Large-scale MD simulation of heterogeneous systems with ls1 mardyn

Size: px
Start display at page:

Download "Large-scale MD simulation of heterogeneous systems with ls1 mardyn"

Transcription

1 Large-scale MD simulation of heterogeneous systems with ls1 mardyn M. T. Horsch, R. Srivastava, S. J. Werth, C. Niethammer, C. W. Glass, W. Eckhardt, A. Heinecke, N. Tchipev, H.-J. Bungartz, S. Eckelsbach, J. Vrabec and H. Hasse TU Kaiserslautern, Engineering TU München, Scientific Computing in Computer Science (SCCS) High Performance Computing Centre Stuttgart (HLRS) University of Paderborn, Thermodynamics and Energy Technology (ThEt) Frankfurt am Main, 23rd March 2015 ProcessNet International Workshop MolMod

2 Parallelization by volume decomposition Linked-cell data structure suitable for spatial domain decomposition: (non-blocking, overlapping MPI send/receive operations) large systems 1 : molecular dynamics 2

3 Parallelization by volume decomposition Linked-cell data structure suitable for spatial domain decomposition: (non-blocking, overlapping MPI send/receive operations) Methods for heterogeneous or fluctuating particle distributions: 3

4 Scale separation and long-range correction For planar interfaces: short range (explicit) long range (correction) Long-range correction from the density profile, following Janeček. f ra to f cu s diu Full evaluation of all pairwise interactions is too expensive instead, short-range interactions are evaluated for neighbours. 4

5 Scale separation and long-range correction For planar interfaces: short range (explicit) long range (correction) Long-range correction from the density profile, following Janeček. f ra to f cu s diu Angle-averaging expression for multi-site models, following Lustig. Full evaluation of all pairwise interactions is too expensive instead, short-range interactions are evaluated for neighbours. 5

6 Molecular simulation of fluids at interfaces Long-range correction from the density profile, following Janeček. Angle-averaging expression for multi-site models, following Lustig. Two-centre LJ fluid (2CLJ) surface tension / εσ -2 For planar interfaces: 1 nm Janeček-Lustig term no angle averaging no correction at all cutoff radius / σ For arbitrary geometries, e.g. the fast multipole method can be employed. 6

7 Molecular simulation of fluids at interfaces 2CLJQ models: 2 LJ centres Quadrupole Test of predictivity for interfacial properties Model validation and optimization 7

8 Molecular simulation of fluids at interfaces Adsorption (fluid-fluid and fluid-solid) Vapour-liquid surface tension Curved vapour-liquid interfaces Contact angle and contact line pinning LJTS T = 0.8 ε θpl = 90 8

9 MD simulation of nanofluidics 9

10 Scale bridging from nano- to microfluidics 10

11 Scaling of ls1 mardyn on hermit 11

12 Scaling of ls1 mardyn on hermit homogeneous cavitation CO2 (T = 280 K and ρ = 17.2 mol/l), 3CLJQ 25 million molecules on cores 12

13 Optimization of ls1 mardyn for SuperMUC SuperMUC (LRZ Garching): 3 PFLOPS Intel Xeon Sandy Bridge cluster. forces acting on molecules are only stored while the cell is inside the sliding window hyperthreaded sliding window Efficient vectorization: Optimization by hand, using advanced vector extensions (AVX). Conversion from array of structures (AoS) to structure of arrays (SoA). Discussed in detail by Nikola Tchipev tomorrow. 13

14 Large-scale MD simulations on SuperMUC speedup (relative to 128 cores) Scaling of ls1 mardyn examined on up to cores, i.e. the whole SuperMUC, by Wolfgang Eckhardt and Alexander Heinecke in homogeneous LJTS liquid with 4.8 billion molecules l idea s alin c s g tron o g st d e v r bs e r ling a c s ong number of cores 14

15 Large-scale MD simulations on SuperMUC speedup Up to N = molecules on SuperMUC weak scaling with 31.5 million molecules per core 2013 number of cores 15

16 Release of ls1 mardyn rele Fre ased e (BS Soft as w Dl i c e a re n se ) Free registration for ls1 mardyn at 16

Scalable, performant, and resilient large-scale applications of molecular process engineering

Scalable, performant, and resilient large-scale applications of molecular process engineering Scalable, performant, and resilient large-scale applications of molecular process engineering M. Horsch,1 P. Gralka,2 C. Niethammer,3 N. Tchipev,4 J. Vrabec,5 H. Hasse1 1 University of Kaiserslautern,

More information

Dependence of the surface tension on curvature

Dependence of the surface tension on curvature Dependence of the surface tension on curvature rigorously determined from the density profiles of nanodroplets Athens, st September M. T. Horsch,,, S. Eckelsbach, H. Hasse, G. Jackson, E. A. Müller, G.

More information

591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC

591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC International Supercomputing Conference 2013 591 TFLOPS Multi-TRILLION Particles Simulation on SuperMUC W. Eckhardt TUM, A. Heinecke TUM, R. Bader LRZ, M. Brehm LRZ, N. Hammer LRZ, H. Huber LRZ, H.-G.

More information

Surface analysis algorithms in the mardyn program and the ls1 project

Surface analysis algorithms in the mardyn program and the ls1 project Surface analysis algorithms in the mardyn program and the ls1 project Stuttgart, 15 th December 1 M. T. Horsch Surface tension The virial route Bakker-Buff equation: γ R 2 out in dz z Normal pressure decays

More information

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties

Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties 12 th HLRS Results and Review Workshop Molecular modeling of hydrogen bonding fluids: vapor-liquid coexistence and interfacial properties High Performance Computing Center Stuttgart (HLRS), October 8,

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Surface tension of the two center Lennard-Jones plus quadrupole model fluid

Surface tension of the two center Lennard-Jones plus quadrupole model fluid Surface tension of the two center Lennard-Jones plus quadrupole model fluid Stephan Werth, Martin Horsch 1, Hans Hasse Laboratory of Engineering Thermodynamics, Department of Mechanical and Process Engineering,

More information

Supplementary material to Simultaneous description of bulk and interfacial properties of fluids by the Mie potential

Supplementary material to Simultaneous description of bulk and interfacial properties of fluids by the Mie potential To appear in Molecular Physics Vol. 00, No. 00, Month 2016, 1 11 Supplementary material to Simultaneous description of bul and interfacial properties of fluids by the Mie potential Stephan Werth 1, Katrin

More information

Molecular dynamics simulation of nanofluidics and nanomachining

Molecular dynamics simulation of nanofluidics and nanomachining Molecular dynamics simulation of nanofluidics and nanomachining M. T. Horsch,1, 4 S. Stephan,1 S. Becker,1 M. Heier,1 M. P. Lautenschläger,1 F. Diewald,2 R. Müller,2 H. M. Urbassek,3 and H. Hasse1 1 Engineering

More information

arxiv: v1 [cs.ce] 20 Aug 2014

arxiv: v1 [cs.ce] 20 Aug 2014 ls1 mardyn: The massively parallel molecular dynamics code for large systems arxiv:1408.4599v1 [cs.ce] 20 Aug 2014 Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz, Wolfgang Eckhardt,

More information

ls1 mardyn: The massively parallel molecular dynamics code for large systems

ls1 mardyn: The massively parallel molecular dynamics code for large systems ls1 mardyn: The massively parallel molecular dynamics code for large systems Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz, Wolfgang Eckhardt, Alexander Heinecke, Stephan Werth,

More information

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec

Atomistic molecular simulations for engineering applications: methods, tools and results. Jadran Vrabec Atomistic molecular simulations for engineering applications: methods, tools and results Jadran Vrabec Motivation Simulation methods vary in their level of detail The more detail, the more predictive power

More information

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering

Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering InPROMT 2012, Berlin, 16. November 2012 DFG Transregio CRC 63 Molecular Modeling and Simulation of Phase Equilibria for Chemical Engineering Hans Hasse 1, Martin Horsch 1, Jadran Vrabec 2 1 Laboratory

More information

Surface property corrected modification of the classical nucleation theory

Surface property corrected modification of the classical nucleation theory CCP5 Annual Meeting Surface property corrected modification of the classical nucleation theory Sheffield Hallam University, September 15, 2010 Martin Horsch, Hans Hasse, and Jadran Vrabec The critical

More information

arxiv: v1 [physics.comp-ph] 25 Jul 2015

arxiv: v1 [physics.comp-ph] 25 Jul 2015 To appear in Molecular Physics Vol. 11, No. 17, 014, 1 13 arxiv:07.07130v1 [physics.comp-ph] 5 Jul 0 Long range correction for multi-site Lennard-Jones models and planar interfaces Stephan Werth 1, Gabor

More information

Bubble nucleation is important in many applications. It occurs for example during ultrasonic cleaning or upon cavitation

Bubble nucleation is important in many applications. It occurs for example during ultrasonic cleaning or upon cavitation Study of homogeneous bubble nucleation in liquid carbon dioxide by a hybrid approach combining molecular dynamics simulation and density gradient theory K. Langenbach 1,*, M. Heilig 2, M. Horsch 1, and

More information

Some thoughts about energy efficient application execution on NEC LX Series compute clusters

Some thoughts about energy efficient application execution on NEC LX Series compute clusters Some thoughts about energy efficient application execution on NEC LX Series compute clusters G. Wellein, G. Hager, J. Treibig, M. Wittmann Erlangen Regional Computing Center & Department of Computer Science

More information

Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation

Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation Static and Dynamic Properties of Curved Vapour-Liquid Interfaces by Massively Parallel Molecular Dynamics Simulation M.T. Horsch, S.K. Miroshnichenko, J. Vrabec, C.W. Glass, C. Niethammer, M.F. Bernreuther,

More information

Molecular modelling and simulation of electrolyte solutions, biomolecules, and wetting of component surfaces

Molecular modelling and simulation of electrolyte solutions, biomolecules, and wetting of component surfaces Molecular modelling and simulation of electrolyte solutions, biomolecules, and wetting of component surfaces M. Horsch, 1, S. Becker, 1 J. M. Castillo, 1 S. Deublein, 1 A. Fröscher, 1 S. Reiser, 1 S. Werth,

More information

Molecular modelling and simulation of the surface tension of real quadrupolar fluids

Molecular modelling and simulation of the surface tension of real quadrupolar fluids Molecular modelling and simulation of the surface tension of real quadrupolar fluids Stephan Werth a, Katrin Stöbener b, Peter Klein b, Karl-Heinz Küfer b, Martin Horsch a,, Hans Hasse a a University of

More information

arxiv: v3 [cond-mat.mes-hall] 12 Mar 2010

arxiv: v3 [cond-mat.mes-hall] 12 Mar 2010 Contact angle dependence on the fluid-wall arxiv:1001.2681v3 [cond-mat.mes-hall] 12 Mar 2010 dispersive energy Martin Horsch, Martina Heitzig,, Calin Dan, Jens Harting,, Hans Hasse, and Jadran Vrabec,

More information

Molecular models for cyclic alkanes and ethyl acetate as well as surface tension data from molecular simulation

Molecular models for cyclic alkanes and ethyl acetate as well as surface tension data from molecular simulation Molecular models for cyclic alkanes and ethyl acetate as well as surface tension data from molecular simulation Stefan Eckelsbach 1, Tatjana Janzen 1, Andreas Köster 1, Svetlana Miroshnichenko 1, Yonny

More information

Molecular modelling and simulation of hydrogen bonding fluids

Molecular modelling and simulation of hydrogen bonding fluids Molecular modelling and simulation of hydrogen bonding fluids Martin Horsch, Alptekin Celik and Hans Hasse Lehrstuhl für Thermodynamik (LTD) Technische Universität Kaiserslautern Rostock, 27 th March 13

More information

Information Technology

Information Technology Information Technology Computational Molecular Engineering als aufstrebende Technologie in der Verfahrenstechnik Computational Molecular Engineering as an emerging technology in process engineering Martin

More information

arxiv: v3 [cond-mat.soft] 22 Sep 2011

arxiv: v3 [cond-mat.soft] 22 Sep 2011 Technical report LTD CME/2011 09/A Horsch Hasse Shchekin Agarwal Eckelsbach Vrabec Müller Jackson The excess equimolar radius of liquid drops Martin Horsch and Hans Hasse Lehrstuhl für Thermodynamik, Fachbereich

More information

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries SC13, November 21 st 2013 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, Ulrich

More information

Communication: Slab thickness dependence of the surface tension: Toward a criterion of liquid sheets stability

Communication: Slab thickness dependence of the surface tension: Toward a criterion of liquid sheets stability THE JOURNAL OF CHEMICAL PHYSICS 141, 081103 (2014) Communication: Slab thickness dependence of the surface tension: Toward a criterion of liquid sheets stability G. Filippini, 1 E. Bourasseau, 1,a) A.

More information

The gas-liquid surface tension of argon: A reconciliation between experiment and simulation

The gas-liquid surface tension of argon: A reconciliation between experiment and simulation THE JOURNAL OF CHEMICAL PHYSICS 140, 44710 (014) The gas-liquid surface tension of argon: A reconciliation between experiment and simulation Florent Goujon, 1,a) Patrice Malfreyt, 1 and Dominic J. Tildesley

More information

Parallel Simulations of Self-propelled Microorganisms

Parallel Simulations of Self-propelled Microorganisms Parallel Simulations of Self-propelled Microorganisms K. Pickl a,b M. Hofmann c T. Preclik a H. Köstler a A.-S. Smith b,d U. Rüde a,b ParCo 2013, Munich a Lehrstuhl für Informatik 10 (Systemsimulation),

More information

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride

Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride - 1 - PLMMP 2016, Kyiv Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene and carbon tetrachloride Jadran Vrabec Tatjana Janzen, Gabriela Guevara-Carrión,

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties) Chemical Potential Combining the First and Second Laws for a closed system, Considering (extensive properties) du = TdS pdv Hence For an open system, that is, one that can gain or lose mass, U will also

More information

1 Introduction. Stefan Eckelsbach 1, Thorsten Windmann 1, Ekaterina Elts 1, and Jadran Vrabec 1

1 Introduction. Stefan Eckelsbach 1, Thorsten Windmann 1, Ekaterina Elts 1, and Jadran Vrabec 1 Simulation of liquid-liquid equilibria with molecular models optimized to vapor-liquid equilibria and model development for Hydrazine and two of its derivatives Stefan Eckelsbach 1, Thorsten Windmann 1,

More information

Long-range correction for dipolar fluids at planar interfaces

Long-range correction for dipolar fluids at planar interfaces To appear in Molecular Physics Vol. 00, No. 00, Month 2015, 1 16 Long-range correction for dipolar fluids at planar interfaces Stephan Werth, Martin Horsch and Hans Hasse Laboratory of Engineering Thermodynamics,

More information

RWTH Aachen University

RWTH Aachen University IPCC @ RWTH Aachen University Optimization of multibody and long-range solvers in LAMMPS Rodrigo Canales William McDoniel Markus Höhnerbach Ahmed E. Ismail Paolo Bientinesi IPCC Showcase November 2016

More information

Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study

Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study Engineering Molecular Models: Efficient Parameterization Procedure and Cyclohexanol as Case Study Thorsten Merker, Jadran Vrabec, and Hans Hasse Laboratory of Engineering Thermodynamics, University of

More information

A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations

A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations A Coupling Tool for Parallel Molecular Dynamics Continuum Simulations ISPDC 2012 Philipp Neumann and Nikola Tchipev 29.06.2012 ISPDC 2012, 29.06.2012 1 Contents Motivation The Macro Micro Coupling Tool

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

Algorithms of Scientific Computing II

Algorithms of Scientific Computing II Technische Universität München WS 01/013 Institut für Informatik Prof. Dr. Hans-Joachim Bungartz Alexander Heinecke, M.Sc., M.Sc.w.H. Algorithms of Scientific Computing II Exercise 3 - Discretization,

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 1: Introduction Michael Bader Lehrstuhl Informatik V Winter 2016/2017 Scientific Computing = Science + Computing? Science on Computers?? Computational Science??? Michael Bader

More information

Kobe-Brown Simulation Summer School 2015 Project: DPD Simulation of a Membrane

Kobe-Brown Simulation Summer School 2015 Project: DPD Simulation of a Membrane Kobe-Brown Simulation Summer School 2015 Project: DPD Simulation of a Membrane Clark Bowman Karen Larson Yuji Funaki Ross Parker Tae Woo Kim Week 1: Introduction to Molecular Dynamics (MD) Computer simulation

More information

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling -

Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - http://multiscale.jp Rheological properties of polymer melt between rapidly oscillating plates: - an application of multiscale modeling - Ryoichi Yamamoto and Shugo Yasuda Dept. Chemical Engineering, Kyoto

More information

the expansion for the Helmholtz energy derived in Appendix A, part 2, the expression for the surface tension becomes: σ = ( a + ½ k(ρ) ρ 2 x ) dx

the expansion for the Helmholtz energy derived in Appendix A, part 2, the expression for the surface tension becomes: σ = ( a + ½ k(ρ) ρ 2 x ) dx Motivation The surface tension plays a major role in interfacial phenomena. It is the fundamental quantity that determines the pressure change across a surface due to curvature. This in turn is the basis

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

Molecular simulation of the surface tension of 33 multi-site models for real fluids

Molecular simulation of the surface tension of 33 multi-site models for real fluids Molecular simulation of the surface tension of 33 multi-site models for real fluids Stephan Werth a, Martin Horsch a,, Hans Hasse a a University of Kaiserslautern, Laboratory of Engineering Thermodynamics,

More information

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE CAV2:sessionA.5 MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE Takashi Tokumasu, Kenjiro Kamijo, Mamoru Oike and Yoichiro Matsumoto 2 Tohoku University, Sendai, Miyagi, 98-8577, Japan 2 The University

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29

Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Parallelization of Molecular Dynamics (with focus on Gromacs) SeSE 2014 p.1/29 Outline A few words on MD applications and the GROMACS package The main work in an MD simulation Parallelization Stream computing

More information

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces.

Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Surface chemistry. Liquid-gas, solid-gas and solid-liquid surfaces. Levente Novák & István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://kolloid.unideb.hu/~kolloid/

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Peter Buhler. NanothermodynamicS

Peter Buhler. NanothermodynamicS Peter Buhler NanothermodynamicS Introduction 7 Symbols and definitions 9 1. On the basic concepts of classical thermodynamics 1 5 1.1. Internal energy, heat, and work 1 7 1.1.1. Internal energy is a property

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Xiao Cheng Zeng Publications Published Research - Department of Chemistry 10-1-2006 Homogeneous nucleation at high supersaturation

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water Gabriel V. Lau, Ian J. Ford, Patricia A. Hunt, Erich A. Müller, and George Jackson Citation: The Journal of

More information

Chapter 2 Molecular Dynamics Simulation

Chapter 2 Molecular Dynamics Simulation Chapter 2 Molecular Dynamics Simulation Abstract This section provides a compact description of the basics of MD simulation. It only covers topics that are required to understand MD simulation in process

More information

Colloidal Particles at Liquid Interfaces: An Introduction

Colloidal Particles at Liquid Interfaces: An Introduction 1 Colloidal Particles at Liquid Interfaces: An Introduction Bernard P. Binks and Tommy S. Horozov Surfactant and Colloid Group, Department of Chemistry, University of Hull, Hull, HU6 7RX, UK 1.1 Some Basic

More information

A method to reduce load imbalances in simulations of phase change processes with FS3D

A method to reduce load imbalances in simulations of phase change processes with FS3D A method to reduce load imbalances in simulations of phase change processes with FS3D Johannes Müller Philipp Offenhäuser Martin Reitzle Workshop on Sustained Simulation Performance HLRS, Stuttgart, Germany

More information

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Anoosheh Niavarani and Nikolai Priezjev www.egr.msu.edu/~niavaran November 2009 A. Niavarani and N.V. Priezjev,

More information

Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei

Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei 1/20 Huge-Scale Molecular Dynamics Simulation of Multi-bubble Nuclei H. Watanabe ISSP, The M. Suzuki H. Inaoka N. Ito Kyushu University RIKEN AICS The, RIKEN AICS Outline 1. Introduction 2. Benchmark results

More information

Scalable and Power-Efficient Data Mining Kernels

Scalable and Power-Efficient Data Mining Kernels Scalable and Power-Efficient Data Mining Kernels Alok Choudhary, John G. Searle Professor Dept. of Electrical Engineering and Computer Science and Professor, Kellogg School of Management Director of the

More information

Colloidal Suspension Rheology Chapter 1 Study Questions

Colloidal Suspension Rheology Chapter 1 Study Questions Colloidal Suspension Rheology Chapter 1 Study Questions 1. What forces act on a single colloidal particle suspended in a flowing fluid? Discuss the dependence of these forces on particle radius. 2. What

More information

Petascale Quantum Simulations of Nano Systems and Biomolecules

Petascale Quantum Simulations of Nano Systems and Biomolecules Petascale Quantum Simulations of Nano Systems and Biomolecules Emil Briggs North Carolina State University 1. Outline of real-space Multigrid (RMG) 2. Scalability and hybrid/threaded models 3. GPU acceleration

More information

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256

Nucleation rate (m -3 s -1 ) Radius of water nano droplet (Å) 1e+00 1e-64 1e-128 1e-192 1e-256 Supplementary Figures Nucleation rate (m -3 s -1 ) 1e+00 1e-64 1e-128 1e-192 1e-256 Calculated R in bulk water Calculated R in droplet Modified CNT 20 30 40 50 60 70 Radius of water nano droplet (Å) Supplementary

More information

Absorption of gas by a falling liquid film

Absorption of gas by a falling liquid film Absorption of gas by a falling liquid film Christoph Albert Dieter Bothe Mathematical Modeling and Analysis Center of Smart Interfaces/ IRTG 1529 Darmstadt University of Technology 4th Japanese-German

More information

Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation

Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation Coupled continuum hydrodynamics and molecular dynamics method for multiscale simulation Matthew K. BORG 1,, Duncan A. LOCKERBY 2, Jason M. REESE 1 * Corresponding author: Tel.: +44() 141 548 4386; Email:

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics 6-8 th March 2017 Dr Sham Rane, Professor Ahmed Kovačević, Dr Di Yan, Professor Qian Tang, Centre for Compressor Technology,

More information

Atomic Transport & Phase Transformations Lecture III-2

Atomic Transport & Phase Transformations Lecture III-2 Atomic Transport & Phase Transformations Lecture III-2 PD Dr. Nikolay Zotov zotov@imw.uni-stuttgart.de Atomic Transport & Phase Transformations Part III Lectures Solid State Reactions Short Description

More information

Chem 728 Introduction to Solid Surfaces

Chem 728 Introduction to Solid Surfaces Chem 728 Introduction to Solid Surfaces Solids: hard; fracture; not compressible; molecules close to each other Liquids: molecules mobile, but quite close to each other Gases: molecules very mobile; compressible

More information

A Fast, Parallel Potential Flow Solver

A Fast, Parallel Potential Flow Solver Advisor: Jaime Peraire December 16, 2012 Outline 1 Introduction to Potential FLow 2 The Boundary Element Method 3 The Fast Multipole Method 4 Discretization 5 Implementation 6 Results 7 Conclusions Why

More information

The Fast Multipole Method in molecular dynamics

The Fast Multipole Method in molecular dynamics The Fast Multipole Method in molecular dynamics Berk Hess KTH Royal Institute of Technology, Stockholm, Sweden ADAC6 workshop Zurich, 20-06-2018 Slide BioExcel Slide Molecular Dynamics of biomolecules

More information

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Katharina Kormann 1 Klaus Reuter 2 Markus Rampp 2 Eric Sonnendrücker 1 1 Max Planck Institut für Plasmaphysik 2 Max Planck Computing

More information

Verbundprojekt ELPA-AEO. Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen

Verbundprojekt ELPA-AEO. Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen Verbundprojekt ELPA-AEO http://elpa-aeo.mpcdf.mpg.de Eigenwert-Löser für Petaflop-Anwendungen Algorithmische Erweiterungen und Optimierungen BMBF Projekt 01IH15001 Feb 2016 - Jan 2019 7. HPC-Statustagung,

More information

probed by combined surface acoustic Love wave and surface plasmon resonance

probed by combined surface acoustic Love wave and surface plasmon resonance Thickness and wave and surface J.-M Friedt 1, L.A. Francis 2, S. Ballandras 1 1 FEMTO-ST/LPMO (Besançon, France), 2 IMEC MCP/TOP (Leuven, Belgium) slides available at http://jmfriedt.free.fr 16 septembre

More information

Large-scale multi-physics earthquake scenarios with the ADER-DG method on modern supercomputers

Large-scale multi-physics earthquake scenarios with the ADER-DG method on modern supercomputers Largescale multiphysics earthquake scenarios with the ADERDG method on modern supercomputers Stephanie Wollherr, Dr. AliceAgnes Gabriel, Dr. Betsy Madden, Thomas Ulrich LudwigsMaximilians Universität (LMU)

More information

Size-dependent melting of PAH nano-clusters: A molecular dynamic study

Size-dependent melting of PAH nano-clusters: A molecular dynamic study Size-dependent melting of PAH nano-clusters: A molecular dynamic study Dongping Chen, Tim Totton, and April 2013 PAH mobility: current questions The internal structure of a soot particle is poorly understood.

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects

Monte Carlo Methods. Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects Monte Carlo Methods Ensembles (Chapter 5) Biased Sampling (Chapter 14) Practical Aspects Lecture 1 2 Lecture 1&2 3 Lecture 1&3 4 Different Ensembles Ensemble ame Constant (Imposed) VT Canonical,V,T P PT

More information

Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters

Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters Towards a highly-parallel PDE-Solver using Adaptive Sparse Grids on Compute Clusters HIM - Workshop on Sparse Grids and Applications Alexander Heinecke Chair of Scientific Computing May 18 th 2011 HIM

More information

Huge-scale Molecular Study of Multi-bubble Nuclei

Huge-scale Molecular Study of Multi-bubble Nuclei Huge-scale Molecular Study of Multi-bubble Nuclei Hiroshi WATANABE 1 and Nobuyasu ITO 2 1 The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan

More information

Molecular Simulation Study of the CO 2 -N 2 O Analogy

Molecular Simulation Study of the CO 2 -N 2 O Analogy Molecular Simulation Study of the CO 2 -N 2 O Analogy Maximilian Kohns 1, Stephan Werth, Martin Horsch, Erik von Harbou, Hans Hasse Laboratory of Engineering Thermodynamics, University of Kaiserslautern,

More information

An Introduction to Two Phase Molecular Dynamics Simulation

An Introduction to Two Phase Molecular Dynamics Simulation An Introduction to Two Phase Molecular Dynamics Simulation David Keffer Department of Materials Science & Engineering University of Tennessee, Knoxville date begun: April 19, 2016 date last updated: April

More information

Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids

Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids Relaxation of surface tension in the freesurface boundary layers of simple Lennard Jones liquids rticle Published Version Lukyanov,. V. and Likhtman,. E. (213) Relaxation of surface tension in the free

More information

arxiv: v1 [physics.comp-ph] 21 Apr 2009

arxiv: v1 [physics.comp-ph] 21 Apr 2009 arxiv:0904.3191v1 [physics.comp-ph] 21 Apr 2009 Molecular Modeling and Simulation of Thermophysical Properties: Application to Pure Substances and Mixtures Bernhard Eckl, Martin Horsch, Jadran Vrabec,

More information

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4

Molecular Dynamics. What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 Molecular Dynamics What to choose in an integrator The Verlet algorithm Boundary Conditions in Space and time Reading Assignment: F&S Chapter 4 MSE485/PHY466/CSE485 1 The Molecular Dynamics (MD) method

More information

Unsteady CFD for Automotive Aerodynamics

Unsteady CFD for Automotive Aerodynamics Unsteady CFD for Automotive Aerodynamics T. Indinger, B. Schnepf, P. Nathen, M. Peichl, TU München, Institute of Aerodynamics and Fluid Mechanics Prof. Dr.-Ing. N.A. Adams Outline 2 Motivation Applications

More information

Sustained Petascale Performance of Seismic Simulations with SeisSol

Sustained Petascale Performance of Seismic Simulations with SeisSol SIAM EX Workshop on Exascale Applied Mathematics Challenges and Opportunities Sustained Petascale Performance of Seismic Simulations with SeisSol M. Bader, A. Breuer, A. Heinecke, S. Rettenberger C. Pelties,

More information

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids 2015 DPD Workshop September 21-23, 2015, Shanghai University Smoothed Dissipative Particle Dynamics: Dynamics theory and applications to complex fluids Marco Ellero Zienkiewicz Centre for Computational

More information

Communication: Evaporation Influence of heat transport in the liquid on the interface temperature and the particle flux

Communication: Evaporation Influence of heat transport in the liquid on the interface temperature and the particle flux Communication: Evaporation Influence of heat transport in the liquid on the interface temperature and the particle flux Matthias Heinen, 1 Jadran Vrabec, 1,a) and Johann Fischer 2 1 Lehrstuhl für Thermodynamik

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information

Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry

Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry Liquid state isomorphism, Rosenfeld-Tarazona temperature scaling and Riemannian thermodynamic geometry Peter Mausbach Technical University of Cologne, 50678 Köln/Germany Andreas Köster and Jadran Vrabec

More information

Molecular Diffusion and Tensorial Slip at Surfaces with Periodic and Random Nanoscale Textures. Nikolai V. Priezjev

Molecular Diffusion and Tensorial Slip at Surfaces with Periodic and Random Nanoscale Textures. Nikolai V. Priezjev Molecular Diffuion and Tenorial Slip at Surface with Periodic and Random Nanocale Teture Nikolai V. Priezjev Department of Mechanical Engineering Michigan State Univerity Movie, preprint @ http://www.egr.mu.edu/~priezjev

More information

Massively parallel molecular-continuum simulations with the macro-micro-coupling tool Neumann, P.; Harting, J.D.R.

Massively parallel molecular-continuum simulations with the macro-micro-coupling tool Neumann, P.; Harting, J.D.R. Massively parallel molecular-continuum simulations with the macro-micro-coupling tool Neumann, P.; Harting, J.D.R. Published in: Hybrid particle-continuum methods in computational materials physics, 4-7

More information

Introduction to Benchmark Test for Multi-scale Computational Materials Software

Introduction to Benchmark Test for Multi-scale Computational Materials Software Introduction to Benchmark Test for Multi-scale Computational Materials Software Shun Xu*, Jian Zhang, Zhong Jin xushun@sccas.cn Computer Network Information Center Chinese Academy of Sciences (IPCC member)

More information

Numerical Modelling in Fortran: day 8. Paul Tackley, 2017

Numerical Modelling in Fortran: day 8. Paul Tackley, 2017 Numerical Modelling in Fortran: day 8 Paul Tackley, 2017 Today s Goals 1. Introduction to parallel computing (applicable to Fortran or C; examples are in Fortran) 2. Finite Prandtl number convection Motivation:

More information

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama

MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE. Tatsuto Kimura and Shigeo Maruyama MOLECULAR DYNAMICS SIMULATION OF VAPOR BUBBLE NUCLEATION ON A SOLID SURFACE Tatsuto Kimura and Shigeo Maruyama * Department of Mechanical Engineering, The University of Tokyo, 7-- Hongo, Bunkyo-ku, Tokyo

More information

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna

The liquid-vapour interface of QDO water. Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water Flaviu Cipcigan Andrew Jones Jason Crain Vlad Sokhan Glenn Martyna The liquid-vapour interface of QDO water 1. Molecular models 2. The Quantum Drude Oscillator

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information