Chapter 8: Covalent Bonding. Chapter 8

Size: px
Start display at page:

Download "Chapter 8: Covalent Bonding. Chapter 8"

Transcription

1 : Covalent Bonding

2 Bonding Ionic Bonding - attracted to each other, but not fully committed Covalent Bonding - fully committed, and shares everything Two methods to gain or lose valence electrons: Transfer of Electrons = Ionic Bonding Sharing of Electrons = Covalent Bonding

3 Naming Covalent Compounds Prefixes used to denote number of atoms of element Numerical Prefixes mono- 1 hexa- 6 di- 2 hepta- 7 tri- 3 octa- 8 tetra- 4 nona- 9 penta- 5 deca- 10 The suffix -ide is added to the more electronegative element For the least electronegative (on the left), mono- is not used to denote one atom.

4 Molecules Molecule = covalently bonded atoms Diatomic molecule = two atoms Molecular compounds lower melting and boiling point than ionic compounds Molecular formula Doesn t have to be lowest whole-number ratio Does represent structure

5 Molecular Representations Figure 8.5, Pg. 215, Text

6 Lewis dot structures of covalent compounds In covalent compounds atoms share electrons. We can use Lewis structures to help visualize the molecules. Lewis structures Multiple bonds must be considered. Will help determine molecular geometry. Will help explain polyatomic ions.

7 oo Types of electrons Bonding pairs Two electrons that are shared between two atoms. A covalent bond. Unshared pairs A pair of electrons that are not shared between two atoms. Lone pairs or nonbonding electrons. Bonding pair H Cl oo oo oo Unshared pair

8 Single covalent bonds H H H H C H F F H Do atoms (except H) have octets?

9 Covalent Bonding When two similar atoms bond, none of them wants to lose or gain electrons Share pairs of electrons to each obtain noble gas e - configuration. Each pair of shared electrons = one covalent bond Unshared Pairs = Pairs of e - not shared by all atoms Show unshared pairs as dots Visual, Pg. 219, Text N H H H

10 Sharing of Electrons Water - H 2 O - Covalent Bonding H = 1e -, O = 6e - Each H shares their electron with O O = 8e- = [Ne] O shares 1e- with each H H = 2e- = [He] Use dashes or dots to show covalent bonds Visual, Pg. 218, Text O H H

11 Multiple Covalent Bonds Elements can share more than two electrons - creates double and triple bonds Carbon Dioxide (CO 2 ) - 4 electrons shared between the carbon and the oxygens (double bond) O C O O C O

12 Triple Covalent Bonds Triple bond = Six electrons shared between the carbon atoms Ethyne (C 2 H 2 ), a.k.a acetylene H C C H H C C H Bond length decreases from single to triple bonds Bond strength increases from single to triple bonds

13 Coordinate Covalent Bonds Coordinate covalent bond = one atom contributes both bonding electrons C O O = 8e - C = 6e - O must contribute one of its pairs C O O = 8e - Polyatomic ions contain coordinate covalent bonds C = 8e -

14 Resonance Structures Structures with multiple bonds can have similar structures with the multiple bonds between different pairs of atoms = Resonance Structures Example: Ozone has two identical bonds whereas the Lewis Structure requires one single (longer) and one double bond (shorter). O O O

15 Resonance Structures Resonance Structures

16 Resonance structures Sometimes we can have two or more equivalent Lewis structures for a molecule. O - S = O O = S - O They both - satisfy the octet rule - have the same number of bonds - have the same types of bonds Which is right?

17 Resonance structures They both are! O - S = O O = S - O O S O This results in an average of 1.5 bonds between each S and O.

18 Exceptions to Octet Rule Three classes of exceptions to the octet rule for molecules Odd number of electrons One atom has less than an octet One atom has more than an octet Odd Number of Electrons Few examples. N O N O Molecules such as ClO 2, NO, and NO 2 have an odd number of electrons.

19 Exceptions to Octet Rule Less than an Octet Relatively rare. Typical for compounds of Groups 13. Most typical BF 3. More than an Octet Atoms from the 3rd period onwards can accommodate more than an octet. The d-orbitals are low enough in energy to participate in bonding and accept extra electron density.

20 : : : : : : : : : : Atoms with fewer than eight electrons Beryllium and boron will both form compounds where they have less than 8 electrons around them. :Cl:Be:Cl: :F:B:F: :F:

21 : Species with an odd total number of electrons Example - NO Nitrogen monoxide is an example of a compound with an odd number of electrons. It has a total of 11 valence electrons: six from oxygen and 5 from nitrogen. The best Lewis structure for NO is:. :N::O:

22 Drawing Lewis structures Write the symbols for the elements in the correct structural order. Calculate the number of valence electrons for all atoms in the compound. Put a pair of electrons between each symbol, the bond between each. Beginning with the outer atoms, place pairs of electrons around atoms until each has eight (except for hydrogen). If an atom other than hydrogen has less than eight electrons, move unshared pairs to form multiple bonds.

23 Lewis Dot Structures: SO Write a possible arrangement. O O S O 2. Total the electrons. 6 from S, 4 x 6 from O add 2 for charge total = Spread the electrons around. O O O S O - - O

24 Lewis structures Example CO 2 Step 1 Draw any possible structures C-O-O O-C-O You may want to use lines for bonds. Each line represents 2 electrons.

25 Lewis structures Step 2 Determine the total number of valence electrons. CO 2 1 carbon x 4 electrons = 4 2 oxygen x 6 electrons = 12 Total electrons = 16

26 Lewis structures Step 3 Try to satisfy the octet rule for each atom - all electrons must be in pairs - make multiple bonds as required Try the C-O-O structure C O O No matter what you try, there is no way satisfy the octet for all of the atoms.

27 Lewis structures O C O This arrangement needs too many electrons. How about making some double bonds? O=C=O That works! = is a double bond, the same as 4 electrons

28 Ammonia, NH 3 Step 1 H Step 2 3 e - from H 5 e - from N H N H 8 e - total Step 3 H H N H N has octet H has 2 electrons (all it can hold)

29 Electronegativity Electronegativity = Ability to attract electrons in a chemical bond Decrease as you move down a group Increase as you move from left to right across a period. Decreasing Electronegativity Increasing Electronegativity

30 Polar Covalent Bonds Sharing of electrons in a covalent bond does not imply equal sharing of those electrons. In some covalent bonds - electrons located closer to one atom than the other Unequal sharing polar bonds. Sharing based on electronegativity of elements in bond

31 Electronegativities

32 Electronegativity and Polarity Difference in electronegativity between atoms is a gauge of bond polarity Difference Type of Bond Electrons Nonpolar Covalent Equal sharing Moderately Polar Covalent Very Polar Covalent Unequal sharing Unequal sharing 3 Ionic Transfer

33 oo Nonpolar and polar covalent bonds Nonpolar: When two atoms share a pair of electrons equally. H H oo Cl Cl Polar: A covalent bond in which the electron pair in not shared equally. d+ oo d- H Cl oo oo oo oo oo oo oo oo oo Note: A line can be used to represent a shared pair of electrons.

34 Polar Dipoles The positive end (or pole) in a polar bond is represented d+ and the negative pole d- = dipoles (partial charges) Polar molecules placed between electric (+/-) plates become aligned with plates δ- O H H δ+ δ+

35 Attractions between Molecules Intermolecular attractions weaker than ionic or covalent bonds these are attractions BETWEEN molecules not inside molecules like ionic or covalent bonds (intramolecular)

36 Types of Intermolecular Attractions van der Waals forces Dipole interaction δ+ end of one molecule attracted to δ- end of another Dispersion forces Caused by movements of e - Hydrogen Bonds Hydrogen bonded with very electronegative element is also weakly bonded to an unshared pair on another electronegative atom

37 Characteristics of Ionic and Covalent Compounds Characteristic Ionic Compound Covalent Compound Representative Unit Formula Unit Molecule Bond Formation Transfer of e- Sharing of e- Type of elements Metal + Nonmetal Nonmetals Physical State Solid Solid, liquid, or gas Melting Point High (usually above 300 C) Low (usually below 300 C) Solubility in water High High to low Electrical conductivity of aqueous solution Good conductor Poor to nonconducting Table 8.4, Pg 244, Text

38 Adapted from Chemistry Molecular Geometries John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall, Inc.

39 Molecular Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of bonding and nonbonding electron pairs we can easily predict the shape of the molecule.

40 What Determines the Shape of a Molecule? Simply put, electron pairs, whether they be bonding or nonbonding, repel each other. By assuming the electron pairs are placed as far as possible from each other, we can predict the shape of the molecule.

41 Valence Shell Electron Pair Repulsion Theory (VSEPR) The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them.

42 Molecular Geometries The molecular geometry is that defined by the positions of only the atoms in the molecules, not the nonbonding pairs.

43 Linear Electron Domain In this domain, there is only one molecular geometry: linear. NOTE: If there are only two atoms in the molecule, the molecule will be linear no matter what the electron domain is.

44 Trigonal Planar Electron Domain There are two molecular geometries: Trigonal planar, if all the electron domains are bonding Bent, if one of the domains is a nonbonding pair.

45 Polarity In we discussed bond dipoles. But just because a molecule possesses polar bonds does not mean the molecule as a whole will be polar.

46 Polarity By adding the individual bond dipoles, one can determine the overall dipole moment for the molecule.

47 Overlap and Bonding We think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can only occur when orbitals on the two atoms overlap.

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes.

Thursday Agenda. Do Now Pull out your POGIL packets and a scrap sheet of paper. Review POGIL exercise Covalent Bonding notes. Thursday 10.27.16 Do Now Pull out your POGIL packets and a scrap sheet of paper Agenda Review POGIL exercise Covalent Bonding notes LDD for compounds Homework Covalent Bonding Bonding Ionic Bonding - attracted

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

Outline Introduction: Multiple bonds, Bond. strength. Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity

Outline Introduction: Multiple bonds, Bond. strength. Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity Covalent Bonding Outline Introduction: Multiple bonds, Bond strength Naming molecules Drawing Lewis Structures Molecular shapes and VSEPR theory Bond Polarity Why do atoms bond? Recall that noble gases

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

LET S FIRST REVIEW IONIC BONDING

LET S FIRST REVIEW IONIC BONDING COVALENT BONDING LET S FIRST REVIEW IONIC BONDING In an IONIC bond, electrons are lost or gained, resulting in the formation of IONS in ionic compounds. K F K F K F K F K F K F K + F _ The compound potassium

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between.

RESONANCE STRUCTURE When a molecule has more than one possible structure. Draw all possible structures and place a double end arrow ( ) in between. CHEMISTRY NOTES 6.1 COVALENT BONDS Objectives Explain the role and location of electrons in a covalent bond. Describe the change in energy and stability that takes place as a covalent bond forms. Distinguish

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds

Chapter 8 H H H H. Molecular Compounds & Covalent Bonding. Why do covalent bonds form? 8.1 Molecular Compounds. Properties of Molecular Compounds Chapter 8 Molecular Compounds & Covalent Bonding Why do covalent bonds form? If only group 5A, 6A, 7A atoms existed, ionic bonds can t form. NNMETALS Each atom needs electrons so they are not willing to

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Covalent & Metallic Bonding

Covalent & Metallic Bonding Covalent & Metallic Bonding Metallic Bonding Metals are made of closely packed cations. These cations have a number of valence electrons floating around them as what we call a sea of electrons. Metallic

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Name Date Class. covalent bond molecule sigma bond exothermic pi bond

Name Date Class. covalent bond molecule sigma bond exothermic pi bond Date Class 8 Covalent Bonding Section 8.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

6.1 Intro to Chemical Bonding Name:

6.1 Intro to Chemical Bonding Name: 6.1 Intro to Chemical Bonding Name: A. Chemical bond Favored by nature because: 3 main types of bonds 1. 2. 3. B. Ionic Bonds C. Covalent Bonds D. Metallic Bond E. Bond Determination RECALL: Electronegativity

More information

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide

C N O F. Carbon dioxide Triphosphorus pentoxide C 6 H 6 BF 3 I 5 H 10. Tetracarbon nonahydride. Dihydrogen monoxide NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one share or more pairs of valence electrons between

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Unit 6: Molecular Geometry

Unit 6: Molecular Geometry Unit 6: Molecular Geometry Molecular Geometry [6-5] the polarity of each bond, along with the geometry of the molecule determines Molecular Polarity. To predict the geometries of more complicated molecules,

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Bonding. Honors Chemistry Unit 6

Bonding. Honors Chemistry Unit 6 Bonding Honors Chemistry Unit 6 Bond Types Ionic: transfer of electrons Covalent: sharing electron pair(s) Metallic: delocalized electrons Predicting Bonds Based on electronegativity difference (look at

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Unit 4: Chemical Bonds. Chapter 7-9

Unit 4: Chemical Bonds. Chapter 7-9 Unit 4: Chemical Bonds Chapter 7-9 Objectives 26 Identify the number of valence electrons for elements and their Lewis dot structure 27 Define the terms cation and anion including radius size and charge

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Ch. 7 Notes ~ Covalent Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 7 Notes ~ Covalent Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 7 Notes ~ Covalent Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Compounds a review A. compound ( cmpd. ) a substance formed from more than one

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 12 Chemical Bonding by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 12 1 Chemical Bond Concept

More information

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit

Covalent Bonding. Click a hyperlink or folder tab to view the corresponding slides. Exit Covalent Bonding Section 8.1 The Covalent Bond Section 8.2 Naming Molecules Section 8.3 Molecular Structures Section 8.4 Molecular Shapes Section 8.5 Electronegativity and Polarity Click a hyperlink or

More information

Ch 6.1 Chemical Bonding

Ch 6.1 Chemical Bonding Ch 6.1 Chemical Bonding Chemical Bonds the attractive forces that hold different atoms or ions together (Intramolecular or electrostatic Forces Why Bond? Atoms bond to achieve a full outer energy level

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7 hapter 8 ovalent bonding ovalent Bonding A metal and a nonmetal transfer An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

Unit 5: Covalent Bonding and Acids

Unit 5: Covalent Bonding and Acids Unit 5: Covalent Bonding and Acids Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: 1) Ionic bonds transfer of electrons (gained or lost; makes formula unit)

More information

COVALENT COMPOUNDS. Back to Lewis Dot Structures and Valence Electrons!

COVALENT COMPOUNDS. Back to Lewis Dot Structures and Valence Electrons! COVALENT COMPOUNDS Back to Lewis Dot Structures and Valence Electrons! Review of Lewis Dot Structures Electron Dot Structures contain: Element s Symbol: representing the atom s nucleus and inner electrons

More information

Brainteaser 10/29/12. Answers

Brainteaser 10/29/12. Answers Brainteaser 10/29/12 Name these ionic compounds: NH 4 Br Fe(SO 4 ) Write the correct formula of these ionic compounds Manganese (II) perchlorate Sodium nitrate Cesium iodide Answers Name these ionic compounds:

More information

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2

CO T PRACTICE WITH NAMING PRACTICE WITH FORMULAS ENL VA 1. CO2 NAMING COVALENT COMPOUNDS TYPES OF BONDS FORMED ELECTRONS & BONDS BOND FORMATION COVALENT BONDING A covalent bond forms between 2 elements because they one or more pairs of valence electrons between the

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides

Name Date Class MOLECULAR COMPOUNDS. Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides 8.1 MOLECULAR COMPOUNDS Section Review Objectives Distinguish molecular compounds from ionic compounds Identify the information a molecular formula provides Vocabulary covalent bond molecule diatomic molecule

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Covalent compounds. i.e. one type of atom only OR from different elements chemically combined to form a compound.

Covalent compounds. i.e. one type of atom only OR from different elements chemically combined to form a compound. CHEMICAL BONDING Covalent compounds Covalent bonds are formed by atoms sharing electrons to form molecules. This type of bond usually formed between two or more non-metallic elements. The molecules might

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie

Intramolecular Bonding. Chapters 4, 12 Chemistry Mr. McKenzie Intramolecular Bonding Chapters 4, 12 Chemistry Mr. McKenzie What determines the type of intramolecular bond? An intramolecular bond is any force that holds two atoms together to form a compound; 3 types

More information

Review Complete Questions 6, 7 and 9 on page 214

Review Complete Questions 6, 7 and 9 on page 214 Review Complete Questions 6, 7 and 9 on page 214 Title: Jan 5 8:43 AM (1 of 69) Title: Jan 5 11:18 AM (2 of 69) Title: Jan 5 11:22 AM (3 of 69) Title: Jan 5 11:26 AM (4 of 69) Title: Jan 5 11:28 AM (5

More information

Chapter 12 Structures and Characteristics of Bonds Objectives

Chapter 12 Structures and Characteristics of Bonds Objectives Objectives 1. To learn about ionic and covalent bonds and explain how they are formed - what holds compounds together? 2. To learn about the polar covalent bond are all covalent bonds equal? 3. To understand

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

!"##$%&'()$*+,%'-./'

!##$%&'()$*+,%'-./' !"##$%&()$*+,%-./ 0,1,%$234%5$1673896:2:567$2(),#6;+%& 6!#6+)! CHAPTER 3-4: Concepts to Know! The difference between ionic and covalent bonds! Define cations and anions! Predict cation/anion

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

Unit IV. Covalent Bonding

Unit IV. Covalent Bonding Unit IV. Covalent Bonding READING ASSIGNMENT 1: Read 16.1 pp. 437-451. Complete section review questions 1-12. Lewis Theory of Covalent Bonding- The driving force of bond formation is the desire of each

More information

Chemistry 51 Chapter 5 OCTET RULE & IONS

Chemistry 51 Chapter 5 OCTET RULE & IONS OCTET RULE & IONS Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements. In the formation of a

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Chemical Bonding Bonding Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Type of bond depends on electron configuration and electronegativity Why do

More information

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds Covalent Compounds Table of Contents Section 1 Covalent Bonds Section 2 Drawing and Naming Molecules Section 3 Molecular Shapes Section 1 Covalent Bonds Bellringer Make a list of the elements that form

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

MOLECULAR COMPOUNDS. Example: CO 2, not O 2 C

MOLECULAR COMPOUNDS. Example: CO 2, not O 2 C LEARNING GOAL: GIVEN THE FORMULA OF A MOLECULAR COMPOUND, WRITE ITS CORRECT NAME; GIVEN THE NAME OF A MOLECULAR COMPOUND, WRITE ITS FORMULA. Two atoms can be held together by their mutual attraction for

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Bonds can bend and stretch without breaking (bond lengths are averages)

Bonds can bend and stretch without breaking (bond lengths are averages) The Structure of Matter What are compounds? Two or more different elements bonded together by VALENCE ELECTRONS o The force that holds two atoms together The ability to write a formula, such as H2O, indicates

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

Lewis Dot Formulas and Molecular Shapes

Lewis Dot Formulas and Molecular Shapes Lewis Dot Formulas and Molecular Shapes Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent chemical bonds are formed by valence electrons

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

NOTES: 8.4 Polar Bonds and Molecules

NOTES: 8.4 Polar Bonds and Molecules NOTES: 8.4 Polar Bonds and Molecules ELECTRONEGATIVITY: We ve learned how valence electrons are shared to form covalent bonds between elements. So far, we have considered the electrons to be shared equally.

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Chemistry 101 Chapter 12 Chemical Bonding

Chemistry 101 Chapter 12 Chemical Bonding Chemistry 101 Chapter 12 Chemical Bonding Octet rule-duet role: when undergoing chemical reaction, atoms of group 1A-7A elements tend to gain, lose, or share sufficient electrons to achieve an electron

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Chemical Bonding by Christopher G. Hamaker Illinois State University Chemical Bond Concept Recall that

More information

Study flashcards. Elements Polyatomic ions: be sure to learn the chemical. Slide 1of 29

Study flashcards. Elements Polyatomic ions: be sure to learn the chemical. Slide 1of 29 Study flashcards Elements Polyatomic ions: be sure to learn the chemical formula AND the charge 1of 29 Write the formula for: 1. Phosphate PO 4 3 2. Nitrate NO 3 3. Carbonate CO 3 2 4. Sulfate SO 4 2 5.

More information

Valence electrons octet rule. Lewis structure Lewis structures

Valence electrons octet rule. Lewis structure Lewis structures Lewis Dot Diagrams Valence electrons are the electrons in the outermost energy level of an atom. An element with a full octet of valence electrons has a stable configuration. The tendency of bonded atoms

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds

Section 6.2 1/13/2014. Most Chemical Compounds. Molecular (or Covalent) Compound. Covalent Bonding and Molecular Compounds Section 6.2 Covalent Bonding and Molecular Compounds Most Chemical Compounds Are molecules, a neutral group of atoms that are held together by covalent bonds. It is a single unit capable of existing on

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

IB Chemistry. Chapter 4.1

IB Chemistry. Chapter 4.1 IB Chemistry Chapter 4.1 Chemical Bonds Atoms or ions that are strongly attached to one another Chemical bonds will form if potential energy decreases (becomes more stable) 2 Valence Electrons Valence

More information