Optimization of a Nitration Reaction

Size: px
Start display at page:

Download "Optimization of a Nitration Reaction"

Transcription

1

2 CBC-PROCOS S.p.A. - Research and Development Laboratory - Calorimetry Optimization of a Nitration Reaction Alessandro Barozza*, Paolo Paissoni, Jacopo Roletto barozza@procos.it Giornata di Studio sullo Sviluppo e Sicurezza dei Processi Chimici Milano, 24 Maggio 2011

3 Formation of a Nitroester Nitration to oxigen R OH R O NO 2 Process must be run on a multi-purpose plant Economical process Safe process

4 Economical process Cheap starting material Yields Productive process Fast and easy process Green process Safe process

5 Economical process Modified from T. Li Rathman & W.F. Bailey OPRD 2009, 13,

6 From Literature Nitration with HNO 3 /H 2 SO 4 /Water Large excess of HNO 3 (3.5 eq) Conversion about 70% T: 0-5 C Batch process charge of alcohol in one single portion

7 RADEX thermal stability of final sulphonitric MXR Tj Tr C 70 Systag RADEX calorimeter Steel High pressure vessel, glass lined φ about Time relative h Tr Tj

8 Searching a new method Reaction higher temperature (room temperature) Low excess of HNO 3 (stoichiometric!) or avoid its use

9 Alternative methods of nitration More expensive method vs. direct nitration Time Reaction steps Cost of reagents Stability problem of intermediate

10 Alternative methods of DIRECT nitration HNO 3 (fuming) in various solvents (CH 2 Cl 2, CH 3 COOH) High excess of Nitric Acid is required to obtain a good conversion (α>70%) Handling of fuming nitric acid is complicate Using of HNO 3 70% gives a very low conversion even if a large excess is used

11 Nitration in Acetic Anhydride Nitration in Acetic Anhydride with fuming HNO 3

12 Nitration in Acetic Anhydride Reaction is fast and can be conducted with a small excess eq of HNO RT Final MXR is thermally stable up to 60 C (stability problem of the final molecule molecule) Process needs to be controlled by dosage of Alcohol Preparation and handling of HNO 3 solution in Ac 2 O could be problematic* Acetyl derivative <1.5% *R.Andreozzi, Journal of Hazardous Materials A90 (2002)

13 Nitration in Acetic Anhydride Work-up The final reaction mass is quenched in aqueous Ammonia In presence of Ac 2 O the reaction is violent, Acetamide is formed and a strong amount of heat is released

14 Nitration in AcOH and Ac 2 O Ac 2 O is used stoichiometric to HNO 3 AcOH is used as solvent The solution of HNO 3 in Ac 2 O/AcOH could be unstable: a right concentration must be found-outout

15 Nitration in AcOH and Ac 2 O Choosing concentrations A high concentration lowers the final cost More productive process Less Ammonia in work-up Less wastes But it can be a problem from a safety point of view A Low concentration increases safety More stable solution Decrease adiabatic temperature rise due to decomposition Decrease plosive attitude But increases process costs How much?

16 Nitration in AcOH and Ac2O An economical consideration

17 Nitration in AcOH and Ac2O An economical consideration

18 How to choose the right concentration From literature Solutions of HNO 3 in Ac 2 O are not stable (may detonate RT) if the concentration is between 50% and 85% Chemistry in Britain 1967, 3, p.504 VERIFY data from literature!

19 Tr-Tj (filt.. K 1 Solution of FUMING HNO 3 in Ac 2 O dtr/dt K/m 0.01 Tj Tr C 200 and AcOH (c. 8.3%) Systag RADEX calorimeter Steel High pressure vessel, glass lined C 40 C 50 C 60 C 70 C Time relative h Tr Tj dtr/dt Tr-Tj (filtered)

20 Tr-Tj (filt.. K 1 Solution of dtr/dt K/m 0.01 HNO 3 (c.>90%) in Ac 2 O and AcOH (c. 8.3%) Tj Tr C 200 Systag RADEX calorimeter Steel High pressure vessel, glass lined C 40 C 50 C 60 C 70 C Time relative h Tr Tj dtr/dt Tr-Tj (filtered)

21 Stability of nitrating mixture It seems that the termal stability of the nitrating mixture could be related to the presence of nitric oxides To avoid the presence of nitric oxides, do not use fuming nitric acid Use HNO 3 69% It is cheaper than Fuming HNO 3 It is easily available for amounts of about kg But it contains about 31% of water!?!

22 Producing the nitrating mixture The amount of Ac 2 O must be in relation to the amount of HNO 3 and to the amount of Water and the mixing procedure is reactive! Is it better to: Add HNO or HNO 3 (69%) (69%) to Add Ac 2 O to HNO to Ac 2O+AcOH HNO 3 (69%) (69%)+AcOH Use METTLER RC1

23 Addition of HNO HNO 3 (69%) to to Ac 2O+AcOH Isothermal 20 C METTLER TOLEDO RC1e reaction calorimeter SV01 glass 800mL reactor

24 Addition of Ac 2 O to HNO HNO 3 (69%) (69%)+AcOH Isothermal 20 C METTLER TOLEDO RC1e reaction calorimeter SV01 glass 800mL reactor T ad 0.3K T ad 83K

25 Thermal stability of final nitrating mixture Tr-Tj (filt.. K dtr/dt K/m Tj Tr C Systag RADEX calorimeter Steel High pressure vessel, glass lined C 40 C 50 C 60 C 70 C Time relative h Tr Tj dtr/dt Tr-Tj (filtered)

26 Choosing a safe concentration of HNO 3 using CHETAH software Chetah is able to perform an estimation of the plosive attitude of a mixture of compounds, starting from structures of its component and their heats of formation From CHETAH v.7.3 manual Criterion 5: "Over-all Energy Release Potential This criterion combines the four individual criteria and the number of peroxide bonds into a single "HIGH" or "LOW" rating. This over-all criterion is known to be one of the most accurate for the classification of substances for their ability to be plosive and eliminates the ambiguity which sometimes arises when the four individual criteria give different ratings (e.g. "HIGH", "LOW", "MEDIUM"). The weights assigned to the individual criteria were derived by members of ASTM Committee E-27, using sophisticated pattern recognition techniques (linear discriminant analysis) with a large database of impact-testedtested materials.

27 CHETAH ERP criterion Over-all Energy relea ase potential Green: Ac 2 O+AcOH Blue: AcOH only Final Mixture HNO 3 +AcOH+Ac 2 O Starting Point HNO 3 +AcOH+H 2 O ERP = HIGH ERP = LOW % 5% 10% 15% 20% 25% 30% 35% 40% 45% % of HNO 3 into the mixture

28 Charge Acetic Acid Proposed method Charge Nitric Acid (2.2 eq) Charge Ac 2 O maintaining 20 C Stoichiometric to (Alcohol+Water) +10% Feed controlled Final MXR thermally stable up to 40 C c. HNO 3 =21% w/w Charge the Alcohol (solid solid) in 8 identical portions, each one every 5 minutes, maintaining C Wait about 1 hour Quench the system with aqueous ammonia

29 Preparation of HNO 3 solution in AcOH Power METTLER TOLEDO RC1e reaction calorimeter SV01 glass 800mL reactor 600 Power (W) Isothermal 20 C Reaction mass (g) Reaction mass Time (minutes) Reaction Limits with baseline No. Baseline Enthalpy start start Tad Interpolation kj kg kj/(kg K) K 1 Conversion Formula Qr = Qflow + Qaccu + Qdos Calculation with mean temperature values: No

30 Addition of Ac 2 O Power (W) METTLER TOLEDO RC1e reaction calorimeter SV01 glass 800mL reactor Power Reaction Limits with baseline Isothermal 20 C Time (minutes) Dosing ramp Theoretical Stoichiometric point 1:1 mol:mol Ac 2 O/H 2 O No. Baseline Enthalpy start start Tad Interpolation kj kg kj/(kg K) K 2 Conversion Ac 2 O dosage (eq Ac 2 O / eq Water) T ad.accu = Q accumulation m stoichiometric Cp stoichimetric = ( ) J g 2.05 J/(g K) = 2.95 K

31 Addition of Alcohol Power METTLER TOLEDO RC1e reaction calorimeter SV01 glass 800mL reactor Power (W) Dosing Ramp Calorimetric conversion Dosing ramp (g) Isothermal 20 C Time (minutes) Reaction Limits with baseline No. Baseline Enthalpy start start Tad Interpolation kj kg kj/(kg K) K 1 Conversion

32 Thermal stability of final MXR Tr-Tj (filt.. K dtr/dt K/m Tj Tr C Systag RADEX calorimeter Steel High pressure vessel, glass lined C 40 C 50 C 60 C 70 C Time relative h Tr Tj dtr/dt Tr-Tj (filtered)

33 Results

34 Process Before Optimization Results Process After Optimization -31% -40% -44% -19% -21% % Required time: 400 hours Required time: 280 hours

35 Optimization of a Nitration Reaction Alessandro Barozza, Paolo Paissoni, Jacopo Roletto barozza@procos.it Giornata di Studio sullo Sviluppo e Sicurezza dei Processi Chimici Milano, 24 Maggio 2011

Calorimetry Guide. Safety by Design What do we Learn from Reaction Calorimetry?

Calorimetry Guide. Safety by Design What do we Learn from Reaction Calorimetry? Calorimetry Guide What do we Learn from Reaction Calorimetry? Developing new compounds and transferring them to manufacturing requires an understanding of the chemical route, process and all its parameters.

More information

AGrignard reaction, in which a reactant, A, is coupled with phenyl magnesium chloride, is used to

AGrignard reaction, in which a reactant, A, is coupled with phenyl magnesium chloride, is used to DEVELOPMENT OF AN EFFICIENT AND SAFE PROCESS FOR A GRIGNARD REACTION VIA REACTION CALORIMETRY H. Ferguson and Y. M. Puga The Dow Chemical Co., Inc. Engineering Sciences/Market Development A paper from

More information

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia.

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia. Study the flow diagram and then answer the questions. (a) What is the purpose

More information

Chemical Oxidation Oxidizing agents

Chemical Oxidation Oxidizing agents Chemical Oxidation CENG 4710 Environmental Control Chemical oxidation is used to detoxify waste by adding an oxidizing agent to chemically transform waste compounds. It is capable of destroying a wide

More information

Toluene Mono-nitration in a Semi-batch Reactor

Toluene Mono-nitration in a Semi-batch Reactor Toluene Mono-nitration in a Semi-batch Reactor 37 Central European Journal of Energetic Materials, 2008, 5(2), 37-47. ISSN 1733-7178 Toluene Mono-nitration in a Semi-batch Reactor Li-Ping CHEN, Wang-Hua

More information

Chemistry 30: Thermochemistry. Practice Problems

Chemistry 30: Thermochemistry. Practice Problems Name: Period: Chemistry 30: Thermochemistry Practice Problems Date: Heat and Temperature 1. Pretend you are doing a scientific study on the planet Earth. a. Name three things in the system you are studying.

More information

MultiMax Application Note

MultiMax Application Note MultiMax Application Note Investigation of an Imine Formation 1. Introduction Today s Research and Development world demands faster results to be able to deliver more products on time. Automation techniques

More information

Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system

Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system Journal of Hazardous Materials A134 (2006 1 7 Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system R. Andreozzi a,, V. Caprio a, I. Di Somma a, R. Sanchirico b a

More information

A general statement governing all systems in a state of dynamic equilibrium follows:

A general statement governing all systems in a state of dynamic equilibrium follows: Chapter 20 Experiment: LeChâtelier s Principle: Buffers OBJECTIVES: Study the effects of concentration and temperature changes on the position of equilibrium in a chemical system. Study the effect of strong

More information

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up

Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up SYMPOSIUM SERIES NO 16 HAZARDS 25 215 IChemE Analysing Phenol-Formaldehyde Resin Reaction For Safe Process Scale Up David Dale, Process Safety Manager, SciMed/Fauske and Associates, Unit B4, The Embankment

More information

1. Entropy questions: PICK TWO (6 each)

1. Entropy questions: PICK TWO (6 each) 1. Entropy questions: PICK TWO (6 each) 1.00 mole of water freezes at 0.00ºC and 1 atm, releasing 6.01 kj of heat. Calculate the change in entropy and free energy for the process. Calculate the entropy

More information

INCIDENT DURING NITRATION IN A BATCH REACTOR. K DIXON-JACKSON C.CHEM MRSC MSc*

INCIDENT DURING NITRATION IN A BATCH REACTOR. K DIXON-JACKSON C.CHEM MRSC MSc* INCIDENT DURING NITRATION IN A BATCH REACTOR K DIXON-JACKSON C.CHEM MRSC MSc* During routine production of a nitro diazo species a serious thermal incident occurred. Due to agitation stoppage a slow deflagration

More information

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C?

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? q = m C T 80 g (4.18 J/gC)(38.8-23.3C) = 5183 J 11. A piece of metal weighing

More information

Process Safety. Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant

Process Safety. Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant Process Safety Process Safety and Hazard Assessment Avoiding Incidents in the Lab and in the Plant Process Safety Process Safety and Hazard Assessment From Early Development to Manufacturing The importance

More information

A COMPARISON OF DSC AND RADEX FOR THE INVESTIGATION OF SAFETY PARAMETERS FOR INHOMOGENEOUS SYSTEMS

A COMPARISON OF DSC AND RADEX FOR THE INVESTIGATION OF SAFETY PARAMETERS FOR INHOMOGENEOUS SYSTEMS A COMPARISON OF DSC AND RADEX FOR THE INVESTIGATION OF SAFETY PARAMETERS FOR INHOMOGENEOUS SYSTEMS Markus Luginbuehl 1 and Ian Priestley 2 1 Syngenta Crop Protection, Switzerland; Tel: þ41 62 8685464,

More information

Avoid Batch Failures via Scale Down Simulation of Exothermic Reactions in the Lab

Avoid Batch Failures via Scale Down Simulation of Exothermic Reactions in the Lab Avoid Batch Failures via Scale Down Simulation of Exothermic Reactions in the Lab Leen Schellekens Applications & Technology Consultants Manager Americas VisiMix - The Influence of Mixing In Your Process

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

The Synthesis of Gun Cotton and TATP

The Synthesis of Gun Cotton and TATP CHEM 121L General Chemistry Laboratory Revision 1.1 The Synthesis of Gun Cotton and TATP Learn about the Synthesis of "Energetic" Materials. Learn about the Safe Handling of Caustic Substances. In this

More information

Class XI Chapter 6 Thermodynamics Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii)

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

calorimeter heat flow calorimetry, power compensation calorimetry

calorimeter heat flow calorimetry, power compensation calorimetry calorimeter heat flow calorimetry, power compensation calorimetry Atlas simply does it all What is the Atlas Reaction Calorimeter? The Atlas Reaction Calorimeter accurately measures the power and enthalpy

More information

Unit 15 Solutions and Molarity

Unit 15 Solutions and Molarity Unit 15 s and Molarity INTRODUCTION In addition to chemical equations chemists and chemistry students encounter homogeneous mixtures or solutions quite frequently. s are the practical means to deliver

More information

THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS

THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS THE USE OF DEWAR CALORIMETRY IN THE ASSESSMENT OF CHEMICAL REACTION HAZARDS R.L. ROGERS* Dewar Calorimetry is one of the simplest and most useful techniques used in the assessment of chemical reaction

More information

Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes

Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes Development and validation of a simple and cost effective procedure for scaling-up hazardous chemical processes Copelli S., Maestri F., Rota R. Politecnico di Milano - Dipartimento di Chimica, Materiali

More information

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need:

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need: LEC 02 Thermochemistry/Calorimetry with a calorimetric bomb What you can learn about 1st law of thermodynamics Hess law Enthalpy of combustion Enthalpy of formation Heat capacity Principle and tasks The

More information

Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes

Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes Reaction Calorimetry as a Tool for Thermal Risk Assessment and Improvement of Safe Scalable Chemical Processes Kamala Jyotsna G, Sindhanur Srikanth, Vinay Ratnaparkhi, and Rakeshwar Bandichhora * Research

More information

IB Chemistry Solutions Gasses and Energy

IB Chemistry Solutions Gasses and Energy Solutions A solution is a homogeneous mixture it looks like one substance. An aqueous solution will be a clear mixture with only one visible phase. Be careful with the definitions of clear and colourless.

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

Acid-Base Strength. Chapter 6. Monday, November 2, 2015

Acid-Base Strength. Chapter 6. Monday, November 2, 2015 Acid-Base Strength Chapter 6 Monday, November 2, 2015 Acid-Base Strength We ve seen that the reactivity of acids and bases can be viewed through the HSAB Model or the EC Model. Both of these models try

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

SCH4U: Practice Exam

SCH4U: Practice Exam SCHU_07-08 SCHU: Practice Exam Energy in Chemistry 1. Which of the following correctly describes a reaction that absorbs heat from the surroundings? a. the reaction is endothermic b. H for this reaction

More information

You may remove this page. ph + poh = 14. ph = -log[h+], [H+] = 10-pH qlost = -qgained

You may remove this page. ph + poh = 14. ph = -log[h+], [H+] = 10-pH qlost = -qgained You may remove this page. ph = -log[h+], [H+] = 10-pH 1 2 / ph + poh = 14 0.693 q = mc T q = nlr HLR qlost = -qgained JBA 2018 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth

More information

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy

Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy......... Standard enthalpy of formation............ (5) (b) Some mean bond enthalpies

More information

Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011

Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011 Chemistry 141 Samuel A. Abrash Chemical Reactions Lab Lecture 9/5/2011 Q: Before we start discussing this week s lab, can we talk about our lab notebooks? Sure. Q: What makes a lab notebook a good notebook?

More information

Q1. (a) The formula for the chemical compound magnesium sulphate is MgSO (2)

Q1. (a) The formula for the chemical compound magnesium sulphate is MgSO (2) Q1. (a) The formula for the chemical compound magnesium sulphate is MgSO 4. Calculate the relative formula mass (M r )of this compound. (Show your working.) (b) Magnesium sulphate can be made from magnesium

More information

MOCK FINALS APPCHEN QUESTIONS

MOCK FINALS APPCHEN QUESTIONS MOCK FINALS APPCHEN QUESTIONS For questions 1-3 Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: 2 NaOH + 2 Al + 2 H2O 2 NaAlO2 + 3 H2 If 84.1 g of NaOH and 51.0 g

More information

Paper Reference. Unit Test 6B (Synoptic) Thursday 25 January 2007 Afternoon Time: 1 hour 30 minutes

Paper Reference. Unit Test 6B (Synoptic) Thursday 25 January 2007 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference 6 2 4 6 0 2 Surname Signature Paper Reference(s) 6246/02 Edexcel GCE Chemistry Advanced Unit Test 6B (Synoptic) Thursday 25 January 2007 Afternoon Time: 1 hour

More information

Calorimetric Determination of Reaction Enthalpies

Calorimetric Determination of Reaction Enthalpies H + (aq) + OH - q H 2 O Calorimetric Determination of Reaction Enthalpies Purpose: Determine the enthalpy of dissociation of CH 3 COOH CH 3 COOH (aq) CH 3 COO - (aq) + H + (aq) Techniques: Calorimetry

More information

Reaction Calorimetry as a Tool in Process Development, Research and Safety Analysis

Reaction Calorimetry as a Tool in Process Development, Research and Safety Analysis Reaction Calorimetry as a Tool in Process Development, Research and Safety nalysis Rikard Widell Department of Chemical Engineering II, Lund University, P. O. Box 14, SE-1 Lund, Sweden bstract Reaction

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

Enthalpy and Internal Energy

Enthalpy and Internal Energy Enthalpy and Internal Energy H or ΔH is used to symbolize enthalpy. The mathematical expression of the First Law of Thermodynamics is: ΔE = q + w, where ΔE is the change in internal energy, q is heat and

More information

ADDITIONAL RESOURCES. Duration of resource: 21 Minutes. Year of Production: Stock code: VEA12052

ADDITIONAL RESOURCES. Duration of resource: 21 Minutes. Year of Production: Stock code: VEA12052 ADDITIONAL RESOURCES Chemical changes occur around us, and inside us, all the time. When chemical reactions happen, one or more new substances are formed and energy is either given off or absorbed in the

More information

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16 3..1 Energetics Bond Enthalpy 98 minutes 96 marks Page 1 of 16 Q1. (a) State what is meant by the term mean bond enthalpy. () (b) Ethanal has the structure Gaseous ethanal burns as shown by the equation

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy

Chapter Objectives. Chapter 9 Energy and Chemistry. Chapter Objectives. Energy Use and the World Economy. Energy Use and the World Economy Chapter Objectives Larry Brown Tom Holme www.cengage.com/chemistry/brown Chapter 9 Energy and Chemistry Explain the economic importance of conversions between different forms of energy and the inevitability

More information

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun DOUBLE DISPLACEMENT REACTIONS Double your pleasure, double your fun Industrial processes produce unwanted by-products. Dissolved toxic metal ions-copper, mercury, and cadmium-are common leftovers in the

More information

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36

3.2.8 Haloalkanes. Nucleophilic Substitution. 267 minutes. 264 marks. Page 1 of 36 3.2.8 Haloalkanes Nucleophilic Substitution 267 minutes 264 marks Page 1 of 36 Q1. (a) The equation below shows the reaction of 2-bromopropane with an excess of ammonia. CH 3 CHBrCH 3 + 2NH 3 CH 3 CH(NH

More information

1. Determine the mass of water that can be produced when 10.0g of hydrogen is combined with excess oxygen. 2 H 2 + O 2 2 H 2 O

1. Determine the mass of water that can be produced when 10.0g of hydrogen is combined with excess oxygen. 2 H 2 + O 2 2 H 2 O Pre-AP Chemistry Spring 2016 Final Review Objective 6.1: Students will recognize indicators of chemical change write balanced chemical equations to describe them based on common reactivity patterns. [S.12.C.1,

More information

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS

THERMODYNAMICS. Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes VERY SHORT ANSWER QUESTIONS THERMODYNAMICS Topic: 5 Gibbs free energy, concept, applications to spontaneous and non-spontaneous processes 1. What is Gibbs energy? VERY SHORT ANSWER QUESTIONS Gibbs energy (G): The amount of energy

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

Unit 4: Chemical Changes (Higher Content)

Unit 4: Chemical Changes (Higher Content) Metals react with oxygen to produce metal oxides. E.g. Copper + Oxygen > Copper Oxide The reactions are oxidation reactions because the metals gain oxygen. Reactivity of Metals Metal Extraction Metals

More information

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number.

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number. N10/4/CHEMI/SP2/ENG/TZ0/XX 88106105 CHEMISTRY STANDARD LEVEL PAPER 2 Thursday 11 November 2010 (afternoon) 1 hour 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number

More information

Experiment 6 Alcohols and Phenols

Experiment 6 Alcohols and Phenols Experiment 6 Alcohols and Phenols Alcohols are organic molecules that contain a hydroxyl (-) group. Phenols are molecules that contain an group that is directly attached to a benzene ring. Alcohols can

More information

3.2.8 Haloalkanes. Elimination. 148 minutes. 145 marks. Page 1 of 22

3.2.8 Haloalkanes. Elimination. 148 minutes. 145 marks. Page 1 of 22 3.2.8 Haloalkanes Elimination 148 minutes 145 marks Page 1 of 22 Q1. Reaction of 2-bromobutane with potassium hydroxide can produce two types of product depending on the solvent used. In aqueous solution,

More information

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT?

Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? 1 Based on the kinetic molecular theory of gases, which one of the following statements is INCORRECT? A) The collisions between gas molecules are perfectly elastic. B) At absolute zero, the average kinetic

More information

Solution Calorimetry

Solution Calorimetry Experiment 7 Solution Calorimetry Prepared by Stephen E. Schullery and Ross S. Nord, Eastern Michigan University PURPOSE Measure the heats of two simple reactions and use Hess's Law to theoretically predict

More information

ALE 9. Equilibrium Problems: ICE Practice!

ALE 9. Equilibrium Problems: ICE Practice! Name Chem 163 Section: Team Number: ALE 9. Equilibrium Problems: ICE Practice! (Reference: 17.5 Silberberg 5 th edition) Equilibrium Calculations: Show all work with correct significant figures. Circle

More information

Thermochemistry (chapter 5)

Thermochemistry (chapter 5) Thermochemistry (chapter 5) Basic Definitions: Thermochemistry = the study of the energy changes that accompany physical and chemical changes of matter. Energy is defined as the ability to do work or the

More information

MAHESH TUTORIALS I.C.S.E.

MAHESH TUTORIALS I.C.S.E. MAHESH TUTORIALS I.C.S.E. GRADE - X (2017-2018) Exam No. : MT/ICSE/SEMI PRELIM - I-SET -A 008 Sulphuric acid, Ammonia, Analytical Chemistry, Organic Chemistry HCl, Nitric acid, Metallurgy Chemistry SCIENCE

More information

Chemistry 1A Fall Midterm Exam 3

Chemistry 1A Fall Midterm Exam 3 Chemistry 1A Fall 2017 Name Student ID Midterm Exam 3 You will have 120 minutes to complete this exam. Please fill in the bubble that corresponds to the correct answer on the answer sheet. Only your answer

More information

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See

TOK: The relationship between a reaction mechanism and the experimental evidence to support it could be discussed. See Option G: Further organic chemistry (15/22 hours) SL students study the core of these options and HL students study the whole option (the core and the extension material). TOK: The relationship between

More information

11B, 11E Temperature and heat are related but not identical.

11B, 11E Temperature and heat are related but not identical. Thermochemistry Key Terms thermochemistry heat thermochemical equation calorimeter specific heat molar enthalpy of formation temperature enthalpy change enthalpy of combustion joule enthalpy of reaction

More information

Class XI Chapter 6 Thermodynamics Chemistry

Class XI Chapter 6 Thermodynamics Chemistry Class XI Chapter 6 Chemistry Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii) used

More information

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016

THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 THE FUTURE OF THE CHEMISTRY: CONTINUOUS FLOW REACTIONS BASEL 2016 CHEMICAL PLANT CONTINUOUS FLOW REACTOR The continuous flow reactor is a safe system, running chemical reactions in reduced volume with

More information

Name Date Class THE ARITHMETIC OF EQUATIONS

Name Date Class THE ARITHMETIC OF EQUATIONS 12.1 THE ARITHMETIC OF EQUATIONS Section Review Objectives Calculate the amount of reactants required or product formed in a nonchemical process Interpret balanced chemical equations in terms of interacting

More information

WINTER-15 EXAMINATION Model Answer

WINTER-15 EXAMINATION Model Answer Subject code :(735) Page of 9 Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the

More information

Enthalpy changes

Enthalpy changes 2.3.1. Enthalpy changes In an exothermic change energy is transferred from the system (chemicals) to the surroundings. The have less energy than the If an enthalpy change occurs then energy is transferred

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Sample Exercise 11.1 (p. 450) In which of the following substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH 4 ), hydrazine (H 2 NNH 2 ), methyl

More information

TOPOLOGICAL CRITERIA FOR SAFE OPTIMIZATION OF POTENTIALLY RUNAWAY PROCESSES

TOPOLOGICAL CRITERIA FOR SAFE OPTIMIZATION OF POTENTIALLY RUNAWAY PROCESSES DIPARTIMENTO DI CHIMICA, MATERIALI ED INGEGNERIA CHIMICA "Giulio NATTA INNOVHUB STAZIONI SPERIMENTALI PER L INDUSTRIA Divisione Stazione Sperimentale per i Combustibili Seminario Aspetti innovativi in

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2007 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

RUNAWAY REACTIONS Experimental Characterization and Vent Sizing

RUNAWAY REACTIONS Experimental Characterization and Vent Sizing RUNAWAY REACTIONS Experimental Characterization and Vent Sizing Ron Darby Professor of Chemical Engineering Texas A&M University College Station, TX 77843-3122 (979) 845-3301 r-darby@tamu.edu ARSST CALORIMETER

More information

AP Chemistry Review Packet #1

AP Chemistry Review Packet #1 1 AP Chemistry Review Packet #1 A. Warmup: Question 1 5 (A) CO 2 (B) H 2 O (C) BF 3 (D) NH 3 (E) CH 4 1. Has a bond angle of 109.5. 2. This is a polar molecule that is bent. 3. This is a tetrahedral molecule.

More information

MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS

MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS MARAKWET WEST DISTRICT 233/1 CHEMISTRY PAPER 1 JULY/AUGUST 2015 TIME: 2 HOURS 1. State two reasons why we use the non- luminous flame for heating in the laboratory instead of using luminous flame. 2. The

More information

The Characteristics of a Soln

The Characteristics of a Soln Goal 1 The Characteristics of a Soln Define the term solution, and, given a description of a substance, determine if it is a solution. The Characteristics of a Soln Solution (as used in chemistry) A homogenous

More information

Worksheet 5.2. Chapter 5: Energetics fast facts

Worksheet 5.2. Chapter 5: Energetics fast facts Worksheet 52 Chapter 5: Energetics fast facts 51 Exothermic and endothermic reactions Energetics deals with heat changes in chemical reactions Enthalpy is the amount of heat energy contained in a substance

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* Pre-Leaving Certificate Examination, 2012 Triailscrúdú na hardteistiméireachta, 2012 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions

More information

Chem 177 Exam II March 3, Teaching Assistants and Recitation Sections. Page Points Score Name Sections Time Stacey Althaus 5 10:00 2

Chem 177 Exam II March 3, Teaching Assistants and Recitation Sections. Page Points Score Name Sections Time Stacey Althaus 5 10:00 2 Dr. Joe Burnett Spring 2010 This exam consists of 13 questions on 9 pages Chem 177 Exam II March 3, 2010 Name Recitation TA Recitation Section Grading Teaching Assistants and Recitation Sections Page Points

More information

This paper presents the development of a complex fine chemical process by Agfa-Gevaert involving

This paper presents the development of a complex fine chemical process by Agfa-Gevaert involving DEVELOPMENT OF A REACTIVE DISTILLATION PROCESS FROM LAB TO PRODUCTION, USING MODERN TECHNIQUES Dr. Marc Bollyn, Chemical Process Development, Agfa-Gevaert N.V., and Dr. A. Wright, BatchCAD Consulting Ltd.

More information

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4

Introduction 1. DSC scan 5-bromo-2-aminopyridine..3. DSC scan 5-bromo-2-nitropyridine...4 SUPPORTING INFORMATION Introduction 1 DSC scan 5-bromo-2-aminopyridine..3 DSC scan 5-bromo-2-nitropyridine.....4 Oxidant mixture. Adiabatic test stability, glass cell and Hastelloy C22 test cell 5 Hastelloy

More information

17.2 Thermochemical Equations

17.2 Thermochemical Equations 17.2. Thermochemical Equations www.ck12.org 17.2 Thermochemical Equations Lesson Objectives Define enthalpy, and know the conditions under which the enthalpy change in a reaction is equal to the heat absorbed

More information

AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION

AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION AUTO-CATALYTIC EFFECT OF ACETIC ACID ON THE KINETICS OF THE METHANOL / ACETIC ANHYDRIDE ESTERIFICATION 1. Introduction Stefan Bohm, Günther Hessel, Holger Kryk, Horst-Michael Prasser, and Wilfried Schmitt

More information

Burgoyne Consultants Ltd., Burgoyne House, Chantry Drive, Ilkley, West Yorkshire, U.K.

Burgoyne Consultants Ltd., Burgoyne House, Chantry Drive, Ilkley, West Yorkshire, U.K. A SIMPLE METHOD OF ESTIMATING EXOTHERMICITY BY AVERAGE BOND ENERGY SUMMATION ARTHUR D. CRAVEN A simple method is described whereby the approximate exothermicity of a chemical reaction or decomposition

More information

TERMS AND DEFINITIONS IN THERMOCHEMISTRY

TERMS AND DEFINITIONS IN THERMOCHEMISTRY (v.2.0 16/3/90 8hrs.) TERMS AND DEFINITIONS IN THERMOCHEMISTRY (v.2.1 12/4/90 2hrs.) 1) ENTHALPY CHANGE ( H) This is the same as the heat change involved in a process (provided the initial and final states

More information

A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide

A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide Abstract 1 A Thermodynamic Investigation of the Reaction Between Hypochlorite and Iodide The method of continuous variations and a calorimetric determination of enthalpy are used to verify the stoichiometry

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam

John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam John Abbott College Department of Chemistry Chemistry 202-NYB-05 Sample Final Exam Please Note: 1. Available space for answers has been removed from some questions to conserve space. 2. The questions begin

More information

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS

AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS AQA A2 CHEMISTRY TOPIC 4.10 ORGANIC SYNTHESIS AND ANALYSIS TOPIC 4.11 STRUCTURE DETERMINATION BOOKLET OF PAST EXAMINATION QUESTIONS 1 1. Consider the following reaction sequence. CH 3 CH 3 CH 3 Step 1

More information

Chemical Equations. Shorthand way of describing a chemical change or reaction. Reactants Products

Chemical Equations. Shorthand way of describing a chemical change or reaction. Reactants Products Chemical Equations Shorthand way of describing a chemical change or reaction. Reactants Products All chemical equations MUST be balanced: 1. Material balance - # atoms of each element must be the same

More information

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example.

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example. Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Solutions, Ions & Acids, Bases (Chapters 3-4)

Solutions, Ions & Acids, Bases (Chapters 3-4) Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

How bad is that snack anyway?

How bad is that snack anyway? Physical Sciences 11 Experiment 1 How bad is that snack anyway? Monday, 2/10 Wednesday, 2/12 Science Center Room 117 Please read this entire document and complete the attached prelab before your lab. This

More information

Page 2. Q1.A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid.

Page 2. Q1.A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid. Q1.A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid. In both reactions one of the products is copper chloride. (a) Describe how a sample of copper

More information

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2 Section A (50 M) Aa) trend The number of electron shell increases The number of valence electrons increases Proton number increases There is a change in character from metallic to non-metallic Only true

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry

Measuring and Expressing Enthalpy Changes. Copyright Pearson Prentice Hall. Measuring and Expressing Enthalpy Changes. Calorimetry Measuring and Expressing Enthalpy Changes A burning match releases heat to its surroundings in all directions. How much heat does this exothermic reaction release? You will learn to measure heat flow in

More information

Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material

Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material Chemistry 104 Final Exam Content Evaluation and Preparation for General Chemistry I Material What is 25 mph in mm s 1? Unit conversions What is 1025 K in o F? Which is larger 1 ft 3 or 0.1 m 3? What is

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

AS Paper 1 and 2 Kc and Equilibria

AS Paper 1 and 2 Kc and Equilibria AS Paper 1 and 2 Kc and Equilibria Q1.When one mole of ammonia is heated to a given temperature, 50 per cent of the compound dissociates and the following equilibrium is established. NH 3(g) ½ N 2 (g)

More information