CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

Size: px
Start display at page:

Download "CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa"

Transcription

1 CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

2 Presentation Overview Kinetics Reactor Design Non- Isothermal Design

3 BASICS OF KINETICS

4 Definition of Rate rate = 1 V (dn, dt ) = (dc, dt ) = [mol] L [s] Rate = measure of how fast the concentration changes r, = Σν 8, r 8 Rate of formation of the j th species is given by the sum of its rates in each reaction i Source: Essentials of Chemical Reaction Engineering 4 th Ed. by H. Scott Fogler

5 Rate Law Rate law is an empirical relationship between rate and conversion: A + 2B R + S r = f C A, C C, C D, C E kc H A C C k = Rate constant α = Reaction order with respect to A β = Reaction order with respect to B k is temperature dependent because as the temperature increases, # of successful collisions increases exponentially Arrhenius Equation: k = A exp E [ RT A = Pre-exponential factor R = Gas constant (8.314 J/mol.K) E a = Activation energy of the reaction T = Temperature (Kelvin)

6 Reaction Mechanisms Elementary reaction: Perfect connection between rate law and stoichiometry occurring by collisions (molecularity 2) E r = k ^ C, _`a Reaction mechanism is a sequence of elementary steps having its own activation energy E a and rate constant k,bc Correct Orientation Sufficient Energy

7 BASICS OF REACTOR DESIGN

8 Isothermal Reactor Mass Balance General Input - Output + Generation = Accumulation Batch CSTR (Steady state) PFR

9 Reactor Design Equations In terms of Conversion In terms of Concentration (Constant Density) Batch CSTR (Steady state) step change in concentration to exit value PFR concentration changes continuously

10 Reactors in Series For a single reactor, CSTRs require more volume than a PFR to reach the same conversion CSTRs used in series to reduce the total volume required to reach a given conversion

11 Series Reactions: Comparison of PFR and CSTR (Rxn: A B C) In PFR (solid line), higher concentration of product B in all cases compared to the CSTR (dotted line) To maximize intermediate concentration, use a moderate residence time

12 Parallel Reactions: Comparison of PFR and CSTR (Rxn: A B ; A C) PFR (solid line) and CSTR (dotted line) For both products (B and C), PFR gives greater exit concentration compared to CSTR Rate selectivity and overall selectivity of B is the same in both reactors

13 Design Equations: Multiple Reactions vs. Single Reaction In each reactor, v j r is replaced by D d ν 8, r 8 8bc for multiple reactions

14 NON-ISOTHERMAL REACTOR DESIGN

15 Non-Isothermal Reactors Non-isothermal reactors are advantageous because most reactions are exothermic à heat generated is used to increase rate and conversion Heat generated/removed does the following: Changes temperature in reactor Changes rate constant (Arrhenius Equation) Changes concentrations of gaseous reactions Change ΔH R (δh j =C p,j δt)

16 Non-Isothermal CSTR At steady state, heat removed = heat generated. Assumptions: Heat accumulation = 0 (steady state) Exothermic reaction Heat is removed via coolant U = overall heat transfer coefficient A c = area of heat transfer T c = temperature of coolant

17 Non-Isothermal PFR At steady state, heat removed = heat generated. Assumptions: Heat accumulation = 0 (steady state) Exothermic reaction Heat is removed via coolant U = overall heat transfer coefficient A c = area of heat transfer T c = temperature of coolant

18 Non-Isothermal PFR (cont.) Temperature ODE Where Concentration ODE

19 Non-Isothermal Adiabatic Adiabatic à No heat added or removed in system; set Q = 0. Adiabatic temperature rise: the maximum temperature rise Shows a linear relationship between temperature and conversion

20 Conclusion: Importance of Reactor Design Distinguishes Chemical Engineers from other engineers Reactor design is the heart of any chemical process Controls overall process economics Key to controlling a chemical plant's safety and efficiency

21 QUESTIONS?

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON Chapter 1 * 1.1 Rate of reactions r A A+B->C Species A, B, and C We are interested in the rate of disappearance of A The rate of reaction, ra, is the number of

More information

CBE 142: Chemical Kinetics & Reaction Engineering

CBE 142: Chemical Kinetics & Reaction Engineering CBE 142: Chemical Kinetics & Reaction Engineering Midterm #2 November 6 th 2014 This exam is worth 100 points and 20% of your course grade. Please read through the questions carefully before giving your

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

Chapter 1. Lecture 1

Chapter 1. Lecture 1 Chapter 1 Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 1 Introduction

More information

Plug flow Steady-state flow. Mixed flow

Plug flow Steady-state flow. Mixed flow 1 IDEAL REACTOR TYPES Batch Plug flow Steady-state flow Mixed flow Ideal Batch Reactor It has neither inflow nor outflow of reactants or products when the reaction is being carried out. Uniform composition

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

Chemical Kinetics and Reaction Engineering Midterm 1

Chemical Kinetics and Reaction Engineering Midterm 1 Page 1 Chemical & Biomolecular Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 4, 2011 The exam is 100 points total and 20% of the course grade. Please read through

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

6. Multiple Reactions

6. Multiple Reactions 6. Multiple Reactions o Selectivity and Yield o Reactions in Series - To give maximum selectivity o Algorithm for Multiple Reactions o Applications of Algorithm o Multiple Reactions-Gas Phase 0. Types

More information

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing

HW Help. How do you want to run the separation? Safety Issues? Ease of Processing HW Help Perform Gross Profitability Analysis on NaOH + CH4 --> Na+CO+H NaOH+C-->Na+CO+1/H NaOH+1/ H-->Na+HO NaOH + CO Na+CO+1/H How do you want to run the reaction? NaOH - Solid, Liquid or Gas T for ΔGrxn

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Gas Phase

More information

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide Chapter 1 Mole balances: Know the definitions of the rate of reaction, rate of disappearance and rate of appearance Know what a rate law is Be able to write a general mole balance and know what each term

More information

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

Exercise 1. Material balance HDA plant

Exercise 1. Material balance HDA plant Process Systems Engineering Prof. Davide Manca Politecnico di Milano Exercise 1 Material balance HDA plant Lab assistants: Adriana Savoca LAB1-1 Conceptual design It is a systematic procedure to evaluate

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 21 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 21 Class Lecture

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor.

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor. Cite as: William Green, Jr., and K. Dane Wittrup, course materials for.37 Chemical and Biological Reaction Engineering, Spring 27. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Prof. Gabriele Pannocchia Department of Civil and Industrial Engineering (DICI) University

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

Review for Final Exam. 1ChE Reactive Process Engineering

Review for Final Exam. 1ChE Reactive Process Engineering Review for Final Exam 1ChE 400 - Reactive Process Engineering 2ChE 400 - Reactive Process Engineering Stoichiometry Coefficients Numbers Multiple reactions Reaction rate definitions Rate laws, reaction

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 24 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 24 Class Lecture

More information

Review of Fitting Kinetic Data

Review of Fitting Kinetic Data L6-1 Review of Fitting Kinetic Data True or false: The goal of fitting kinetic data is to find the true rate expression. What are the two general methods used to fit kinetic data? L6-2 Advantages and Drawbacks

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

Exercise 1. Material balance HDA plant

Exercise 1. Material balance HDA plant Process Systems Engineering Prof. Davide Manca Politecnico di Milano Exercise 1 Material balance HDA plant Lab assistants: Roberto Abbiati Riccardo Barzaghi Valentina Depetri LAB1-1 Conceptual design It

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

13 th Aug Chemical Reaction Engineering CH3010. Home work problems

13 th Aug Chemical Reaction Engineering CH3010. Home work problems 13 th ug 18. Chemical Reaction Engineering CH31. Home work problems 1. Batch reactor, variable volume. Consider a gas phase reaction B, conducted isothermally and at constant pressure in a batch reactor.

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

CHEE 222: PROCESS DYNAMICS AND NUMERICAL METHODS

CHEE 222: PROCESS DYNAMICS AND NUMERICAL METHODS CHEE 222: PROCESS DYNAMICS AND NUMERICAL METHODS Winter 2017 Module 1: Introduction to Process Modeling Dr. Xiang Li 1 Module 1 Outline 1. Process and Model - Concepts of process and model - Classification

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Web Lecture 22 Class Lecture

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems ChE 344 Winter 03 Final Exam + Solution Thursday, May, 03 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space provided

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Advanced Chemical

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Problems Points (Max.) Points Received

Problems Points (Max.) Points Received Chemical Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 8, 2013 8:10 am-9:30 am The exam is 100 points total. Please read through the questions very carefully before

More information

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013

Chemical Engineering 140. Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Chemical Process Analysis C.J. Radke Tentative Schedule Fall 2013 Week 0 *8/30 1. Definition of Chemical Engineering: flow sheet, reactor trains and separation processes, raw materials, power production

More information

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects

A First Course on Kinetics and Reaction Engineering Unit 4. Reaction Rates and Temperature Effects Unit 4. Reaction Rates and Temperature Effects Overview This course is divided into four parts, I through IV. Part II is focused upon modeling the rates of chemical reactions. Unit 4 is the first unit

More information

CE 329, Fall 2015 First Mid-Term Exam

CE 329, Fall 2015 First Mid-Term Exam CE 39, Fall 15 First Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data

Lecture Series. Modern Methods in Heterogeneous Catalysis. Measurement and Analysis of Kinetic Data Lecture Series Modern Methods in Heterogeneous Catalysis Measurement and Analysis of Kinetic Data Raimund Horn Fritz-Haber-Institute of the MPG Department of Inorganic Chemistry Faradayweg 4-6 14195 Berlin

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

Multiple Reactions. ChE Reactive Process Engineering

Multiple Reactions. ChE Reactive Process Engineering Multiple Reactions We have largely considered single reactions so far in this class How many industrially important processes involve a single reaction? The job of a chemical engineer is therefore to design

More information

MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction

MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction MATLAB Ordinary Differential Equation (ODE) solver for a simple example 1. Introduction Differential equations are a convenient way to express mathematically a change of a dependent variable (e.g. concentration

More information

PFR with inter stage cooling: Example 8.6, with some modifications

PFR with inter stage cooling: Example 8.6, with some modifications PFR with inter stage cooling: Example 8.6, with some modifications Consider the following liquid phase elementary reaction: A B. It is an exothermic reaction with H = -2 kcal/mol. The feed is pure A, at

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Use of Differential Equations In Modeling and Simulation of CSTR

Use of Differential Equations In Modeling and Simulation of CSTR Use of Differential Equations In Modeling and Simulation of CSTR JIRI VOJTESEK, PETR DOSTAL Department of Process Control, Faculty of Applied Informatics Tomas Bata University in Zlin nám. T. G. Masaryka

More information

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati Module - 02 Flowsheet Synthesis (Conceptual Design of a Chemical

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

CHEMICAL REACTION ENGINEERING

CHEMICAL REACTION ENGINEERING CHEMICL RECTION ENGINEERING Unit 5 nalysis of reactor DT Collection and analysis of rate data Batch reactor for homogenous and heterogeneous reactions measurement during the unsteady-state operation Differential

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES When I complete this chapter, I want to be able to do the following. Formulate dynamic models based on fundamental balances Solve simple first-order linear

More information

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L Chemical Kinetics Practice Exam Chemical Kinetics Name (last) (First) Read all questions before you start. Show all work and explain your answers to receive full credit. Report all numerical answers to

More information

The Energy Balance for Chemical Reactors

The Energy Balance for Chemical Reactors The Energy Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC To specify the rates of reactions in a nonisothermal reactor, we require a model to determine the temperature of the

More information

The Energy Balance for Chemical Reactors

The Energy Balance for Chemical Reactors The Energy Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC To specify the rates of reactions in a nonisothermal reactor, we require a model to determine the temperature of the

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

Example 8: CSTR with Multiple Solutions

Example 8: CSTR with Multiple Solutions Example 8: CSTR with Multiple Solutions This model studies the multiple steady-states of exothermic reactions. The example is from Parulekar (27) which in turn was modified from one by Fogler (1999). The

More information

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam Open Book, Notes, CD ROM, Disk, and Web Name Honor Code 1) /25 pts 2) /15 pts 3) /10 pts 4) / 3 pts 5) / 6 pts 6) / 8 pts 7) / 8 pts 8) / 5

More information

10.34 Numerical Methods Applied to Chemical Engineering

10.34 Numerical Methods Applied to Chemical Engineering 10.34 Numerical Methods Applied to Chemical Engineering Quiz 1 This quiz consists of three problems worth 0, 40 and 40 points respectively. The problem statements are found on pages, 3 and 5 in this exam

More information

For a recycle reactor the relationship between the volume and other parameters is given by

For a recycle reactor the relationship between the volume and other parameters is given by 9 ug 7. CRE Tutorial Problem. or a recycle reactor the relationship between the volume and other parameters is given by V R in R r or simple kinetics such as first order reaction (under isothermal conditions),

More information

Reactors. Reaction Classifications

Reactors. Reaction Classifications Reactors Reactions are usually the heart of the chemical processes in which relatively cheap raw materials are converted to more economically favorable products. In other cases, reactions play essential

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Today s lecture Complex

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Experimental Kinetics and Gas Phase Reactions Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room

More information

4 th Edition Chapter 9

4 th Edition Chapter 9 Insert Page 547A 4 th Edition Chapter 9 In summary, if any one of the following three things had not occurred the explosion would not have happened. 1. Tripled production 2. Heat exchanger failure for

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

ChemE Chemical Kinetics & Reactor Design Solutions to Exercises for Calculation Session 3

ChemE Chemical Kinetics & Reactor Design Solutions to Exercises for Calculation Session 3 ChemE 3900 - Chemical Kinetics & Reactor Design Solutions to Exercises for Calculation Session 3. It is useful to begin by recalling the criteria for the steady-state approximation (on B), the pre-equilibrium

More information

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 11 CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 2.1 INTRODUCTION This chapter deals with the process description and analysis of CSTR. The process inputs, states and outputs are identified

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Determining the Components of the Rate Equation aa + bb yy + zz

Determining the Components of the Rate Equation aa + bb yy + zz Determining the Components of the Rate Equation aa + bb yy + zz Rate k[a] [B] The coefficients and components of the rate equation Must be found by experiment Cannot be deduced from stoichiometry Do not

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit)

where R = universal gas constant R = PV/nT R = atm L mol R = atm dm 3 mol 1 K 1 R = J mol 1 K 1 (SI unit) Ideal Gas Law PV = nrt where R = universal gas constant R = PV/nT R = 0.0821 atm L mol 1 K 1 R = 0.0821 atm dm 3 mol 1 K 1 R = 8.314 J mol 1 K 1 (SI unit) Standard molar volume = 22.4 L mol 1 at 0 C and

More information

CE 329, Fall 2015 Assignment 16, Practice Exam

CE 329, Fall 2015 Assignment 16, Practice Exam CE 39, Fall 15 Assignment 16, Practice Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must

More information

Chemical Engineering Applications in Scilab

Chemical Engineering Applications in Scilab Chemical Engineering Applications in Scilab Prashant Dave Indian Institute of Technology Bombay (IIT Bombay) Introduction In Chemical Engineering the type of problems that occur are Modeling and Simulation

More information

Elementary Reactions

Elementary Reactions Elementary Reactions Elementary reactions occur in a single encounter Unimolecular: A Rate = k[a] Bimolecular: A + B Rate = k[a][b] Termolecular: A + B + C Rate = k[a][b][c] Termolecular reactions are

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Acquisition of reaction rate data Dr. Zifei Liu Uncertainties in real world reaction rate data Most interesting reaction systems involves multiple reactions,

More information

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j

Reaction rate. reaction rate describes change in concentration of reactants and products with time -> r = dc j Reaction rate ChE 400 - Reactive Process Engineering reaction rate describes change in concentration of reactants and products with time -> r = dc j /dt r is proportional to the reactant concentrations

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR Unit 30.Thermal Back-Mixing in a PFR Overview One advantage offered by a CSTR when running an exothermic reaction is that the cool feed gets heated by mixing with the contents of the reactor. As a consequence

More information

A First Course on Kinetics and Reaction Engineering Example 14.3

A First Course on Kinetics and Reaction Engineering Example 14.3 Example 14.3 Problem Purpose This problem illustrates differential analysis using data from a differentially operated PFR. Problem Statement The isomerization of cyclopropane, equation (1), was known from

More information