Specific Curriculum Outcomes (updated September 18, 2016)

Size: px
Start display at page:

Download "Specific Curriculum Outcomes (updated September 18, 2016)"

Transcription

1 1 Chemistry 12 Specific Curriculum Outcomes (updated September 18, 2016) Unit A: Thermochemistry Overview: In this unit, students study energy as it relates to chemical changes and quantify the energy involved in thermochemical systems, and consider the various aspects of energy use on society. Focusing Questions: How does our society use the energy of chemical changes? What are the impacts of energy use on society and the environment? How do chemists determine how much energy will be produced or absorbed for a given chemical reaction? Key Concepts: The following concepts are developed in this unit and may also be addressed in other units or in other courses. The intended level an scope of treatment is defined by the outcomes. enthalpy of formation energy diagrams enthalpy of reaction activation energy H notation catalysts Hess law calorimetry molar enthalpy fuels and energy efficiency endothermic exothermic specific heat kinetic energy potential energy surroundings system General Outcome I Students will determine and interpret energy changes in chemical reactions. 1. given a knowledge of the formulas q = mcδt and q = nδh, calculate the heat gained or lost from a system 2. explain, in a general way, how stored energy in the chemical bonds of hydrocarbons originated from the sun

2 2 3. define enthalpy and molar enthalpy for chemical reactions 4. compare the molar enthalpies of several combustion reactions involving organic compounds 5. write and balance chemical equations for combustion reactions of alcanes (C n H 2n+2 ), including energy amounts 6. use an interpret H notation to communicate and calculate energy changes in chemical reactions 7. calculate and compare the energy involved in changes of state (physical change) and that in chemical reactions 8. predict the enthalpy change for chemical equations using standard enthalpies of formation 9. explain and use Hess law to calculate energy changes for a net reaction from a series of reactions 10. use calorimetry data to determine the enthalpy changes in chemical reactions 11. classify chemical reactions as endothermic or exothermic General Outcome II Students will explain and communicate energy changes in chemical reactions. 1. define activation energy as the energy barrier that must be overcome for a chemical reaction to occur 2. explain the energy changes that occur during chemical reactions, referring to bonds breaking and forming and changes in potential and kinetic energy 3. analyze and label potential energy diagrams of a chemical reaction, including reactants, products, enthalpy change and activation energy 4. explain that catalysts increase reaction rates by providing alternate pathways for changes, without affecting the net amount of energy involved; e.g., enzymes in living systems

3 3 Unit B: Solutions, Kinetics, and Equilibrium Solutions Overview: In this unit, students gain insight into the nature of matter through an investigation of change in the context of solutions. Focusing Questions: How is matter as solutions differentiated on the basis of theories, properties and scientific evidence? Why is an understanding of solution chemistry important in our daily lives and in the environment? Key Concepts: The following concepts are developed in this unit and may also be addressed in other units or in other courses. The intended level an scope of treatment is defined by the outcomes. homogeneous mixtures solubility electrolyte/nonelectrolyte concentration dilution net ionic equations spectator ions precipitation reaction stoichiometry solute solvent solution saturated unsaturated supersaturated General Outcome I Students will investigate solutions, describing their physical and chemical properties. 1. given a solution, demonstrate an understanding that it is a mixture formed by physically mixing at the particle level and that it does not involve a chemical change 2. explain dissolving as an endothermic or exothermic process with respect to the breaking and forming of bonds 3. explain, with the help of a diagram, the forces of attraction between solute and solvent particles 4. differentiate between electrolytes and nonelectrolytes

4 4 5. calculate, from empirical data, the concentration of solutions in moles per litre of solution and determine mass or volume from such concentrations 6. demonstrate a knowledge that the [ ] notation always implies concentration in mol/l 7. calculate the concentrations and/or volumes of diluted solutions and the quantities of a solution and water to use when diluting 8. use data and ionization/dissociation equations to calculate the concentration of ions in a solution 9. write balanced ionic and net ionic equations, including identification of spectator ions, for reactions taking place in aqueous solutions 10. use the solubility generalizations to predict the formation of precipitates 11. define solubility and identify related factors; i.e. temperature, pressure and miscibility 12. given solubility-temperature data, interpret solubility vs. temperature (solubility curves) 13. explain a saturated solution in terms of equilibrium; i.e. equal rates of dissolving and crystallization 14. describe the procedures and calculations required for preparing and diluting solutions Kinetics and Chemical Equilibrium Overview: In this unit, the concept that chemical change eventually attains equilibrium is developed. Focusing Questions: What is happening in a system at equilibrium? How do scientists predict shifts in the equilibrium of a system? Key Concepts: The following concepts are developed in this unit and may also be addressed in other units or in other courses. The intended level an scope of treatment is defined by the outcomes.

5 5 rate of reaction chemical equilibrium systems collision theory reversibility of reactions reaction mechanism Le Châtelier s principle equilibrium law expression General Outcome I Students will explain that there is a balance of opposing reactions in chemical equilibrium systems. 1. identify and discuss the properties and situations in which the rate of reaction is a factor 2. identify the factors (temperature, concentration, surface area, and catalysts) that affect rate of the reaction 3. describe collision theory and its connection to factors involved in alerting reaction rates 4. describe the role of the following in reaction rate: nature of reactants, surface area, temperature, and concentration 5. describe the role of a catalyst in a chemical reaction 6. draw and label a potential energy diagram to show the effect of a catalyst on the rate of the reaction 7. define equilibrium and state the criteria that apply to a chemical system at equilibrium; i.e. closed system, constancy of properties, equal rates of forward and reverse reactions 8. identify, write and interpret chemical equations for systems at equilibrium 9. predict, qualitatively, using Le Châtelier s principle, shifts in equilibrium caused by changes in temperature, pressure, volume, concentration or the addition of a catalyst and describe how these changes affect the equilibrium constant 10. explain how a catalyst and the surface area have an effect on the time it takes to reach equilibrium 11. write equilibrium constant (Kc) expressions with the knowledge that solids (s) and pure liquids (l) are not included in the expression

6 6 12. understand that the constant will vary with temperature 13. define Kc to predict the extent of the reaction and write equilibrium law expressions for given chemical equations, using lowest whole-number coefficients 14. predict whether or not reactant or products are favoured in a reversible reaction, on the basis of the magnitude of the equilibrium constant (Kc) and the reaction quotient (Qc). 15. solve Kc problems involving the initial concentrations, the changes that occur in each substance, and the resulting equilibrium concentrations. (I.C.E.) Unit C: Acids and Bases Overview: In this unit, students gain insight into the nature of matter through an investigation of change in the context of acids and bases. Focusing Questions: How is matter as acids and bases differentiated on the basis of theories, properties and scientific evidence? Why is an understanding of acid-base chemistry important in our daily lives and in the environment? Key Concepts: The following concepts are developed in this unit and may also be addressed in other units or in other courses. The intended level an scope of treatment is defined by the outcomes. strong acids and bases weak acids and bases monoprotic/polyprotic acid Arrhenius theory of acids and bases acid-base indicators hydronium ion/ph hydroxide ion/poh neutralization Bronsted-Lowry acids and bases titration curves conjugate pairs of acids and bases amphoteric substances equilibrium constants Kc, Kw, Ka, Kb buffers acid-base equilibrium General Outcome I Students will describe acidic and basic solutions qualitatively and quantitatively.

7 7 1. recall International Union of Pure and Applied Chemistry (IUPAC) nomenclature of acids and bases 2. recall the empirical definitions of acidic, basic and neutral solutions determined by using indicators, ph and electrical conductivity 3. calculate H 3 O + (aq) and OH - (aq) concentrations and the ph and poh of acidic and basic solutions based on logarithmic expressions; i.e., ph = -log [H 3 O + ] and poh = -log[oh - ] 4. compare magnitude changes in ph and poh with changes in concentration for acids and bases 5. explain how the use of acid-base indicators, ph paper or ph meters can be used to measure H 3 O + (aq) 6. define Arrhenius (modified) acids as substances that produce H 3 O + (aq) in aqueous solutions and recognize that the definition is limited 7. define Arrhenius (modified) bases as substances that produce OH - (aq) in aqueous solutions and recognize that the definition is limited 8. describe Bronsted-Lowry acids as proton donors and bases as proton acceptors 9. write Bronsted-Lowry equations, using indicators, and predict whether reactants or products are favoured for acid-base equilibrium reactions for monoprotic and polyprotic acids and bases 10. identify conjugate pairs and amphoteric substances 11. define neutralization as a reaction between hydronium and hydroxide ions 12. differentiate, qualitatively, between strong and weak acids and between strong and weak bases on the basis of ionization and dissociation; i.e. ph, reaction rate and electrical conductivity 13. identify monoprotic and polyprotic acids and bases and compare their ionization/ dissociation 14. draw and interpret titration curves, using data from titration experiments 15. describe the function and choice of indicators in titrations 16. identify equivalence points for various titration curves and differentiate between

8 8 the indicator endpoint and the equivalence point General Outcome II Students will determine quantitative relationships in simple acid-base equilibrium systems. 1. recall the concepts of ph and hydronium ion concentration and poh and hydroxide ion concentration, in relation to acids and bases 2. define Kw, Ka, Kb and use these to determine ph, poh, [H 3 O + ] and [OH - ] of acidic and basic solutions 3. calculate equilibrium constants and concentrations for homogeneous systems and Bronsted-Lowry acids and bases (excluding buffers) when concentrations at equilibrium are known initial concentrations and one equilibrium concentration are known (I.C.E.) the equilibrium constant and one equilibrium concentration are known Note: Examples that require the application of the quadratic equation are included. Unit D: Electrochemistry Overview: In this unit, students study electrochemical change and analyze the matter and energy changes within a system. Focusing Questions: What is an electrochemical change? How have scientific knowledge and technological innovation been integrated into the field of electrochemistry? Key Concepts: The following concepts are developed in this unit and may also be addressed in other units or in other courses. The intended level an scope of treatment is defined by the outcomes. oxidation spontaneity reduction standard reduction potential oxidizing agent voltaic (electrochemical) cell reducing agent electrolytic cell oxidation-reduction (REDOX) reaction electrolysis

9 9 oxidation number standard cell potential half-reaction corrosion General Outcome I Students will explain the nature of oxidation-reduction reactions. 1. define oxidation and reduction operationally and theoretically 2. define oxidizing agent, reducing agent, oxidation number and half-reaction 3. differentiate between REDOX reactions and other reactions, using half-reactions and/or oxidation numbers 4. identify electron transfer, oxidizing agents and reducing agents in REDOX reactions that occur in everyday life 5. compare the relative strengths of oxidizing and reducing agents, using empirical data 6. predict the spontaneity of a REDOX reaction, based on standard reduction potentials, and compare their predictions to experimental results 7. write and balance equations for REDOX reactions in acidic and neutral solutions by using half-reaction equations obtained from a standard reduction potential table General Outcome II Students will apply the principles of oxidation-reduction to electrochemical cells. 1. define anode, cathode, anion, cation, salt bridge/porous cup, electrolyte, external circuit, power supply, voltaic (electrochemical) cell and electrolytic cell 2. identify the similarities and differences between the operation of a voltaic (electrochemical) cell and that of an electrolytic cell 3. predict and write the half-reaction equation that occurs at each electrode in an electrochemical cell

10 10 4. explain that the values of standard reduction potential are all relative to zero (0) volts, as set for the hydrogen electrode at standard conditions 5. calculate the standard cell potential for electrochemical cells 6. predict the spontaneity or nonspontaneity of redox reactions, based on standard cell potential, and the relative positions of half-reaction equations on a standard reduction potential table 7. explain the process of electrolysis and electroplating 8. explain how electrical energy is produced in a hydrogen fuel cell

Chemistry 12 - Learning Outcomes

Chemistry 12 - Learning Outcomes Chemistry 12 - Learning Outcomes A: Chapt 1. Reaction Kinetics - (Introduction) A1. give examples of reactions proceeding at different rates A2. describe rate in terms of some quantity (produced or consumed)

More information

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory Chemistry Grade 12 Outcomes 1 Quantum Chemistry and Atomic Structure Unit I 1. Perform calculations on wavelength, frequency and energy. 2. Have an understanding of the electromagnetic spectrum. 3. Relate

More information

DEPARTMENT OF ACADEMIC UPGRADING

DEPARTMENT OF ACADEMIC UPGRADING DEPARTMENT OF ACADEMIC UPGRADING COURSE OUTLINE FALL 2016 CH0130 (A2/B2): Chemistry Grade 12 Equivalent 5(5-0 - 1.5) 95 Hours over 15 Weeks Instructor Les Rawluk Phone 780 539 2738 Office J214 E-mail lrawluk@gprc.ab.ca

More information

Student Achievement. Chemistry 12

Student Achievement. Chemistry 12 Student Achievement Chemistry 12 Key Elements: Reaction Kinetics Estimated Time: 14 16 hours By the end of this course, students will be able to explain the significance of reaction rates, demonstrate

More information

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8)

Identify the bonding types molecular, covalent network, ionic, and metallic - in various solids (11.8) Intermolecular Forces, Liquids, and Solids (Chapter 11) Very brief review of Lewis structures and molecular geometry Draw Lewis structures for and determine polarity of molecules through sp 3 8.45 8.64,

More information

Proposed Content for the Project (Scope and Sequence)

Proposed Content for the Project (Scope and Sequence) Proposed Content for the Project (Scope and Sequence) The scope and sequence of the proposed project is not unusual. It follows the path of many available general chemistry texts. What we feel is innovative

More information

CHEMISTRY 12 SYLLABUS Online 2010

CHEMISTRY 12 SYLLABUS Online 2010 CHEMISTRY 12 SYLLABUS Online 2010 Mr. Lockwood Email: plockwood@sd43.bc.ca Personal: https://my43.sd43.bc.ca/schools/pinetreesecondary/classes/plockwood/default.aspx UserName: Password: WebCT: http://bb.etc.bc.ca/webct/entrypageins.dowebct

More information

Chemistry Review Unit

Chemistry Review Unit Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum Chemistry Unit Specific Outcomes Knowledge 20 A1.1k recall principles for assigning names to ionic compounds Section

More information

Chemistry 2

Chemistry 2 WTCS Repository 10-806-129 Chemistry 2 Course Outcome Summary Course Information Description Total Credits 4.00 Further study of basic chemical principles (e.g. atomic and molecular structure, reactions,

More information

Advanced Chemistry: Chemical Reactions

Advanced Chemistry: Chemical Reactions ILLINOIS MATHEMATICS & SCIENCE ACADEMY Teacher: Dave DeVol Advanced Chemistry: Chemical Reactions January 2014 Unit 1: Equilibrium Theme: Equilibrium is a dynamic process that involves change at the molecular

More information

Miami Dade College CHM Second Semester General Chemistry

Miami Dade College CHM Second Semester General Chemistry Miami Dade College CHM 1046 - Second Semester General Chemistry Course Description: CHM 1046 is the second semester of a two-semester general chemistry course for science, premedical science and engineering

More information

Part A: Multiple Choice (23 marks total)

Part A: Multiple Choice (23 marks total) Part A: Multiple Choice (23 marks total) Use the answer sheet found at the end of this examination to answer the multiple-choice questions in this section. Shade in the circle that corresponds to your

More information

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry

Spanish Fork High School Unit Topics and I Can Statements AP Chemistry Spanish Fork High School 2014-15 Unit Topics and I Can Statements AP Chemistry Properties of Elements I can describe how mass spectroscopy works and use analysis of elements to calculate the atomic mass

More information

Chemistry 20 Course Outline

Chemistry 20 Course Outline Chemistry 20 Course Outline Textbook: Frank Jenkins, et al, Nelson Canada. Unit Outline (approximate page numbers included) Review Unit A. Chapter 1: Elements and Compounds (p. 6-39) B. Chapter 2: Chemical

More information

Unit 1: Chemical Foundations: Lab Skills, Properties of Matter, Scientific Measurement, and Dimensional Analysis

Unit 1: Chemical Foundations: Lab Skills, Properties of Matter, Scientific Measurement, and Dimensional Analysis Curriculum at a Glance Chemistry Honors Level: 400 Grades 10-12 The curriculum for the Chemistry Honors 400 course is designed to provide higher performing students a strong, fundamental understanding

More information

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz

Enfield Public Schools. Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz Enfield Public Schools Advanced (AP/UCONN) Chemistry (0297) Curriculum Writers: Patrick Smith William Schultz November 2007 Lab Safety 1. Basic safety rules must be followed in the Advanced Chemistry laboratory.

More information

Study guide for AP test on TOPIC 1 Matter & Measurement

Study guide for AP test on TOPIC 1 Matter & Measurement Study guide for AP test on IC 1 Matter & Measurement IC 1 Recall a definition of chemistry Understand the process and stages of scientific (logical) problem solving Recall the three states of matter, their

More information

BIG IDEAS. Reaction Kinetics Reactants must collide to react. Conditions surrounding a reaction determine its rate.

BIG IDEAS. Reaction Kinetics Reactants must collide to react. Conditions surrounding a reaction determine its rate. Area of Learning: SCIENCE Chemistry Grade 12 Ministry of Education BIG IDEAS Dynamic Equilibrium Solubility Equilibrium Acids and Bases Oxidation-Reduction Some chemical reactions are reversible and proceed

More information

General Chemistry (Second Quarter)

General Chemistry (Second Quarter) General Chemistry (Second Quarter) This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence

More information

Brunswick School Department Chemistry: Honors Solution Equilibrium

Brunswick School Department Chemistry: Honors Solution Equilibrium Understandings Questions Knowledge Solutions can be combined to generate a variety of chemical reactions, the rates of which can be measured in a number of ways, depending on the nature of the reaction.

More information

vankessel et al (2003). Chapter 3. Zumdahl & Zumdahl (2000). Chapter 7.

vankessel et al (2003). Chapter 3. Zumdahl & Zumdahl (2000). Chapter 7. TOPIC 1: ATOMIC STRUCTURE AND PERIODICITY vankessel et al (2003). Chapter 3. Zumdahl & Zumdahl (2000). Chapter 7. Part I: Wave-Particle Theory a) Description and calculations based on wave nature of matter,

More information

Seymour Public Schools Curriculum

Seymour Public Schools Curriculum Chemistry Curriculum The intent of this unit is to demonstrate the proper use of lab materials and equipment. Also, correctly answer safety questions, demonstrate safe working practices in the lab as described

More information

OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY

OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY June 2013 Content Domain Range of Competencies Approximate Percentage of Assessment Score I. Nature of Science 0001 0003 18% II. Matter and Atomic

More information

Curriculum Correlation

Curriculum Correlation Curriculum Correlation A: Scientific Investigation Skills and Career Exploration A1. SCIENTIFIC INVESTIGATION SKILLS SECTIONS A1. demonstrate scientific investigation skills in the four areas of skills

More information

Table of Contents. * * * * * Volume 1

Table of Contents. * * * * * Volume 1 Table of Contents * * * * * Volume 1 How to Use These Lessons... 1 Module 1 Scientific Notation... 2 Lesson 1A: Moving the Decimal... 3 Lesson 1B: Calculations Using Exponential Notation... 9 Lesson 1C:

More information

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum Alignment is based on the topics and subtopics addressed by each sim. Sims that directly address the topic area

More information

MOBILE COUNTY PUBLIC SCHOOLS DIVISION OF CURRICULUM & INSTRUCTION HIGH SCHOOL BLOCK SCHEDULE PACING GUIDE AT A GLANCE

MOBILE COUNTY PUBLIC SCHOOLS DIVISION OF CURRICULUM & INSTRUCTION HIGH SCHOOL BLOCK SCHEDULE PACING GUIDE AT A GLANCE Quarters Objective # Objective 1 & 3 1.A.1 1.0 Understanding as Inquiry A. Foundations 1. Scientific Inquiry a. Identify and clarify research questions and design experiments. b. Design experiments so

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change UNIT 18 Table Of Contents Section 18.1 Introduction to Acids and Bases Unit 18: Acids and Bases Section 18.2 Section 18.3 Section 18.4 Strengths of Acids and Bases Hydrogen

More information

CHM 152 Final Exam Review

CHM 152 Final Exam Review CHM 152 Final Exam Review Kinetics Chapter 12 End-of-Chapter Suggested problems: 1, 2, 3, 4, 6, 7, 9, 11, 13, 14, 15, 17, 19, 21, 25, 29, 31, 33 (graphing), 37, 39, 41, 47, 51, 53, 57, 63, 67, 68, 69,

More information

CHEMISTRY 12 COURSE OUTLINE

CHEMISTRY 12 COURSE OUTLINE Abbotsford Traditional Secondary School CHEMISTRY 12 COURSE OUTLINE 2013-2014 Teacher E-mail: Website: Room: Required Materials: Mr. Macphail andrew_macphail@sd34.bc.ca http://start.sd34.bc.ca/amacphail

More information

Chemistry (Master) Content Skills Learning Targets Assessment Resources & Technology

Chemistry (Master) Content Skills Learning Targets Assessment Resources & Technology St. Michael-Albertville High School Teacher: Joe Peatrowsky Chemistry (Master) August 2014 September 2014 CEQ Measurement, Matter, Measurement, Matter, and Measurement, Matter, and and Chemical Equations

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by: Dr. Victor Huang September 2016 General Chemistry Principles II COURSE CODE: CHM 153 CREDITS: 4 CONTACT HOURS:

More information

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer

AP Chemistry Common Ion Effect; 16.6 ionization constants, will. Equilibria with Weak Acids and and the preparation of buffer Instructional Unit Acid-Base Equibria 16.1 Acid-Ionizaation Equilibria; Students will perform Students will distinguish Oral response, written 3.1.12C, 16.2 Polyprotic Acids; 16.3 Base- calculations involving

More information

1. Atomic Concepts. The student should be able to: relate experimental evidence to models of the atom

1. Atomic Concepts. The student should be able to: relate experimental evidence to models of the atom 1. Atomic Concepts The modern model of the atom has evolved over a long period of time through the work of many scientists. Each atom has a nucleus, with an overall positive charge, surrounded by negatively

More information

Chemistry 12 / Advanced Chemistry 12

Chemistry 12 / Advanced Chemistry 12 CHEMISTRY / ADVANCED CHEMISTRY GRADE 12 Chemistry 12 / Advanced Chemistry 12 General Curriculum Outcomes STSE 1. Students will develop an understanding of the nature of science and technology, of the relationships

More information

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for Accelerated Chemistry Curriculum Map for Accelerated Chemistry 1st Marking Period 5.1.12.A.1, 5.1.12.A.2,, 5.1.12.A.3,, 5.1.12.B.1, 5.1.12.B.2, 5.1.12.B.3, 5.1.12.B.4, 5.1.12.C.1, 5.1.12.C.2, 5.1.12.C.3,, 5.1.12.D.1, 5.1.12.D.2,

More information

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions

Definitions. Acids give off Hydrogen ions (protons) Bases give off hydroxide ions Acids and Bases Arrhenius- Definitions Acids give off Hydrogen ions (protons) Bases give off hydroxide ions This definition did not include enough acids but does explain many. Brønsted-Lowry Acids are

More information

General Chemistry (Third Quarter)

General Chemistry (Third Quarter) General Chemistry (Third Quarter) This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence

More information

Canadian Advanced Senior High

Canadian Advanced Senior High Canadian Advanced Senior High Department: Science Course Development Date: November 2017 Course Title: Chemistry Grade: 12 Course Type: Ministry Course Code: University SCH4U Credit Value: 1.0 Hours: 110

More information

AP Chemistry Standards and Benchmarks

AP Chemistry Standards and Benchmarks Standard: Understands and applies the principles of Scientific Inquiry Benchmark 1: Scientific Reasoning Course Level Benchmarks A. Formulates and revises scientific explanations and models B. Understands

More information

Ganado Unified School District (Chemistry/Grade 10, 11, 12)

Ganado Unified School District (Chemistry/Grade 10, 11, 12) Ganado Unified School District (Chemistry/Grade 10, 11, 12) PACING Guide SY 2016-2017 Timeline & AZ College and Career Readiness Essential Question Learning Goal Vocabulary Quarter 1 Sci 5.1 PO1. Describe

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Chemistry Scope and Sequence

Chemistry Scope and Sequence Chemistry Scope and Sequence Grading Period Unit Title Learning Targets Throughout the School Year B.(1) Scientific processes. The student, for at least 40% of instructional time, conducts laboratory and

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #10 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Solutions I. MCQ - Choose Appropriate Alternative 1. Molarity is the number of moles of a solute dissolved

More information

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents ATOMIC STRUCTURE AND THE PROPERTIES OF MATTER

TEACHER CERTIFICATION STUDY GUIDE. Table of Contents ATOMIC STRUCTURE AND THE PROPERTIES OF MATTER Table of Contents SUBAREA I. ATOMIC STRUCTURE AND THE PROPERTIES OF MATTER COMPETENCY 1.0 UNDERSTAND THE VARIOUS MODELS OF ATOMIC STRUCTURE, THE PRINCIPLES OF QUANTUM THEORY, AND THE PROPERTIES AND INTERACTIONS

More information

Unit 11: Equilibrium / Acids & Bases Text Questions from Corwin

Unit 11: Equilibrium / Acids & Bases Text Questions from Corwin Unit 11: Equilibrium / Acids & Bases Name: KEY Text Questions from Corwin 16.3 1. How can a reversible reaction proceed? spontaneously in both the forward and reverse directions 2. When is a reversible

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CP Chem Review 2 Matching Match each item with the correct statement below. a. activated complex d. activation energy b. reaction rate e. free energy c. inhibitor 1. the minimum energy colliding particles

More information

Norwich City Schools AP Chemistry

Norwich City Schools AP Chemistry Topic: Structure of Matter Students will use inquiry based methods to investigate scientific concepts Students will examine and investigate the structure, properties, and interactions of matter. Students

More information

cp final review part 2

cp final review part 2 Name: Class: Date: cp final review part 2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Standard conditions when working with gases are

More information

Regents Chemistry Objectives

Regents Chemistry Objectives Regents Chemistry Objectives Packet #1 Math & Lab Skills: 1. Be able to distinguish a qualitative from a quantitative observation. 2. Be able to distinguish an observation from a conclusion. 3. Know how

More information

A is capable of donating one or more H+

A is capable of donating one or more H+ Slide 1 / 48 1 According to the Arrhenius concept, an acid is a substance that. A is capable of donating one or more H+ B C D E causes an increase in the concentration of H+ in aqueous solutions can accept

More information

2nd Semester Exam Review. C. K eq = [N 2][H 2 ]

2nd Semester Exam Review. C. K eq = [N 2][H 2 ] Name: ate: 1. Which pair of formulas represents the empirical formula and the molecular formula of a compound?. H 2 O, 4 H 6 O 4. HO, 6 H 12 O 6 8. Given the reaction at equilibrium: N 2 (g) + 3H 2 (g)

More information

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111 Ed: Pls provide art About the Authors Preface xvii xvi 1 Matter: Its Properties and Measurement 1 1-1 The Scientific Method 2 1-2 Properties of Matter 4 1-3 Classification of Matter 5 1-4 Measurement of

More information

Cowley College & Area Vocational Technical School

Cowley College & Area Vocational Technical School Cowley College & Area Vocational Technical School COURSE PROCEDURE FOR CHEMISTRY II CHM4230 5 Credit Hours Student Level: This course is open to students on the college level in either the freshman or

More information

EASTERN ARIZONA COLLEGE General Chemistry II

EASTERN ARIZONA COLLEGE General Chemistry II EASTERN ARIZONA COLLEGE General Chemistry II Course Design 2013-2014 Course Information Division Science Course Number CHM 152 (SUN# CHM 1152) Title General Chemistry II Credits 4 Developed by Phil McBride,

More information

Norton City Schools Standards-Based Science Course of Study 2003

Norton City Schools Standards-Based Science Course of Study 2003 HIGH SCHOOL ELECTIVE CHEMISTRY (USED AS A YEAR-LONG OR BLOCK-SCHEDULED COURSE) Physical Sciences Standard (PS) 11-12 Benchmarks By the end of the 11-12 program, the student will, Physical Sciences Explain

More information

generate testable Students will be able to investigations. Biology 1 2 (can be conclusions. reveal relationships identify sources of error higher.

generate testable Students will be able to investigations. Biology 1 2 (can be conclusions. reveal relationships identify sources of error higher. Honors Chemistry Essential Questions: 1. How can one explain the structure, properties, and interactions of matter? Communication of Scientific Information Anchor Standard 1: Students will be able to design,

More information

Curriculum Guide Chemistry

Curriculum Guide Chemistry Chapter 1: Introduction to Chemistry Why is chemistry important in using dominion science? Is chemistry necessary in all aspects of life? How can a chemist advance science for the kingdom of God? 1 Lesson

More information

AP Chemistry II Curriculum Guide Scranton School District Scranton, PA

AP Chemistry II Curriculum Guide Scranton School District Scranton, PA AP Chemistry II Scranton School District Scranton, PA AP Chemistry II Prerequisite: Honors Chemistry Be in compliance with the SSD Honors and AP Criteria Policy AP Chemistry II is offered in grades 11

More information

Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 Major Concepts to be learned:

Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 Major Concepts to be learned: Course Title: Academic chemistry Topic/Concept: Chapter 1 Time Allotment: 11 day Unit Sequence: 1 1. Nature of chemistry 2. Nature of measurement 1. Identify laboratory equipment found in the lab drawer

More information

Classroom: 318 Subject: AP Chemistry Quarter 2 Teacher: van Balveren, Suzanne

Classroom: 318 Subject: AP Chemistry Quarter 2 Teacher: van Balveren, Suzanne Livingston American School Quarterly Lesson Plan Concept / Topic To Teach: Week 1 Week 2 Week 3 Week 4 Equilibrium Equilibrium Acids and Bases Acids and Bases Standards Addressed: College Board canbe formed

More information

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry

B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry B L U E V A L L E Y D I S T R I C T C U R R I C U L U M Science AP Chemistry ORGANIZING THEME/TOPIC UNIT 1: ATOMIC STRUCTURE Atomic Theory Electron configuration Periodic Trends Big Idea 1: The chemical

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Page 1 of 20 Chapter 16 Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids: taste sour and cause certain dyes to change color. Bases: taste bitter and feel soapy. Arrhenius concept o acids

More information

WDHS Curriculum Map: Created by Erin Pence September 2010

WDHS Curriculum Map: Created by Erin Pence September 2010 WDHS Curriculum Map: Created by Erin Pence September 2010 Course: Chemistry CP Text: Modern Chemistry (Holt) Text: Chemistry ( Lab Book: Chemistry The Study of Matter () Course Units Covered MP1 Units

More information

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water 19.1 Acids & Bases 1. Compare and contrast the properties of acids & bases. 2. Describe the self-ionization of water & the concept of K w. 3. Differentiate between the Arhennius & Bronsted-Lowry models

More information

Chemistry 112 ACS Final

Chemistry 112 ACS Final Chemistry 112 ACS Final Exam at 4 pm in ECTR 118 and you will be done by 6 pm Stop at question 56 Topics covered are below.honestly, the best way to study is to read through your notes multiple times making

More information

Science. Smyth County Schools Curriculum Map Grade:11/12 Subject:Chemistry

Science. Smyth County Schools Curriculum Map Grade:11/12 Subject:Chemistry Standards Grade:11/12 Subject:Chemistry 1st Quarter SOL Ch 1a, 1b, 1c, 1e, 1g, 1i, 1h, 1f, 1d, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 5c, 5e 2nd Quarter SOL Ch 4a, 4b, 3a, 3b, 3c, 3d, 3e, 5f Content Lab safety,

More information

MEDFORD HIGH SCHOOL COURSE SYLLABUS

MEDFORD HIGH SCHOOL COURSE SYLLABUS MEDFORD HIGH SCHOOL COURSE SYLLABUS Department: Course Title: Science Chemistry Level and/or Grade: Honors; Grades 10-11 Prerequisite: A grade of B- or better in Honors Biology or A- or better in Standard

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

Chemistry Review - Vocabulary

Chemistry Review - Vocabulary Name Topic 1 - Atomic Concepts atom atomic number atomic mass electron valence electrons excited state ground state isotope mass number neutron orbital proton shell wave-mechanical model quanta spectra

More information

Reavis High School AP Chemistry Curriculum Snapshot

Reavis High School AP Chemistry Curriculum Snapshot Reavis High School AP Chemistry Curriculum Snapshot Unit 1: Science Fundamentals 5 Students will learn the saftey rules and laboratory equipment of the science laboratory and demonstrate their competence

More information

What is happening in a system at equilibrium? How do scientists predict shifts in the equilibrium of a system?

What is happening in a system at equilibrium? How do scientists predict shifts in the equilibrium of a system? Equilibrium in Chemical Reactions. (15% of Chemistry 30) What is happening in a system at equilibrium? How do scientists predict shifts in the equilibrium of a system? Key Concepts chemical equilibrium

More information

Big Idea 1: Structure of Matter Learning Objective Check List

Big Idea 1: Structure of Matter Learning Objective Check List Big Idea 1: Structure of Matter Learning Objective Check List Structure of Matter Mole Concept: Empirical Formula, Percent Composition, Stoichiometry Learning objective 1.1 The student can justify the

More information

Chemistry 1A. Chapter 5

Chemistry 1A. Chapter 5 Chemistry 1A Chapter 5 Water, H 2 O Water Attractions Liquid Water Solutions A solution, also called a homogeneous mixture, is a mixture whose particles are so evenly distributed that the relative concentrations

More information

CHEMpossible. Final Exam Review

CHEMpossible. Final Exam Review CHEMpossible Final Exam Review 1. Given the following pair of reactions and their equilibrium constants: 2NO 2 (g) 2NO (g) + O 2 (g) K c = 15.5 2NO (g) + Cl 2 (g) 2 NOCl (g) K c = 3.20 10-3 Calculate a

More information

Properties of Acids. Base Chemistry. Properties of Bases. Three Acid and Base Theories. 1) Arrhenius Theory. May 09, Naming Acids Review

Properties of Acids. Base Chemistry. Properties of Bases. Three Acid and Base Theories. 1) Arrhenius Theory. May 09, Naming Acids Review May 09, 2013 Properties of Acids AcidAcid Base Chemistry Base Chemistry Taste sour Are strong or weak electrolytes React with bases to form water and salts React with active metals to produce H2 Turn litmus

More information

Topic 1: Quantitative chemistry

Topic 1: Quantitative chemistry covered by A-Level Chemistry products Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant 1.1.1 Apply the mole concept to substances. Moles and Formulae 1.1.2 Determine the number

More information

Chapter Menu Chapter Menu

Chapter Menu Chapter Menu Chapter Menu Chapter Menu Section 18.1 Section 18.3 Section 18.4 Introduction to Acids and Bases Hydrogen Ions and ph Neutralization Section 18.1 Intro to Acids and Bases Objectives: Compare the Arrhenius,

More information

Principles of General Chemistry

Principles of General Chemistry Principles of General Chemistry 978-1-63545-004-0 To learn more about all our offerings Visit Knewton.com/highered Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Senior Contributing

More information

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET:

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: 40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: **THIS IS NOT A COMPLETE REVIEW. CONTINUE TO READ ALL COURSE NOTES, GO OVER ALL WORKSHEETS, HANDOUTS, AND THE UNIT TESTS TO BE BETTER PREPARED. To prepare

More information

CHEMISTRY 12 SYLLABUS

CHEMISTRY 12 SYLLABUS CHEMISTRY 12 SYLLABUS Online 2013 Mrs. Lockwood Email: klockwood@sd43.bc.ca District: http://www.sd43.bc.ca/col/10-12/courses/pages/courselist.aspx RATIONALE: Chemistry is the science, which deals with

More information

Unit 3. 4 weeks BL/8 weeks YR

Unit 3. 4 weeks BL/8 weeks YR Chemistry Chemistry Standards The Cobb Teaching and Learning Standards (CT & LS) for science are designed to provide foundational knowledge and skills for all students to develop proficiency in science.

More information

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13

CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 CHAPTER-7 EQUILIBRIUM ONE MARK QUESTIONS WITH ANSWERS. CHAPTER WEIGHTAGE: 13 1.What is a reversible reaction? Ans. The reaction in which both forward and backward reaction takes place simultaneously is

More information

Chemistry I Notes Unit 10: Acids and Bases

Chemistry I Notes Unit 10: Acids and Bases Chemistry I Notes Unit 10: Acids and Bases Acids 1. Sour taste. 2. Acids change the color of acid- base indicators (turn blue litmus red). 3. Some acids react with active metals and release hydrogen gas,

More information

Ganado Unified School District (CHEMISTRY/Grade 11 th and 12 th )

Ganado Unified School District (CHEMISTRY/Grade 11 th and 12 th ) Ganado Unified School District (CHEMISTRY/Grade 11 th and 12 th ) PACING Guide SY 2017-2018 Timeline & Quarter 1 Inquiry Process Strand 1: Inquiry Process Concept 1: Observations, Questions, and Hypotheses

More information

UNIT 1: WELCOME TO CHEMISTRY

UNIT 1: WELCOME TO CHEMISTRY Advanced Placement AP Chemistry AP* Chemistry builds studentsâ understanding of the nature and reactivity of matter. After studying the structure of atoms, molecules, and ions, students move on to solve

More information

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET:

40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: 40S CHEMISTRY FINAL EXAM PROBLEM REVIEW SHEET: **THIS IS NOT A COMPLETE REVIEW. CONTINUE TO READ ALL COURSE NOTES, GO OVER ALL WORKSHEETS, HANDOUTS, AND THE MID-TERM EXAM TO BE BETTER PREPARED. To prepare

More information

1 Chapter 19 Acids, Bases, and Salts

1 Chapter 19 Acids, Bases, and Salts 1 Chapter 19 Acids, Bases, and Salts ACID-BASE THEORIES Acids and bases are all around us and part of our everyday life (ex. bodily functions, vinegar, carbonated drinks, citrus fruits, car batteries,

More information

CHEMISTRY Scientific Inquiry

CHEMISTRY Scientific Inquiry Chemistry Overview The standards for chemistry establish scientific inquiry skills and core content for all chemistry courses in South Carolina schools. In chemistry, students acquire a fundamental knowledge

More information

Chemistry: The Central Science Twelfth Edition, AP* Edition 2012

Chemistry: The Central Science Twelfth Edition, AP* Edition 2012 A Correlation of The Central Science Twelfth Edition, AP* Edition 2012 to the AP* Chemistry Topics I. Structure of Matter A. Atomic theory and atomic structure 1. Evidence for the atomic theory SECTIONS:

More information

Elizabethtown Area School District Chemistry II Name of Course

Elizabethtown Area School District Chemistry II Name of Course Chemistry II Name of Course Course Number: 325 Length of Course: 18 weeks Grade Level: 10-12 Elective Total Clock Hours: 120 Length of Period: 80 min Date Written: June 11, 2007 Periods per Week/Cycle:5

More information

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions.

Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. Ch 20 Electrochemistry: the study of the relationships between electricity and chemical reactions. In electrochemical reactions, electrons are transferred from one species to another. Learning goals and

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

Plum Borough School District

Plum Borough School District Course Chemistry (A) 413 Grade(s) 10 Unit/Lesson Unit 1: Measurement and Data Interpretation Overview Qualititative and quantitative observations, rules of measurement, significant figures, scientific

More information

Chapters 10 and 11 Practice MC

Chapters 10 and 11 Practice MC Chapters 10 and 11 Practice MC Multiple Choice Identify the choice that best completes the statement or answers the question. d 1. Which of the following best describes the rates of chemical reaction?

More information

Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003

Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003 Chemistry: Molecules, Matter, and Change, Fourth Edition Loretta Jones and Peter Atkins Correlated with AP Chemistry, May 2002, May 2003 ST=Student textbook I. Structure of Matter A. Atomic theory and

More information

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type You are already familiar with some acid and base chemistry. According to the Arrhenius model, acids are substances that when dissolved in water ionize to yield hydrogen ion (H + ) and a negative ion. e.g.

More information

Isotope-same element (same atomic #), different # of neutrons so mass is different

Isotope-same element (same atomic #), different # of neutrons so mass is different Proton-subatomic particle located in nucleus. Charge of +1, mass of 1 amu Neutron-subatomic particle located in nucleus. No charge, mass of 1 amu Electron-subatomic particle located outside nucleus. Charge

More information

I. Intermolecular forces and changes in chemical state or phase

I. Intermolecular forces and changes in chemical state or phase General Chemistry II, in broad strokes I. Intermolecular forces and changes in chemical state or phase II. Solutions, solubility, and colligative properties III. Chemical Kinetics -- the study of rates

More information

Davison Community Schools ADVISORY CURRICULUM COUNCIL Phase 2, April 25th, 2013

Davison Community Schools ADVISORY CURRICULUM COUNCIL Phase 2, April 25th, 2013 Davison Community Schools ADVISORY CURRICULUM COUNCIL Phase 2, April 25th, 2013 Alt. Ed and HS Chemistry Course Essential Questions (from Phase I report): 1. How does scientific inquiry and reflection

More information