QFS boiling light t dos boiling RUN 4 QFS no boiling 36

37 EXPERIMENTAL VALIDATION of the THEOREM Results comparison for case n 1 Topological Classification Experimental Classification RUN 1 RW RUN 1 RW RUN 2 RW RUN 2 RW RUN 3 RW/QFS RUN 3 RW/QFS RUN 4 QFS RUN 4 QFS RUN 5 STV RUN 5 STV Experimental validation of the topological curve inversions 37

38 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 2: Oxidation of 2-octanol to 2-octanone by nitric acid 1) (A) OH NO (B) (C) O NO (B) 2) O NO Mixture of (C) (B) (D) carboxylic acids

39 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 2: Oxidation of 2-octanol to 2-octanone by nitric acid Topological Evaluation (Data from a literature case-study) C-Space T cool Topological Classification [ C] RUN 1 1 QFS C RUN 2 7 NO IGN/RW RUN 3 17 RW RUN 4 31 QFS D QFS Inversion RUN 1 Runaway Inversion Transition Inversion RUN 2 RUN 5 60 QFS D ζ c (Ψ MAX ) [-] 39

40 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 2: Oxidation of 2-octanol to 2-octanone by nitric acid Topological Evaluation (Data from a literature case-study) D-Space T cool [ C] Topological Classification RUN 1 1 QFS C Transition Inversion RUN 2 7 NO IGN/RW RUN 3 17 RW RUN 4 31 QFS D QFS Inversion RUN 3 RUN 4 RUN 5 RUN 5 60 QFS D 40

41 EXPERIMENTAL VALIDATION of the THEOREM CASE STUDY n 2: Oxidation of 2-octanol to 2-octanone by nitric acid T cool Experimental Classification RUN 1 QFS C RUN 3 RW RUN 5 QFS D RUN 2 NO IGN RUN 4 QFS D 41

42 EXPERIMENTAL VALIDATION of the THEOREM Results comparison for case n 2 Topological Classification Experimental Classification RUN 1 QFS C RUN 1 QFS C RUN 2 MI 2 RUN 2 MI 2 RUN 3 RW RUN 3 RW RUN 4 QFS D RUN 4 QFS D RUN 5 QFS D RUN 5 QFS D Experimental validation of the topological curve inversions 42

43 WORK OUTLINE 1- Development of a TOPOLOGICAL THEORY and a non-arbitrary definition of high productive operating conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of a generalized OPTIMIZATION PROCEDURE based on the topological theory 4- Development of an EXPERIMENTAL topological OPTIMIZATION PROCEDURE 5- CONCLUSIONS 43

44 TOPOLOGICAL OPTIMIZATION PROCEDURE Scheme of the optimization procedure: 1- Choose desired X-conversion; 2- Experimental determination of the MAT parameter and kinetics; 3- Choose a generating parameter: e.g. T cool 4- Choose an iterating parameter: e.g. t dos 5- Starting from a minimum t dos, search for the QFS inversion; 6- If T MAX (T cool,qfs ) < MAT and X-conversion is above the desired one, t dos,opt and T cool,opt have been determined; 7- If T MAX (T cool,qfs ) > MAT or X-conversion is under the desired one, t dos must be increased until convergence. If convergence is not reached the process can not be carried out in isoperibolic mode shift to isothermal mode. 44

45 WORK OUTLINE 1- Development of a TOPOLOGICAL THEORY and a non-arbitrary definition of high productive operating conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of a generalized OPTIMIZATION PROCEDURE based on the topological theory 4- Development of an EXPERIMENTAL topological OPTIMIZATION PROCEDURE 5- CONCLUSIONS 45

46 EXPERIMENTAL DESIGN OF THE CURVE CASE STUDY: Solution Homopolymerization of Butyl Acrylate in Ethyl Acetate initiated by AIBN Topological Space 46

47 WORK CONCLUSIONS 1- Development of a TOPOLOGICAL THEORY and a nonarbitrary definition of QFS conditions for both simple and complex reacting systems 2- EXPERIMENTAL VALIDATION of the topological method 3- Development of generalized OPTIMIZATION PROCEDURES based on the topological theory 4- Development of an EXPERIMENTAL based topological OPTIMIZATION PROCEDURE 47

Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes

Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes Copelli S., Maestri F., Rota R. Politecnico di Milano - Dipartimento di Chimica, Materiali

More information

Safe optimization of potentially runaway processes using topology based tools and software

Safe optimization of potentially runaway processes using topology based tools and software Safe optimization of potentially runaway processes using topology based tools and software Sabrina Copelli a, Marco Derudi b,*, Renato Rota b, Vincenzo Torretta a a Università degli Studi dell Insubria,

More information

Parametric Sensitivity in Chemical Systems

Parametric Sensitivity in Chemical Systems Parametric Sensitivity in Chemical Systems A. Varma M. Morbidelli H.Wu CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv 1 Introduction 1 I. I The Concept of Sensitivity 1 1.2 Uses of the Sensitivity

More information

Facing the Hazard of Biphasic, Unstable, Highly Exothermic Process: the Case of Epoxidation of Vegetable Oils

Facing the Hazard of Biphasic, Unstable, Highly Exothermic Process: the Case of Epoxidation of Vegetable Oils 493 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 48, 016 Guest Editors: Eddy de Rademaeker, Peter Schmelzer Copyright 016, AIDIC Servizi S.r.l., ISBN 978-88-95608-39-6; ISSN 83-916 The Italian

More information

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI

Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation. Ken First Dow Chemical Company Midland, MI Incorporation of Reaction Chemicals Testing Data in Reactivity Hazard Evaluation Ken First Dow Chemical Company Midland, MI Reactivity Hazard Screening Evaluation Evaluation of reactivity hazards involves

More information

Where ω is the mass fraction of species k, Ω

Where ω is the mass fraction of species k, Ω THERMOCOUPLES POSITIONING FOR EARLY-WARNING DETECTION OF THERMAL RUNAWAY 1 MATTEO RIZZOTTO, 2 FEDERICO FLORIT, 3 RENATO ROTA, 4 VALENTINA BUSINI Politecnico di Milano, Dipartimento di Chimica, Materiali

More information

Process Safety. Thermal analysis and calorimetry solutions. Some international references. Excellence in thermal analysis and calorimetry

Process Safety. Thermal analysis and calorimetry solutions. Some international references. Excellence in thermal analysis and calorimetry 12 Some international references Sanofi Aventis - France Diosynth - Netherlands rganon - Netherlands Astra Zeneca - Sweden Akzo Nobel - Netherlands ril Industrie, Groupe Servier - France Astra Zeneca -

More information

Toluene Mono-nitration in a Semi-batch Reactor

Toluene Mono-nitration in a Semi-batch Reactor Toluene Mono-nitration in a Semi-batch Reactor 37 Central European Journal of Energetic Materials, 2008, 5(2), 37-47. ISSN 1733-7178 Toluene Mono-nitration in a Semi-batch Reactor Li-Ping CHEN, Wang-Hua

More information

Optimization of a Nitration Reaction

Optimization of a Nitration Reaction CBC-PROCOS S.p.A. - Research and Development Laboratory - Calorimetry Optimization of a Nitration Reaction Alessandro Barozza*, Paolo Paissoni, Jacopo Roletto barozza@procos.it Giornata di Studio sullo

More information

Cascade enzymatic cleavage of the β-o-4 linkage in a lignin model compound

Cascade enzymatic cleavage of the β-o-4 linkage in a lignin model compound Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Cascade enzymatic cleavage of the β--4 linkage in a lignin model compound

More information

AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION

AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION 1. Introduction Stefan Bohm, Günther Hessel, Holger Kryk, Horst-Michael Prasser, and Wilfried Schmitt

More information

Kinetics and Safety Analysis of Peracetic Acid

Kinetics and Safety Analysis of Peracetic Acid 559 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 48, 216 Guest Editors: Eddy de Rademaeker, Peter Schmelzer Copyright 216, AIDIC Servizi S.r.l., ISBN 978-88-9568-39-6; ISSN 2283-9216 The Italian

More information

PhD in INDUSTRIAL CHEMISTRY AND CHEMICAL ENGINEERING - 33rd cycle

PhD in INDUSTRIAL CHEMISTRY AND CHEMICAL ENGINEERING - 33rd cycle PhD in INDUSTRIAL CHEMISTRY AND CHEMICAL ENGINEERING - 33rd cycle Number of scholarship offered 6 Department DIPARTIMENTO DI CHIMICA, MATERIALI E INGEGNERIA CHIMICA "GIULIO NATTA" Description of the PhD

More information

PLANNING PROTECTION MEASURES AGAINST RUNAWAY REACTIONS USING CRITICALITY CLASSES

PLANNING PROTECTION MEASURES AGAINST RUNAWAY REACTIONS USING CRITICALITY CLASSES PLANNING PROTECTION MEASURES AGAINST RUNAWAY REACTIONS USING CRITICALITY CLASSES Francis Stoessel Swiss Institute for the Promotion of Safety & Security, Schwarzwaldallee 215; WRO-1093.3.35, CH-4002 Basel;

More information

An Introduction to Reaction Calorimetry

An Introduction to Reaction Calorimetry An Introduction to Reaction Calorimetry Syrris A brief history Driven by Productizing Science Founded in 2001 to address the challenges faced by the pharmaceutical industry Syrris is the longest established

More information

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing HW Help Perform Gross Profitability Analysis on NaOH + CH4 --> Na+CO+H NaOH+C-->Na+CO+1/H NaOH+1/ H-->Na+HO NaOH + CO Na+CO+1/H How do you want to run the reaction? NaOH - Solid, Liquid or Gas T for ΔGrxn

More information

USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS

USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS USE OF DETAILED KINETIC MODELS FOR MULTISCALE PROCESS SIMULATIONS OF SULFUR RECOVERY UNITS F. Manenti*, D. Papasidero*, A. Cuoci*, A. Frassoldati*, T. Faravelli*, S. Pierucci*, E. Ranzi*, G. Buzzi-Ferraris*

More information

Thermal Safety Software (TSS) series

Thermal Safety Software (TSS) series Thermal Safety Software (TSS) series the analog-free methodology and software for reaction hazard assessment of Chemical Processes and Products. TSS is the integrated system which covers the entire spectrum

More information

Thermal stability of dry detergent formulation containing sodium percarbonate

Thermal stability of dry detergent formulation containing sodium percarbonate Thermal stability of dry detergent formulation containing sodium percarbonate Fabio Zonfrilli, Sarah Germanà, Vincenzo Guida Procter & Gamble Italia Via Ardeatina 100, 0040, S. Palomba Pomezia (RM), Italy

More information

PROCEEDINGS of the 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology

PROCEEDINGS of the 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology 5 th International Conference on Chemical Technology 10. 12. 4. 2017 Mikulov, Czech Republic www.icct.cz PROCEEDINGS of the 5 th International Conference on Chemical Technology www.icct.cz INHERENTLY SAFER

More information

Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes

Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes Kamala Jyotsna G, Sindhanur Srikanth, Vinay Ratnaparkhi, and Rakeshwar Bandichhora * Research

More information

An Integrated Approach for the Early Detection of Runaway Reactions by Using UV-Visible and Temperature Sensors

An Integrated Approach for the Early Detection of Runaway Reactions by Using UV-Visible and Temperature Sensors A publication of VOL. 11, 213 Chief Editor: Sauro Pierucci Copyright 213, AIDIC Servizi S.r.l., ISBN 978-88-9568-55-6; ISSN 236-5969 AIDIC CONFERENCE SERIES The Italian Association of Chemical Engineering

More information

STK-Greifensee Nov. 6 th 2002 Thermal hazards & Storage of self-reactive chemicals

STK-Greifensee Nov. 6 th 2002 Thermal hazards & Storage of self-reactive chemicals AKTS AG TECHNO-Pôle 5 3960 Siders Switzerland Phone: +41-848 - 800221 Fax: +41-848 - 800222 URL: http://www.akts.com e-mail: info@akts.com Advanced Kinetics and Technology Solutions STK-Greifensee Nov.

More information

Combining HAZOP with Dynamic Process Model Development for Safety Analysis

Combining HAZOP with Dynamic Process Model Development for Safety Analysis Combining HAZOP with Dynamic Process Model Development for Safety Analysis Shimon Eisenberg a, Mordechai Shacham a and Neima Brauner b a Dept. Chem. Eng., Ben-Gurion University Beer-Sheva, Israel b School

More information

THE VERSATILE VSP2: A TOOL FOR ADIABATIC THERMAL ANALYSIS AND VENT SIZING APPLICATIONS

THE VERSATILE VSP2: A TOOL FOR ADIABATIC THERMAL ANALYSIS AND VENT SIZING APPLICATIONS THE VERSATILE VSP2: A TOOL FOR ADIABATIC THERMAL ANALYSIS AND VENT SIZING APPLICATIONS Charles F. Askonas, Dr. James P. Burelbach, and Dr. Joseph C. Leung Fauske and Associates, Inc. 16W070 W. 83 rd Street

More information

Chemistry Stage 6 Syllabus

Chemistry Stage 6 Syllabus 8.5 Energy Contextual Outline Anthropologists and palaeontologists tell us that one of the important cultural achievements of early humans was the discovery of fire and the invention of ways to use fire.

More information

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up SYMPOSIUM SERIES NO 16 HAZARDS 25 215 IChemE Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up David Dale, Process Safety Manager, SciMed/Fauske and Associates, Unit B4, The Embankment

More information

FIRE PROTECTION MEASURES FOR VESSELS CONTAINING REACTIVE CHEMICALS

FIRE PROTECTION MEASURES FOR VESSELS CONTAINING REACTIVE CHEMICALS FIRE PROTECTION MEASURES FOR VESSELS CONTAINING REACTIVE CHEMICALS J A Hare 1,3, L Cusco 1, D C Kerr 1 and M D Bishopp 2 1 Health and Safety Laboratory, Process Safety Section 2 Health and Safety Executive,

More information

THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS

THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS R.L. ROGERS* Dewar Calorimetry is one of the simplest and most useful techniques used in the assessment of chemical reaction

More information

Calorimetry Guide. Safety by Design What do we Learn from Reaction Calorimetry?

Calorimetry Guide. Safety by Design What do we Learn from Reaction Calorimetry? Calorimetry Guide What do we Learn from Reaction Calorimetry? Developing new compounds and transferring them to manufacturing requires an understanding of the chemical route, process and all its parameters.

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

Mixtures and Solutions

Mixtures and Solutions Grade 5 Physical Science Module Mixtures and Solutions In a code such as 5.2.8.D.1, the 5 indicates the science standards, the 2 indicates the physical science standard within the set of science standards,

More information

I. CHEM. E. SYMPOSIUM SERIES NO. 68

I. CHEM. E. SYMPOSIUM SERIES NO. 68 ADIABATIC CALORIMETRY AND SIKAREX TECHNIQUE L. Hub* The suitability of adiabatic calorimetry for safety investigations, the specific requirements on the experimental set-up and the problems of correct

More information

Process Safety. Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant

Process Safety. Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant Process Safety Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant Process Safety Process Safety and Hazard Assessment From Early Development to Manufacturing The importance

More information

Drum Burst due to Runaway Reaction and the Limits of MOC

Drum Burst due to Runaway Reaction and the Limits of MOC 805 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 48, 2016 Guest Editors: Eddy de Rademaeker, Peter Schmelzer Copyright 2016, AIDIC Servizi S.r.l., ISBN 978-88-95608-39-6; ISSN 2283-9216 The

More information

T h e r m a l a n a l y s i s a n d c a l o r i m e t r y s o l u t i o n s

T h e r m a l a n a l y s i s a n d c a l o r i m e t r y s o l u t i o n s T h e r m a l a n a l y s i s a n d c a l o r i m e t r y s o l u t i o n s calvet 2 3 Process Safety Our Products The DSC131 evo is a highly robust and flexible DSC designed for busy laboratories with

More information

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process

Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Simulation of Butyl Acetate and Methanol Production by Transesterification Reaction via Conventional Distillation Process Nikhil V. Sancheti Department of Chemical Engineering L.I.T., Nagpur, Maharashtra,

More information

Solvothermal Technique Guidelines

Solvothermal Technique Guidelines Solvothermal Technique Guidelines When performing a solvothermal reaction, the first thing you need to do is to check the physical properties of your reactants. For a regular solvothermal reaction, there

More information

Kinetic Study of the Effect of Catalyst in the Polycondensation of Lactic Acid to Produce Low Molecular Weight Polymers

Kinetic Study of the Effect of Catalyst in the Polycondensation of Lactic Acid to Produce Low Molecular Weight Polymers Kinetic Study of the Effect of Catalyst in the Polycondensation of Lactic Acid to Produce Low Molecular Weight Polymers Davide Moscatelli*, Simone Gelosa*, Harshe Yogesh and Giuseppe Storti * Dept. di

More information

Pilot Plant Reactive Chemistry Incidents: Case Studies and Prevention

Pilot Plant Reactive Chemistry Incidents: Case Studies and Prevention Pilot Plant Reactive Chemistry Incidents: Case Studies and Prevention Dennis C. Hendershot Albert I. Ness Rohm and Haas Company Engineering Division Croydon, PA, USA For presentation at the American Institute

More information

Implementation of the Dynamic Modeling for Development of Chemical Processes

Implementation of the Dynamic Modeling for Development of Chemical Processes CHEMICAL ENGINEERING TRANSACTIONS Volume 21, 2010 Editor J. J. Klemeš, H. L. Lam, P. S. Varbanov Copyright 2010, AIDIC Servizi S.r.l., ISBN 978-88-95608-05-1 ISSN 1974-9791 DOI: 10.3303/CET1021170 1009

More information

Use of the graphical analytic methods of studying the combustion processes in the internal combustion

Use of the graphical analytic methods of studying the combustion processes in the internal combustion Use of the graphical analytic methods of studying the combustion processes in the internal combustion engine combustion chamber on the basis of similarity criterion S. V. Krasheninnikov Samara State Aerospace

More information

ChemInform Saint Petersburg Ltd. Thermal Safety Software (TSS) Assessing Thermal Hazards of Chemical Processes and Products.

ChemInform Saint Petersburg Ltd. Thermal Safety Software (TSS) Assessing Thermal Hazards of Chemical Processes and Products. TSS eliminating hazard on the road to profit ChemInform Saint Petersburg Ltd. Thermal Safety Software (TSS) Assessing Thermal Hazards of Chemical Processes and Products. From experimental study of a reaction

More information

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

INTRODUCTION TO MAGNETIC NUCLEAR FUSION INTRODUCTION TO MAGNETIC NUCLEAR FUSION S.E. Sharapov Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK With acknowledgments to B.Alper for use of his transparencies

More information

Quiz 5 Introduction to Polymers

Quiz 5 Introduction to Polymers 100506 Quiz 5 Introduction to Polymers 1) Polyurethane in the video shown in class is formed from two liquids that are mixed. After mixing the solution foams and expands fairly rapidly forming a solid

More information

Safety of LPG Rail Transportation

Safety of LPG Rail Transportation Safety of LPG Rail Transportation Valentina Busini 1*, Marco Pontiggia 1, Marco Derudi 1, Gabriele Landucci 2, Valerio Cozzani 3, Renato Rota 1 1 Politecnico di Milano, Dipartimento di Chimica, Materiali

More information

Analysis of Thermal Runaway Scenarios in a Chemical Reactor

Analysis of Thermal Runaway Scenarios in a Chemical Reactor Analysis of Thermal Runaway Scenarios in a Chemical Reactor 1 Benamrane Badrtamam *, 1 Bourmada Noureddine, 2 Chetouani Yahya 1,2 Institute for Industrial Health and Safety, Laboratory of Research in Industrial

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

Chemical Inventory. Each area must maintain a complete, accurate and up to date chemical inventory. The inventory should include: All Chemicals

Chemical Inventory. Each area must maintain a complete, accurate and up to date chemical inventory. The inventory should include: All Chemicals Hazardous Materials Chemical Inventory Each area must maintain a complete, accurate and up to date chemical inventory. The inventory should include: All Chemicals Hazardous Non-hazardous Compressed Gasses

More information

Increasing the Yield of 2-Nitrobenzaldehyde During Benzaldehyde Nitration by Mixed Acid: Chemical and Safety Investigation

Increasing the Yield of 2-Nitrobenzaldehyde During Benzaldehyde Nitration by Mixed Acid: Chemical and Safety Investigation 181 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 36, 2014 Guest Editors: Valerio Cozzani, Eddy de Rademaeker Copyright 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-27-3; ISSN 2283-9216 The

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level Centre Number Candidate Number Candidate Name CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/2 PAPER 2 OCTOBER/NOVEMBER

More information

6.3. Theories of Reaction Rates. Collision Theory. The Effect of Concentration on Reactant Rates

6.3. Theories of Reaction Rates. Collision Theory. The Effect of Concentration on Reactant Rates Theories of Reaction Rates 6.3 In section 6.2, you explored the rate law, which defines the relationship between the concentrations of reactants and reaction rate. Why, however, does the rate of a reaction

More information

Safe Handling of Peroxide-Formers (PFs)

Safe Handling of Peroxide-Formers (PFs) Safe Handling of Peroxide-Formers (PFs) Many common laboratory reagents can undergo auto-oxidation under normal storage conditions resulting in the unwanted formation of peroxides. This often is only a

More information

Effect of the Reaction Bath Temperature in a Fixed-bed Reactor for Oxidation of o-xylene over V 2 O 5 /TiO 2 Catalysts

Effect of the Reaction Bath Temperature in a Fixed-bed Reactor for Oxidation of o-xylene over V 2 O 5 /TiO 2 Catalysts Korean J. Chem. Eng., 17(1), 81-85 (2000) Effect of the Reaction Bath Temperature in a Fixed-bed Reactor for Oxidation of o-xylene over V 2 O 5 /TiO 2 Catalysts Yeung Ho Park, Seung Jun Kim and Shin Choon

More information

Please bubble in your name (LAST NAME first) and student number on the scantron

Please bubble in your name (LAST NAME first) and student number on the scantron CHEM 2130 Final Exam NAME: Please bubble in your name (LAST NAME first) and student number on the scantron 1) To initiate enolate formation, which proton should be removed? 1) 1 2) 2 3) 3 4) 4 5) 5 2)

More information

PEROXIDE-FORMING CHEMICALS

PEROXIDE-FORMING CHEMICALS XVIII. PEROXIDE-FORMING CHEMICALS Some common laboratory chemicals can form peroxides on exposure to air. Peroxides are shocksensitive and can be violently explosive in concentrated form or as solids.

More information

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt IDEAL MODELS OF REACTORS A. Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Thermodynamic state, conversion degree, extent of reaction, classification of chemical reactors,

More information

ASSESSMENT OF THE HAZARDS CAUSED BY ACCIDENTAL DECOMPOSITION PRODUCTS

ASSESSMENT OF THE HAZARDS CAUSED BY ACCIDENTAL DECOMPOSITION PRODUCTS ASSESSMENT OF THE HAZARDS CAUSED BY ACCIDENTAL DECOMPOSITION PRODUCTS Alessandro Tugnoli 1, Federica Barontini 2, Mauro Cordella 1, Pamela Morra 1, Ilaria Di Somma 3, Roberto Sanchirico 4, Antonino Pollio

More information

RUNAWAY REACTIONS Experimental Characterization and Vent Sizing

RUNAWAY REACTIONS Experimental Characterization and Vent Sizing RUNAWAY REACTIONS Experimental Characterization and Vent Sizing Ron Darby Professor of Chemical Engineering Texas A&M University College Station, TX 77843-3122 (979) 845-3301 r-darby@tamu.edu ARSST CALORIMETER

More information

Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide

Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide Thermal Hazard Analysis of Methyl Ethyl Ketone Peroxide Ron-Hsin Chang, Chi-Min Shu and Po-Yin Yeh Process Safety and Disaster Prevention Laboratory, Department of Environmental and Safety Engineering,

More information

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4 SUPPORTING INFORMATION Introduction 1 DSC scan 5-bromo-2-aminopyridine..3 DSC scan 5-bromo-2-nitropyridine.....4 Oxidant mixture. Adiabatic test stability, glass cell and Hastelloy C22 test cell 5 Hastelloy

More information

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline

Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Chem 1075 Chapter 19 Organic Chemistry Lecture Outline Slide 2 Introduction Organic chemistry is the study of and its compounds. The major sources of carbon are the fossil fuels: petroleum, natural gas,

More information

Hazards of Energetic Reactions, aka Why Things Go Boom

Hazards of Energetic Reactions, aka Why Things Go Boom Hazards of Energetic Reactions, aka Why Things Go Boom David Frurip, PhD MSU Consultant Midland, MI 1 My Background Retired as the Technical Leader of Dow s Reactive Chemicals Discipline 32 Years at Dow

More information

2 4 Chemical Reactions and Enzymes Slide 1 of 34

2 4 Chemical Reactions and Enzymes Slide 1 of 34 2 4 Chemical Reactions and Enzymes 1 of 34 Chemical Reactions Chemical Reactions A chemical reaction is a process that changes one set of chemicals into another set of chemicals. Some chemical reactions

More information

IMPROVED ADIABATIC CALORIMETRY IN THE PHI-TEC APPARATUS USING AUTOMATED ON-LINE HEAT LOSS COMPENSATION

IMPROVED ADIABATIC CALORIMETRY IN THE PHI-TEC APPARATUS USING AUTOMATED ON-LINE HEAT LOSS COMPENSATION # 27 IChemE IMPROVED ADIABATIC CALORIMETRY IN THE PHI-TEC APPARATUS USING AUTOMATED ON-LINE HEAT LOSS COMPENSATION B Kubascikova, D.G. Tee and S.P. Waldram HEL Ltd, 5 Moxon Street, Barnet, Hertfordshire,

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Monitoring polymerization

Monitoring polymerization Monitoring polymerization LiquiSonic Application Report Dr. rer. nat. Frank Dinger! SensoTech GmbH, Steinfeldstraße 3, D 39179 Magdeburg-Barleben Tel: +49 39203 961300, Email: info@sensotech.com Web: www.sensotech.com

More information

Safe Operating Procedure

Safe Operating Procedure Safe Operating Procedure (Reviewed 1/09) USE AND STORAGE OF PEROXIDE-FORMING CHEMICALS (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) Some common laboratory

More information

Classification of Mystery Substances

Classification of Mystery Substances Classification of Mystery Substances This document supports the safety activity Mystery Substance Identification: The Identification of Unlabeled Chemicals Found on School Premises from Flinn Scientific.

More information

Robust Optimal Control for Nonlinear Dynamic Systems

Robust Optimal Control for Nonlinear Dynamic Systems Robust Optimal Control for Nonlinear Dynamic Systems, Professor for Optimization in Engineering, Electrical Engineering Department (ESAT) K.U. Leuven, Belgium Joint work with Peter Kuehl, Boris Houska,

More information

Section 9: Thermodynamics and Energy

Section 9: Thermodynamics and Energy Section 9: Thermodynamics and Energy The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 9.01 Law of Conservation of Energy Chemistry (11)(A)

More information

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE

POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE POLYMERIZATION REACTION MONITORING FOR PSA PRODUCTION USING AN ATR-FTIR PROBE Renata Jovanović, Doctoral student, Department of Chemical Engineering, University of Ottawa, Ottawa, Canada, (jovanovi@genie.uottawa.ca)

More information

Unit 3: Classification of Hazardous Materials

Unit 3: Classification of Hazardous Materials Unit 3: Classification of Hazardous Materials Terminal Objective Upon completion of this unit, participants will be able to classify hazardous materials that were identified during the fire inspection

More information

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 4 Step-growth Polymerization (Refer Slide Time: 00:27) In the last lecture, we were discussing

More information

A SYSTEMATIC APPROACH TO REACTIVE CHEMICALS ANALYSIS

A SYSTEMATIC APPROACH TO REACTIVE CHEMICALS ANALYSIS A SYSTEMATIC APPROACH TO REACTIVE CHEMICALS ANALYSIS M. Sam Mannan, William J. Rogers, and Abdulrehman Aldeeb Mary Kay O Connor Process Safety Center, Chemical Engineering Department, Texas A&M University

More information

THE STORAGE, HANDLING AND PROCESSING OF DANGEROUS SUBSTANCES

THE STORAGE, HANDLING AND PROCESSING OF DANGEROUS SUBSTANCES THE STORAGE, HANDLING AND PROCESSING OF DANGEROUS SUBSTANCES LEARNING OUTCOMES On completion of this element, you should be able to demonstrate understanding of the content through the application of knowledge

More information

Chapter 4 Copolymerization

Chapter 4 Copolymerization Chapter 4 Copolymerization 4.1 Kinetics of Copolymerization 4.1.1 Involved Chemical Reactions Initiation I 2 + M 2R 1 r = 2 fk d I 2 R I Propagation Chain Transfer Termination m,n + k p m+1,n m,n + B k

More information

Exercise 1. Material balance HDA plant

Exercise 1. Material balance HDA plant Process Systems Engineering Prof. Davide Manca Politecnico di Milano Exercise 1 Material balance HDA plant Lab assistants: Roberto Abbiati Riccardo Barzaghi Valentina Depetri LAB1-1 Conceptual design It

More information

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

St. John s College High School Mr. Trubic AP Midterm Review Packet 1 Name Date Directions: Read each question carefully and write your response in the space provided following each question. Your responses to these questions will be scored on the basis of the accuracy and

More information

Chemical Process Operating Region

Chemical Process Operating Region Inherently Safer Design Oriented Segregation of Chemical Process Operating Region Wang Hangzhou, Yuan Zhihong, Chen Bingzhen * Zhao Jinsong, Qiu Tong, He Xiaorong, Institute of Process System Engineering,

More information

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids

Experiment 7 Aldehydes, Ketones, and Carboxylic Acids Experiment 7 Aldehydes, Ketones, and arboxylic Acids Aldehydes and ketones are molecules that contain a carbonyl group, which is an oxygen atom with a double bond to a carbon atom. In an aldehyde, the

More information

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2

Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 Safety Assessment on the Storage of Irradiated Graphite Waste Produced from the Decommissioning of KRR-2 D.G. Lee, G.H. Jeong, W.Z. Oh, K.W. Lee Korea Atomic Energy Research Institute Korea ABSTRACT Irradiated

More information

R C OR' H 2 O carboxylic acid alcohol ester water side product

R C OR' H 2 O carboxylic acid alcohol ester water side product EXPERIMENT 7 SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 Materials Needed 2.0 ml of an alcohol to be chosen from the following: 1-propanol (n-propyl alcohol), 3-methyl 1-butanol (isoamyl alcohol, isopentyl

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

The Integration of Process Safety into a Chemical Reaction Engineering Course: Kinetic Modeling of the T2 Incident

The Integration of Process Safety into a Chemical Reaction Engineering Course: Kinetic Modeling of the T2 Incident The Integration of Process Safety into a Chemical Reaction Engineering Course: Kinetic Modeling of the T2 Incident Ronald J. Willey, a H. Scott Fogler b, and Michael B. Cutlip c a Department of Chemical

More information

Tesi di Dottorato di DANILO CUCCATO Matricola

Tesi di Dottorato di DANILO CUCCATO Matricola Tesi di Dottorato di DANILO CUCCATO Matricola 753302 POLITECNICO DI MILANO DIPARTIMENTO DI CHIMICA, MATERIALI E INGEGNERIA CHIMICA Giulio Natta QUANTUM CHEMISTRY INVESTIGATION OF FREE RADICAL POLYMERIZATION

More information

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes

ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes ORGANIC REACTIONS 14 APRIL 2015 Section A: Summary Notes 1. Combustion Alkanes are very important fossil fuels. The combustion of alkanes is very exothermic and carbon dioxide and water are produced. General

More information

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Multi-physics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell Keyvan Daneshvar *1, Alessandro Fantino 1, Cinzia Cristiani 1, Giovanni Dotelli 1, Renato Pelosato 1, Massimo Santarelli

More information

Dynamics of forced and unsteady-state processes

Dynamics of forced and unsteady-state processes Dynamics of forced and unsteady-state processes Davide Manca Lesson 3 of Dynamics and Control of Chemical Processes Master Degree in Chemical Engineering Davide Manca Dynamics and Control of Chemical Processes

More information

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction How can I use an acid-base reaction to separate an acid-base-neutral mixture? Objectives 1. use

More information

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System

Nonlinear Behaviour of a Low-Density Polyethylene Tubular Reactor-Separator-Recycle System European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. Nonlinear Behaviour of a Low-Density Polyethylene

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

Catalisi e stabilizzazione di schiume PIR: recenti sviluppi

Catalisi e stabilizzazione di schiume PIR: recenti sviluppi Catalisi e stabilizzazione di schiume PIR: recenti sviluppi Milano, 25 Maggio 2017 Jobst Grimminger Andrea Stefani Introduction With high energy costs, increasing importance is being placed on insulation

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

AP* Chemistry Spontaneity: Entropy and Free Energy

AP* Chemistry Spontaneity: Entropy and Free Energy WHAT DRIVES A REACTION TO BE SPONTANEOUS? AP* Chemistry Spontaneity: Entropy and Free Energy Dr. Valverde s AP Chemistry Class Chapter 17 Review: Spontaneity, Entropy, and Free Energy (1) ENTHALPY ( H)

More information

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa Presentation Overview Kinetics Reactor Design Non- Isothermal Design BASICS OF

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #2: Grignard Reaction: Preparation of Triphenylmethanol Purpose. In this lab you will use the Grignard Reaction, a classic reaction in organic

More information

Accuracy of Mathematical Model with Regard to Safety Analysis of Chemical Reactors*

Accuracy of Mathematical Model with Regard to Safety Analysis of Chemical Reactors* Accuracy of Mathematical Model with Regard to Safety Analysis of Chemical Reactors* A. MOLNÁR, J. MARKOŠ, and Ľ. JELEMENSKÝ Department of Chemical and Biochemical Engineering, Faculty of Chemical and Food

More information

V a l i d a t i o n S u m m a r y R e p o r t D o m e t i c S e r i e s M T. Translation of. page 1

V a l i d a t i o n S u m m a r y R e p o r t D o m e t i c S e r i e s M T. Translation of. page 1 Translation of Validation Summary Report DOMETIC MT4B Original report in German established by page 1 Table of Contents Description of the Validation Method...3 Test Readings MT4B at +10ºC Outside Temperature

More information

Chapter 23 Aldehydes and Ketones

Chapter 23 Aldehydes and Ketones Chapter 23 Aldehydes and Ketones Ketones are common solvents for quickdrying paints. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison, and Susan

More information