P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML AT029-FM AT029-Manual AT029-Manual-v8.cls December 11, :59. Contents

Size: px
Start display at page:

Download "P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML AT029-FM AT029-Manual AT029-Manual-v8.cls December 11, :59. Contents"

Transcription

1 Contents Foreword Preface xvii xix Chapter 1 Introduction 1 Nomenclature Nature of Petroleum Fluids Hydrocarbons Reservoir Fluids and Crude Oil Petroleum Fractions and Products Types and Importance of Physical Properties Importance of Petroleum Fluids Characterization Organization of the Book Specific Features of this Manual Introduction of Some Existing Books Special Features of the Book Applications of the Book Applications in Petroleum Processing (Downstream) Applications in Petroleum Production (Upstream) Applications in Academia Other Applications Definition of Units and the Conversion Factors Importance and Types of Units Fundamental Units and Prefixes Units of Mass Units of Length Units of Time Units of Force Units of Moles Units of Molecular Weight Units of Pressure Units of Temperature Units of Volume, Specific Volume, and Molar Volume The Standard Conditions Units of Volumetric and Mass Flow Rates Units of Density and Molar Density Units of Specific Gravity Units of Composition Units of Energy and Specific Energy Units of Specific Energy per Degrees Units of Viscosity and Kinematic Viscosity Units of Thermal Conductivity Units of Diffusion Coefficients Units of Surface Tension Units of Solubility Parameter Units of Gas-to-Oil Ratio 24 vii

2 viii Values of Universal Constants Gas Constant Other Numerical Constants Special Units for the Rates and Amounts of Oil and Gas Problems 26 References 27 Chapter 2 Characterization and Properties of Pure Hydrocarbons 30 Nomenclature Definition of Basic Properties Molecular Weight Boiling Point Density, Specific Gravity, and API Gravity Refractive Index Critical Constants (T c, P c, V c, Z c ) Acentric Factor Vapor Pressure Kinematic Viscosity Freezing and Melting Points Flash Point Autoignition Temperature Flammability Range Octane Number Aniline Point Watson K Refractivity Intercept Viscosity Gravity Constant Carbon-to-Hydrogen Weight Ratio Data on Basic Properties of Selected Pure Hydrocarbons Sources of Data Properties of Selected Pure Compounds Additional Data on Properties of Heavy Hydrocarbons Characterization of Hydrocarbons Development of a Generalized Correlation for Hydrocarbon Properties Various Characterization Parameters for Hydrocarbon Systems Prediction of Properties of Heavy Pure Hydrocarbons Extension of Proposed Correlations to Nonhydrocarbon Systems Prediction of Molecular Weight, Boiling Point, and Specific Gravity Prediction of Molecular Weight Riazi Daubert Methods ASTM Method API Methods Lee Kesler Method Goossens Correlation Other Methods 58

3 ix Prediction of Normal Boiling Point Riazi Daubert Correlations Soreide Correlation Prediction of Specific Gravity/API Gravity Riazi Daubert Methods Prediction of Critical Properties and Acentric Factor Prediction of Critical Temperature and Pressure Riazi Daubert Methods API Methods Lee Kesler Method Cavett Method Twu Method for T c, P c, V c, and M Winn Mobil Method Tsonopoulos Correlations Prediction of Critical Volume Riazi Daubert Methods Hall Yarborough Method API Method Prediction of Critical Compressibility Factor Prediction of Acentric Factor Lee Kesler Method Edmister Method Korsten Method Prediction of Density, Refractive Index, CH Weight Ratio, and Freezing Point Prediction of Density at 20 C Prediction of Refractive Index Prediction of CH Weight Ratio Prediction of Freezing/Melting Point Prediction of Kinematic Viscosity at 38 and 99 C The Winn Nomogram Analysis and Comparison of Various Characterization Methods Criteria for Evaluation of a Characterization Method Evaluation of Methods of Estimation of Molecular Weight Evaluation of Methods of Estimation of Critical Properties Evaluation of Methods of Estimation of Acentric Factor and Other Properties Conclusions and Recommendations Problems 83 References 84 Chapter 3 Characterization of Petroleum Fractions 87 Nomenclature Experimental Data on Basic Properties of Petroleum Fractions Boiling Point and Distillation Curves ASTM D True Boiling Point 89

4 x Simulated Distillation by Gas Chromatography Equilibrium Flash Vaporization Distillation at Reduced Pressures Density, Specific Gravity, and API Gravity Molecular Weight Refractive Index Compositional Analysis Types of Composition Analytical Instruments PNA Analysis Elemental Analysis Viscosity Prediction and Conversion of Distillation Data Average Boiling Points Interconversion of Various Distillation Data Riazi Daubert Method Daubert s Method Interconverion of Distillation Curves at Reduced Pressures Summary Chart for Interconverion of Various Distillation Curves Prediction of Complete Distillation Curves Prediction of Properties of Petroleum Fractions Matrix of Pseudocomponents Table Narrow Versus Wide Boiling Range Fractions Use of Bulk Parameters (Undefined Mixtures) Method of Pseudocomponent (Defined Mixtures) Estimation of Molecular Weight, Critical Properties, and Acentric Factor Estimation of Density, Specific Gravity, Refractive Index, and Kinematic Viscosity General Procedure for Properties of Mixtures Liquid Mixtures Gas Mixtures Prediction of the Composition of Petroleum Fractions Prediction of PNA Composition Characterization Parameters for Molecular Type Analysis API Riazi Daubert Methods API Method n-d-m Method Prediction of Elemental Composition Prediction of Carbon and Hydrogen Contents Prediction of Sulfur and Nitrogen Contents Prediction of Other Properties Properties Related to Volatility Reid Vapor Pressure V/L Ratio and Volatility Index Flash Point 133

5 xi Pour Point Cloud Point Freezing Point Aniline Point Winn Method Walsh Mortimer Linden Method Albahri et al. Method Cetane Number and Diesel Index Octane Number Carbon Residue Smoke Point Quality of Petroleum Products Minimum Laboratory Data Analysis of Laboratory Data and Development of Predictive Methods Conclusions and Recommendations Problems 146 References 149 Chapter 4 Characterization of Reservoir Fluids and Crude Oils 152 Nomenclature Specifications of Reservoir Fluids and Crude Assays Laboratory Data for Reservoir Fluids Crude Oil Assays Generalized Correlations for Pseudocritical Properties of Natural Gases and Gas Condensate Systems Characterization and Properties of Single Carbon Number Groups Characterization Approaches for C 7+ Fractions Distribution functions for Properties of Hydrocarbon-plus Fractions General Characteristics Exponential Model Gamma Distribution Model Generalized Distribution Model Versatile Correlation Probability Density Function for the Proposed Generalized Distribution Model Calculation of Average Properties of Hydrocarbon-Plus Fractions Calculation of Average Properties of Subfractions Model Evaluations Prediction of Property Distributions Using Bulk Properties Pseudoization and Lumping Approaches Splitting Scheme The Gaussian Quadrature Approach Carbon Number Range Approach Lumping Scheme Continuous Mixture Characterization Approach 187

6 xii 4.8 Calculation of Properties of Crude Oils and Reservoir Fluids General Approach Estimation of Sulfur Content of a Crude Oil Conclusions and Recommendations Problems 193 References 194 Chapter 5 PVT Relations and Equations of State 197 Nomenclature Basic Definitions and the Phase Rule PVT Relations Intermolecular Forces Equations of State Ideal Gas Law Real Gases Liquids Cubic Equations of State Four Common Cubic Equations (vdw, RK, SRK, and PR) Solution of Cubic Equations of State Volume Translation Other Types of Cubic Equations of State Application to Mixtures Noncubic Equations of State Virial Equation of State Modified Benedict Webb Rubin Equation of State Carnahan Starling Equation of State and Its Modifications Corresponding State Correlations Generalized Correlation for PVT Properties of Liquids Rackett Equation Rackett Equation for Pure Component Saturated Liquids Defined Liquid Mixtures and Petroleum Fractions Effect of Pressure on Liquid Density Refractive Index Based Equation of State Summary and Conclusions Problems 228 References 229 Chapter 6 Thermodynamic Relations for Property Estimations 232 Nomenclature Definitions and Fundamental Thermodynamic Relations Thermodynamic Properties and Fundamental Relations Measurable Properties Residual Properties and Departure Functions Fugacity and Fugacity Coefficient for Pure Components General Approach for Property Estimation Generalized Correlations for Calculation of Thermodynamic Properties 238

7 xiii 6.3 Properties of Ideal Gases Thermodynamic Properties of Mixtures Partial Molar Properties Properties of Mixtures Property Change Due to Mixing Volume of Petroleum Blends Phase Equilibria of Pure Components Concept of Saturation Pressure Phase Equilibria of Mixtures Calculation of Basic Properties Definition of Fugacity, Fugacity Coefficient, Activity, Activity Coefficient, and Chemical Potential Calculation of Fugacity Coefficients from Equations of State Calculation of Fugacity from Lewis Rule Calculation of Fugacity of Pure Gases and Liquids Calculation of Activity Coefficients Calculation of Fugacity of Solids General Method for Calculation of Properties of Real mixtures Formulation of Phase Equilibria Problems for Mixtures Criteria for Mixture Phase Equilibria Vapor Liquid Equilibria Gas Solubility in Liquids Formulation of Vapor Liquid Equilibria Relations Solubility of Gases in Liquids Henry s Law Equilibrium Ratios (K i Values) Solid Liquid Equilibria Solid Solubility Freezing Point Depression and Boiling Point Elevation Use of Velocity of Sound in Prediction of Fluid Properties Velocity of Sound Based Equation of State Equation of State Parameters from Velocity of Sound Data Virial Coefficients Lennard Jones and van der Waals Parameters RK and PR EOS Parameters Property Estimation Summary and Recommendations Problems 292 References 294 Chapter 7 Applications: Estimation of Thermophysical Properties 297 Nomenclature General Approach for Prediction of Thermophysical Properties of Petroleum Fractions and Defined Hydrocarbon Mixtures 298

8 xiv 7.2 Density Density of Gases Density of Liquids Density of Solids Vapor Pressure Pure Components Predictive Methods Generalized Correlations Vapor Pressure of Petroleum Fractions Analytical Methods Graphical Methods for Vapor Pressure of Petroleum Products and Crude Oils Vapor Pressure of Solids Thermal Properties Enthalpy Heat Capacity Heats of Phase Changes Heat of Vaporization Heat of Combustion Heating Value Summary and Recommendations Problems 327 References 328 Chapter 8 Applications: Estimation of Transport Properties 329 Nomenclature Estimation of Viscosity Viscosity of Gases Viscosity of Liquids Estimation of Thermal Conductivity Thermal Conductivity of Gases Thermal Conductivity of Liquids Diffusion Coefficients Diffusivity of Gases at Low Pressures Diffusivity of Liquids at Low Pressures Diffusivity of Gases and Liquids at High Pressures Diffusion Coefficients in Mutlicomponent Systems Diffusion Coefficient in Porous Media Interrelationship Among Transport Properties Measurement of Diffusion Coefficients in Reservoir Fluids Surface/Interfacial Tension Theory and Definition Predictive Methods Summary and Recommendations Problems 362 References 362 Chapter 9 Applications: Phase Equilibrium Calculations 365 Nomenclature Types of Phase Equilibrium Calculations Vapor Liquid Equilibrium Calculations Flash Calculations Gas-to-Oil Ratio Bubble and Dew Points Calculations 370

9 xv Generation of P T Diagrams True Critical Properties Vapor Liquid Solid Equilibrium Solid Precipitation Nature of Heavy Compounds, Mechanism of their Precipitation, and Prevention Methods Wax Precipitation Solid Solution Model Wax Precipitation: Multisolid-Phase Model Calculation of Cloud Point Asphaltene Precipitation: Solid Liquid Equilibrium Vapor Solid Equilibrium Hydrate Formation Applications: Enhanced Oil Recovery Evaluation of Gas Injection Projects Summary and Recommendations Final Words Problems 393 References 395 Appendix 397 Index 401

THE PROPERTIES OF GASES AND LIQUIDS

THE PROPERTIES OF GASES AND LIQUIDS THE PROPERTIES OF GASES AND LIQUIDS Bruce E. Poling University of Toledo John M. Prausnitz University of California at Berkeley John P. O'Connell University of Virginia Fifth Edition McGRAW-HILL New York

More information

Characterization & properties estimation of crude oil and petroleum products

Characterization & properties estimation of crude oil and petroleum products Chapter 4 Characterization & properties estimation of crude oil and petroleum products Introduction There is no analytical technique available to determine (either quantitatively or quantitatively) all

More information

PREDICTION OF PETROLEUM FRACTION ENTHALPIES FROM THE SECOND (ALPHA) MODIFICATION OF THE VAN DER WAALS EQUATION. Part 4. I. Review/Introduction

PREDICTION OF PETROLEUM FRACTION ENTHALPIES FROM THE SECOND (ALPHA) MODIFICATION OF THE VAN DER WAALS EQUATION. Part 4. I. Review/Introduction PREDICTION OF PETROLEUM FRACTION ENTHALPIES FROM THE SECOND (ALPHA) MODIFICATION OF THE VAN DER WAALS EQUATION Part 4 I. Review/Introduction In the first two papers (1,2) of this series, we developed and

More information

CONTENTS. Notes to Students Acknowledgments ABOUT THE AUTHORS UNIT I FIRST AND SECOND LAWS 1

CONTENTS. Notes to Students Acknowledgments ABOUT THE AUTHORS UNIT I FIRST AND SECOND LAWS 1 CONTENTS PREFACE Notes to Students Acknowledgments ABOUT THE AUTHORS GLOSSARY NOTATION xvii xviii xviii xix xxi xxv UNIT I FIRST AND SECOND LAWS 1 CHAPTER 1 BASIC CONCEPTS 3 1.1 Introduction 5 1.2 The

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

Equations of State. Equations of State (EoS)

Equations of State. Equations of State (EoS) Equations of State (EoS) Equations of State From molecular considerations, identify which intermolecular interactions are significant (including estimating relative strengths of dipole moments, polarizability,

More information

Select the Right Hydrocarbon Molecular Weight Correlation

Select the Right Hydrocarbon Molecular Weight Correlation Select the Right Hydrocarbon Molecular Weight Correlation By Donald F. Schneider, P.E. Chemical Engineer Stratus Engineering, Inc. PMB 339 2951 Marina Bay Drive #130 League City, Texas 77573 (281) 335-7138

More information

Overall: 75 ECTS: 7.0

Overall: 75 ECTS: 7.0 Course: Chemical Engineering Thermodynamics Language: English Lecturer: Prof. dr. sc. Marko Rogošić TEACHING WEEKLY SEMESTER Lectures 3 45 Laboratory 1 15 Seminar 1 15 Overall: 75 ECTS: 7.0 PURPOSE: Within

More information

PVT Course for Oil and Gas Professionals

PVT Course for Oil and Gas Professionals PVT Course for Oil and Gas Professionals The Instructor Overview Avada Oil and Gas is commitment to raising the bar for postgraduate learning. A student receiving a certificate of completion from us, has

More information

Preface Acknowledgments Nomenclature

Preface Acknowledgments Nomenclature CONTENTS Preface Acknowledgments Nomenclature page xv xvii xix 1 BASIC CONCEPTS 1 1.1 Overview 1 1.2 Thermodynamic Systems 3 1.3 States and Properties 4 1.3.1 State of a System 4 1.3.2 Measurable and Derived

More information

PETE 310 Lectures # 36 to 37

PETE 310 Lectures # 36 to 37 PETE 310 Lectures # 36 to 37 Cubic Equations of State Last Lectures Instructional Objectives Know the data needed in the EOS to evaluate fluid properties Know how to use the EOS for single and for multicomponent

More information

A generalized set of correlations for plus fraction characterization

A generalized set of correlations for plus fraction characterization 370 Pet.Sci.(01)9:370-378 DOI 10.1007/s118-01-01-x A generalized set of correlations for plus fraction characterization JAMIALAHMADI Mohamad 1, ZANGENEH Hossein and HOSSEINI Seyed Sajad 1 Petroleum Engineering

More information

12. Petroleum Calculations

12. Petroleum Calculations 12. Petroleum Calculations Overview Calculations with the OLI Software can be used to characterize crude oils. Here is a quote from the OLI Tricks of the Trade manual (AQSim) Crude oils are complex groups

More information

Chemical and Engineering Thermodynamics

Chemical and Engineering Thermodynamics Chemical and Engineering Thermodynamics Third Edition Stanley I. Sandler University of Delaware John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Singapore Toronto Contents NOTATION xv CHAPTER1

More information

Reservoir Eng FOB :18 Page i Second Edition

Reservoir Eng FOB :18 Page i Second Edition Second Edition C H A P T E R 1 FUNDAMENTALS OF RESERVOIR FLUID BEHAVIOR Naturally occurring hydrocarbon systems found in petroleum reservoirs are mixtures of organic compounds which exhibit multiphase

More information

EOS Higher Oil School 2017/5/26

EOS Higher Oil School 2017/5/26 EOS lecture @Baku Higher Oil School 2017/5/26 Introduction What is EOS? Equation of State Also known as Cubic EOS because of equation of 3 rd degree Instrumental to calculate PVT Relationship between Pressure,

More information

Chemical Engineering Thermodynamics

Chemical Engineering Thermodynamics Chemical Engineering Thermodynamics P Liquid P x 1 sat P 1 T sat T 2 T x 1 T x 1 T y 1 Liquid Vapour sat P 2 P x 1 P y 1 P y 1 Vapour sat T 1 x, y 1 1 x, y 1 1 Pradeep Ahuja Contents CHEMICAL ENGINEERING

More information

Hydrocarbon Reservoirs and Production: Thermodynamics and Rheology

Hydrocarbon Reservoirs and Production: Thermodynamics and Rheology Hydrocarbon Reservoirs and Production: Thermodynamics and Rheology A comprehensive course by Prof. Abbas Firoozabadi RERI and Yale University and Prof. Gerald Fuller Stanford University Palo Alto, California

More information

PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION. By Charles R. Koppany

PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION. By Charles R. Koppany PREDICTION OF SATURATED LIQUID VOLUMES FROM A MODIFIED VAN DER WAALS EQUATION Part 1 By Charles R. Koppany Introduction Over the past 40 years or so, closed cubic (in volume) equations of state have been

More information

Yutaek Seo. Subsea Engineering

Yutaek Seo. Subsea Engineering Yutaek Seo Subsea Engineering Fluid characterization Fluid characterization Bottom hole sampling DST Separator analysis Constituents of reservoir fluids Defined components TBP fractions TBP residue Defined

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

CHEMICAL THERMODYNAMICS

CHEMICAL THERMODYNAMICS CHEMICAL THERMODYNAMICS Basic Theory and Methods Sixth Edition IRVING M. KLOTZ Morrison Professor Emeritus Northwestern University ROBERT M. ROSENBERG MacMillen Professor Emeritus Lawrence University Visiting

More information

Preparing Oil & Gas PVT Data. Reservoir Simulation

Preparing Oil & Gas PVT Data. Reservoir Simulation A-to-Z of Preparing Oil & Gas PVT Data for Reservoir Simulation Curtis H. Whitson NTNU / PERA Tasks Collecting samples. Which PVT lab tests to use. Designing special PVT studies. Quality controlling PVT

More information

Principles of Chemical Engineering Processes

Principles of Chemical Engineering Processes Principles of Chemical Engineering Processes MATERIAL AND ENERGY BALANCES SECOND EDITION NAYEF GHASEM REDHOUANE HENDA CRC Press is an imprint of the Taylor & Francis Croup, an Informa business Contents

More information

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2

All rights reserved. Armando B. Corripio, PhD, PE Flash Distillation Flash Drum Variables and Specifications... 2 Flash Distillation All rights reserved. Armando B. Corripio, PhD, PE. 2013 Contents Flash Distillation... 1 1 Flash Drum Variables and Specifications... 2 2 Flash Drum Balances and Equations... 4 2.1 Equilibrium

More information

"Energy Applications: Impact of Data and Models"

Energy Applications: Impact of Data and Models "Energy Applications: Impact of Data and Models" Energy Applications refers in this particular case to the wide application of equations of state upstream in the Production of Oil and Gas. The petroleum

More information

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE

CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE CALCULATION OF THE COMPRESSIBILITY FACTOR AND FUGACITY IN OIL-GAS SYSTEMS USING CUBIC EQUATIONS OF STATE V. P. de MATOS MARTINS 1, A. M. BARBOSA NETO 1, A. C. BANNWART 1 1 University of Campinas, Mechanical

More information

Exam 3 Concepts! CH110 FA10 SAS 33

Exam 3 Concepts! CH110 FA10 SAS 33 Exam 3 Concepts! CH110 FA10 SAS 33 Properties of Gases What sorts of elements and compounds tend to be found as gasses at room temperature? What are the physical properties of gases? What is pressure?

More information

PX-III Chem 1411 Chaps 11 & 12 Ebbing

PX-III Chem 1411 Chaps 11 & 12 Ebbing PX-III Chem 1411 Chaps 11 & 12 Ebbing 1. What is the name for the following phase change? I 2 (s) I 2 (g) A) melting B) condensation C) sublimation D) freezing E) vaporization 2. Which of the following

More information

Bexp. The temperature validity range of this second equation is relatively small. () 8

Bexp. The temperature validity range of this second equation is relatively small. () 8 Chapter 3 From Components to Models 121 Another classic formulation for the second virial coefficient is given by (Ambrose [44, 45]): C BT ( ) = A+ Bexp (3.35) T The temperature validity range of this

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Chapter 3 PROPERTIES OF PURE SUBSTANCES PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111 Ed: Pls provide art About the Authors Preface xvii xvi 1 Matter: Its Properties and Measurement 1 1-1 The Scientific Method 2 1-2 Properties of Matter 4 1-3 Classification of Matter 5 1-4 Measurement of

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 12: Solutions. Mrs. Brayfield

Chapter 12: Solutions. Mrs. Brayfield Chapter 12: Solutions Mrs. Brayfield 12.1: Solutions Solution a homogeneous mixture of two or more substances Solvent the majority component Solute the minority component What is the solute and solvent

More information

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as:

QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: QUESTION 1 The boiling temperature of hydrocarbons making up crude oil depends on the strength of intermolecular forces known as: B C D Hydrogen bonding. Dipole-dipole interactions. Dispersion forces.

More information

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance.

A) sublimation. B) liquefaction. C) evaporation. D) condensation. E) freezing. 11. Below is a phase diagram for a substance. PX0411-1112 1. Which of the following statements concerning liquids is incorrect? A) The volume of a liquid changes very little with pressure. B) Liquids are relatively incompressible. C) Liquid molecules

More information

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Effusion The Maxwell-Boltzmann Distribution A Digression on

More information

SIMULIS THERMODYNAMICS

SIMULIS THERMODYNAMICS 2007 AIChE Annual Meeting Salt Lake City, Utah #459e CAPE-OPEN Thermodynamic & Physical Properties Interface (TD002) SIMULIS THERMODYNAMICS A CAPE-OPEN COMPLIANT FRAMEWORK FOR USERS AND DEVELOPERS Olivier

More information

Course Name: Thermodynamics for Chemical Engineers

Course Name: Thermodynamics for Chemical Engineers Instructor Information CM3230 Thermodynamics for Chemical Engineers College of Engineering Fall 2011 Instructor: Dr. Tom Co, Associate Professor Office Location: 202G ChemSci Building Telephone: Office

More information

ISENTHALPIC THROTTLING (FREE EXPANSION) AND THE JOULE-THOMSON COEFFICIENT

ISENTHALPIC THROTTLING (FREE EXPANSION) AND THE JOULE-THOMSON COEFFICIENT ISENTHALPIC THROTTLING (FREE EXPANSION) AND THE JOULE-THOMSON COEFFICIENT Charles R. Koppany, PhD, Chem. Eng. January, 014 ISENTHALPIC THROTTLING (FREE EXPANSION) AND THE JOULE-THOMSON COEFFICIENT This

More information

Characterizing Pure and Undefined Petroleum Components

Characterizing Pure and Undefined Petroleum Components International Journal of Engineering & ehnology IJE-IJENS Vol:10 No:0 8 Charaterizing Pure and Undefined Petroleum Components Hassan S. Naji King Abdulaziz University, Jeddah, Saudi Arabia Website: http://hnaji.au.edu.sa

More information

New correlation for hydrogen-natural gas mixture compressibility factor

New correlation for hydrogen-natural gas mixture compressibility factor New correlation for hydrogen-natural gas mixture compressibility factor Zahreddine Hafsi 1, Sami Elaoud 2, Mohsen Akrout, Ezzeddine Hadj Taïeb Laboratory of Applied Fluids Mechanics Process and Environment

More information

PREFACE. Julian C. Smith Peter Harriott. xvii

PREFACE. Julian C. Smith Peter Harriott. xvii PREFACE This sixth edition of the text on the unit operations of chemical engineering has been extensively revised and updated, with much new material and considerable condensation of some sections. Its

More information

CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria. Dr. M. Subramanian

CH2351 Chemical Engineering Thermodynamics II Unit I, II   Phase Equilibria.   Dr. M. Subramanian CH2351 Chemical Engineering Thermodynamics II Unit I, II Phase Equilibria Dr. M. Subramanian Associate Professor Department of Chemical Engineering Sri Sivasubramaniya Nadar College of Engineering Kalavakkam

More information

ChBE BIBLE. Robert A. Pinnick. 28 April 2006

ChBE BIBLE. Robert A. Pinnick. 28 April 2006 ChBE BIBLE Robert A. Pinnick 28 April 2006 Contents 1 Thermodynamics 2 1.1 Equations of State....................................... 2 1.1.1 Ideal Gas Law..................................... 3 1.1.2 Cubic

More information

Chapter 1 Introduction and Basic Concepts

Chapter 1 Introduction and Basic Concepts Chapter 1 Introduction and Basic Concepts 1-1 Thermodynamics and Energy Application Areas of Thermodynamics 1-2 Importance of Dimensions and Units Some SI and English Units Dimensional Homogeneity Unity

More information

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India Phase Diagrams 1 Increasing the temperature isobarically T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures numerical values are for water. 2 Temperature -

More information

Teachers of CP Chemistry will use the following percentages for their grade books:

Teachers of CP Chemistry will use the following percentages for their grade books: Curriculum and Grading Alignment for CP Chemistry Classes at Paul M. Dorman High School Teachers of CP Chemistry will use the following percentages for their grade books: Quizzes (including notebook checks)

More information

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166 Subject Index Ab-initio calculation 24, 122, 161. 165 Acentric factor 279, 338 Activity absolute 258, 295 coefficient 7 definition 7 Atom 23 Atomic units 93 Avogadro number 5, 92 Axilrod-Teller-forces

More information

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures

Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic Properties of CO 2 Water Mixtures Available online at www.sciencedirect.com Energy Procedia 26 (2012 ) 90 97 2 nd Trondheim Gas Technology Conference Preliminary Evaluation of the SPUNG Equation of State for Modelling the Thermodynamic

More information

Thermophysical Properties of Ethane from Cubic Equations of State

Thermophysical Properties of Ethane from Cubic Equations of State Thermophysical Properties of Ethane from Cubic Equations of State MIHAELA NOUR, DANIELA DUNA, MIRELA IONITA, VIOREL FEROIU *, DAN GEANA Politehnica University Bucharest, Department of Inorganic Chemistry,

More information

4.3 CONCLUSION: HOW TO CHOOSE A MODEL The right questions Ionic liquids What is the property of interest?

4.3 CONCLUSION: HOW TO CHOOSE A MODEL The right questions Ionic liquids What is the property of interest? Chapter 4 From Phases to Method (Models) Selection 325 4.2.7.2 Ionic liquids Ionic liquids are a new kind of solvent receiving considerable attention in the research community. These solvents are in fact

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Aspen Dr. Ziad Abuelrub

Aspen Dr. Ziad Abuelrub Aspen Plus Lab Pharmaceutical Plant Design Aspen Dr. Ziad Abuelrub OUTLINE 1. Introduction 2. Getting Started 3. Thermodynamic Models & Physical Properties 4. Pressure Changers 5. Heat Exchangers 6. Flowsheet

More information

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol)

= = 10.1 mol. Molar Enthalpies of Vaporization (at Boiling Point) Molar Enthalpy of Vaporization (kj/mol) Ch 11 (Sections 11.1 11.5) Liquid Phase Volume and Density - Liquid and solid are condensed phases and their volumes are not simple to calculate. - This is different from gases, which have volumes that

More information

Chemical, Biochemical, and Engineering Thermodynamics

Chemical, Biochemical, and Engineering Thermodynamics Chemical, Biochemical, and Engineering Thermodynamics Fourth Edition Stanley I. Sandler University of Delaware John Wiley & Sons, Inc. Contents CHAPTER 1 INTRODUCTION 1 1.1 The Central Problems of Thermodynamics

More information

Chemical and Process Thermodynamics

Chemical and Process Thermodynamics Chemical and Process Thermodynamics Third Edition B. G. Kyle Emeritus Professor of Chemical Engineering Kansas State University Prentice Hall PTR Upper Saddle River, New Jersey 07458 CONTENTS Preface Notation

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Physical Properties of Solutions Types of Solutions (13.1) A Molecular View of the Solution Process (13.2) Concentration Units (13.3) Effect of Temperature on Solubility

More information

Hydrocarbon Components and Physical Properties Core COPYRIGHT. Basic Terminology

Hydrocarbon Components and Physical Properties Core COPYRIGHT. Basic Terminology 3/7/2017 Learning Objectives Hydrocarbon Components and Physical Properties Core Basic Terminology By the end of this lesson, you you will will be be able able to: to: Describe the concept of atomic mass,

More information

UNIVERSITY OF CALGARY. Extended Distillation and Property Correlations for Heavy Oil. Maria Catalina Sanchez Lemus A THESIS

UNIVERSITY OF CALGARY. Extended Distillation and Property Correlations for Heavy Oil. Maria Catalina Sanchez Lemus A THESIS UNIVERSITY OF CALGARY Extended Distillation and Property Correlations for Heavy Oil by Maria Catalina Sanchez Lemus A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS

More information

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy

Solid to liquid. Liquid to gas. Gas to solid. Liquid to solid. Gas to liquid. +energy. -energy 33 PHASE CHANGES - To understand solids and liquids at the molecular level, it will help to examine PHASE CHANGES in a little more detail. A quick review of the phase changes... Phase change Description

More information

Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State

Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State Thermodynamic Properties of Refrigerant R116 from Cubic Equations of State DANIELA DUNA, MIRELA IONITA, VIOREL FEROIU *, DAN GEANA Politehnica University Bucharest, Department of Applied Physical Chemistry

More information

Oxnard Union High School District Chemistry Pacing Plan SEMESTER 1

Oxnard Union High School District Chemistry Pacing Plan SEMESTER 1 Oxnard Union High School District 2013-2014 Chemistry Pacing Plan SEMESTER 1 Unit and Number of Weeks Introduction to Chemistry 1 ½ weeks CA State Standard & Sub Concepts Investigation & Experimentation

More information

Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist

Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist Note: items marked with * you should be able to perform on a closed book exam. Chapter 10 Learning Objective Checklist Sections 10.1-10.13 find pure component properties on a binary P-x-y or T-x-y diagram.*

More information

PREDICTION OF VAPOR PRESSURES AND MIXTURE VLE FROM A SECOND MODIFICATION OF THE VAN DER WAALS EQUATION. Part 3

PREDICTION OF VAPOR PRESSURES AND MIXTURE VLE FROM A SECOND MODIFICATION OF THE VAN DER WAALS EQUATION. Part 3 PREDICTION OF VAPOR PRESSURES AND MIXTURE VLE FROM A SECOND MODIFICATION OF THE VAN DER WAALS EQUATION Part 3 Review In the first two papers (1,2) in this series, we developed and tested a 3-parameter

More information

Index to Tables in SI Units

Index to Tables in SI Units Index to Tables in SI Units Table A-1 Atomic or Molecular Weights and Critical Properties of Selected Elements and Compounds 926 Table A-2 Properties of Saturated Water (Liquid Vapor): Temperature Table

More information

Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy.

Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy. 3.7 GENERALIZED CORRELATIONS FOR LIQUIDS Although the molar volumes of liquids can be calculated by means of generalized cubic equations of state, the results are often not of high accuracy. In addition,

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS Jaime Benitez iwiley- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface Nomenclature xiii xv 1. FUNDAMENTALS OF MASS TRANSFER 1

More information

PROPERTIES OF POLYMERS

PROPERTIES OF POLYMERS PROPERTIES OF POLYMERS THEIR CORRELATION WITH CHEMICAL STRUCTURE; THEIR NUMERICAL ESTIMATION AND PREDICTION FROM ADDITIVE GROUP CONTRIBUTIONS Third, completely revised edition By D.W. VÄN KREVELEN Professor-Emeritus,

More information

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes Chapter 13 States of Matter 13.2 Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes I. Forces of Attraction (13.2) Intramolecular forces? (forces within) Covalent Bonds, Ionic Bonds, and metallic

More information

Review of differential and integral calculus and introduction to multivariate differential calculus.

Review of differential and integral calculus and introduction to multivariate differential calculus. Chemistry 2301 Introduction: Review of terminology used in thermodynamics Review of differential and integral calculus and introduction to multivariate differential calculus. The properties of real gases:

More information

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable)

Chapter 12. Solutions and Their Behavior. Supersaturated contains more than the saturation limit (very unstable) Chapter 12 Solutions and Their Behavior Unsaturated holds less than maximum capacity at a given T Supersaturated contains more than the saturation limit (very unstable) Saturated maximum amount of solute

More information

General Chemistry (Second Quarter)

General Chemistry (Second Quarter) General Chemistry (Second Quarter) This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

SPRING GROVE AREA SCHOOL DISTRICT

SPRING GROVE AREA SCHOOL DISTRICT SPRING GROVE AREA SCHOOL DISTRICT PLANNED INSTRUCTION Course Title: Chemistry I Length of Course: 30 Cycles Grade Level(s): 11 Periods Per Cycle: 6 Units of Credit: 1.1 Required: X Core Science Length

More information

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur

Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Upstream LNG Technology Prof. Pavitra Sandilya Department of Cryogenic Engineering Centre Indian Institute of Technology, Kharagpur Lecture 10 Thermophysical Properties of Natural Gas- I Welcome, today

More information

Chemistry. Atomic and Molecular Structure

Chemistry. Atomic and Molecular Structure Chemistry Atomic and Molecular Structure 1. The periodic table displays the elements in increasing atomic number and shows how periodicity of the physical and chemical properties of the elements relates

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM A March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

THE BEST EQUATION OF STATE AND CORRELATION DENSITY AND VISCOSITY

THE BEST EQUATION OF STATE AND CORRELATION DENSITY AND VISCOSITY Page 1 of 17 PROPOSED FOR PREDICTION OF IRANIAN CRUDE OIL DENSITY AND VISCOSITY INTRODUCTION Density and viscosity are two important physical properties which are highly used in chemical engineering calculations.

More information

Table of Contents Preface PART I. MATHEMATICS

Table of Contents Preface PART I. MATHEMATICS Table of Contents Preface... v List of Recipes (Algorithms and Heuristics)... xi PART I. MATHEMATICS... 1 Chapter 1. The Game... 3 1.1 Systematic Problem Solving... 3 1.2 Artificial Intelligence and the

More information

RW Session ID = MSTCHEM1 Intermolecular Forces

RW Session ID = MSTCHEM1 Intermolecular Forces RW Session ID = MSTCHEM1 Intermolecular Forces Sections 9.4, 11.3-11.4 Intermolecular Forces Attractive forces between molecules due to charges, partial charges, and temporary charges Higher charge, stronger

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Prediction of Asphaltene Instability under Gas Injection with the PC-SAFT Equation of State

Prediction of Asphaltene Instability under Gas Injection with the PC-SAFT Equation of State 1230 Energy & Fuels 2005, 19, 1230-1234 Prediction of Asphaltene Instability under Gas Injection with the PC-SAFT Equation of State Doris L. Gonzalez, P. David Ting, George J. Hirasaki, and Walter G. Chapman*

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

A model to predict physical properties for light. lubricating oils and its application to the

A model to predict physical properties for light. lubricating oils and its application to the A model to predict physical properties for light lubricating oils and its application to the extraction process by furfural Baudilio Coto *, Rafael van Grieken, José L. Peña 1, Juan J. Espada Department

More information

For an incompressible β and k = 0, Equations (6.28) and (6.29) become:

For an incompressible β and k = 0, Equations (6.28) and (6.29) become: Internal Energy and Entropy as Functions of T and V These are general equations relating the internal energy and entropy of homogeneous fluids of constant composition to temperature and volume. Equation

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

6. Multiple Reactions

6. Multiple Reactions 6. Multiple Reactions o Selectivity and Yield o Reactions in Series - To give maximum selectivity o Algorithm for Multiple Reactions o Applications of Algorithm o Multiple Reactions-Gas Phase 0. Types

More information

PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS

PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS PVTpetro: A COMPUTATIONAL TOOL FOR ISOTHERM TWO- PHASE PT-FLASH CALCULATION IN OIL-GAS SYSTEMS A. M. BARBOSA NETO 1, A. C. BANNWART 1 1 University of Campinas, Mechanical Engineering Faculty, Energy Department

More information

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures

Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Fluid Phase Equilibria 181 (2001) 1 16 Vapor liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures Kong-Wei Cheng, Muoi Tang

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

International Journal of Current Trends in Engineering & Technology Volume: 02, Issue: 01 (JAN-FAB, 2016)

International Journal of Current Trends in Engineering & Technology Volume: 02, Issue: 01 (JAN-FAB, 2016) Simplifying Hall-Yarborough Equation of State for Better Prediction of Hydrocarbon Compressibility Factors Ibrahim, A 1, Isehunwa, S.O 2, A.D.I, Sulaiman 3, Salahudeen, I 4 1, 3, 4 Department of Petroleum

More information

Petroleum Thermodynamic Research Group

Petroleum Thermodynamic Research Group Petroleum Thermodynamic Research Group Labs 6-128 & 6-133 Chemical and Materials Engineering (CME) Bldg. The Petroleum Thermodynamic Research Group investigates the properties of hydrocarbon resources

More information

Simulation of pilot-plant extraction experiments

Simulation of pilot-plant extraction experiments Simulation of pilot-plant extraction experiments to reduce the aromatic content from lubricating oils Juan J. Espada*, Baudilio Coto, Rafael van Grieken, Juan M. Moreno 1 Department of Chemical and Environmental

More information

Chapter 10 Liquids, Solids, and Intermolecular Forces

Chapter 10 Liquids, Solids, and Intermolecular Forces Chapter 10 Liquids, Solids, and Intermolecular Forces The Three Phases of Matter (A Macroscopic Comparison) State of Matter Shape and volume Compressibility Ability to Flow Solid Retains its own shape

More information

Properties of Solutions. Chapter 13

Properties of Solutions. Chapter 13 Properties of Solutions Chapter 13 Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate. Saturated solution: contains the maximum amount of a

More information