Numerical Modelling in Fortran: day 8. Paul Tackley, 2017

Size: px
Start display at page:

Download "Numerical Modelling in Fortran: day 8. Paul Tackley, 2017"

Transcription

1 Numerical Modelling in Fortran: day 8 Paul Tackley, 2017

2 Today s Goals 1. Introduction to parallel computing (applicable to Fortran or C; examples are in Fortran) 2. Finite Prandtl number convection

3 Motivation: To model the Earth, need a huge number of grid points / cells /elements! e.g., to fill mantle volume: (8 km) 3 cells -> 1.9 billion cells (2 km) 3 cells -> 123 billion cells

4 Huge problems => huge computer

5 Huge problems => huge computer

6

7 Progress: iphone > fastest computer in 1976 (cost: $8 million) (photo taken at NCAR museum)

8

9 In Switzerland Each node: 12-core Intel CPU + GPU Piz Dora Each node: 2* 18-core Intel CPU

10 Shared memory: several cpus (or cores) share the same memory. Parallelisation can often be done by the compiler (sometimes with help, e.g., OpenMP instructions in the code) Distributed memory: each cpu has its own memory. Parallelisation usually requires message-passing, e.g. using MPI (messagepassing interface)

11 A brief history of supercomputers CPUs, Shared memory 1991: 512 CPUs, distributed memory 2010: 224,162 Cores, distributed + shared memory (12 cores per node)

12 Another possibility: build you own ( Beowulf cluster) Using standard PC cases: or using rack-mounted cases

13 MPI: message-passing interface A standard library for communicating between different tasks (cpus) Pass messages (e.g., arrays) Global operations (e.g., sum, maximum) Tasks could be on different cpus/cores of the same node, or on different nodes Works with Fortran and C Works on everything from a laptop to the largest supercomputers. 2 versions are: h2/

14 How to parallelise a code: worked example

15 Example: Scalar Poisson eqn. 2 u = f 1 h 2 Finite-difference approximation: ( u i +1 jk + u i 1 jk + u ij +1k + u ij 1k + u ijk +1 + u ijk +1 6u ) i, j = f ij Use iterative approach=>start with u=0, sweep through grid updating u values according to: u ij n +1 = h 2 u n ij + αr ij 6 Where Rij is the residue ( error ): R = 2 u f

16 Code

17 Parallelisation: domain decomposition Single CPU 8 CPUs CPU 0 CPU 1 CPU 2 CPU 4 CPU 3 CPU 5 CPU 6 CPU 7 Each CPU will do the same operations but on different parts of the domain

18 You need to build parallelization into the code using MPI Any scalar code will run on multiple CPUs, but will produce the same result on each CPU. Code must first setup local grid in relation to global grid, then handle communication Only a few MPI calls needed: Init. (MPI_init,MPI_com_size,MPI_com_rank) Global combinations (MPI_allreduce) CPU-CPU communication (MPI_send,MPI_recv )

19 Boundaries When updating points at edge of subdomain, need values on neighboring subdomains Hold copies of these locally using ghost points This minimizes #of messages, because they can be updated all at once instead of individually =ghost points

20 Scalar Grid Red=boundary points (=0) Yellow=iterated/solved (1 n-1)

21 Parallel grids Red=ext. boundaries Green=int. boundaries Yellow=iterated/solved

22 First things the code has to Call MPI_init(ierr) do: Find #CPUs using MPI_com_size Find which CPU it is, using MPI_com_rank (returns a number from 0 #CPUs-1) Calculate which part of the global grid it is dealing with, and which other CPUs are handling neighboring subdomains.

23 Example: Hello world program

24 Moving forward Update values in subdomain using ghost points as boundary condition, i.e., Timestep (explicit), or Iteration (implicit) Update ghost points by communicating with other CPUs Works well for explicit or iterative approaches

25 Boundary communication Step 1: x-faces Step 2: y-faces (including corner values from step 1) [Step 3: z-faces (including corner values from steps 1 & 2)] Doing the 3 directions sequentially avoids the need for additional messages to do edges & corners (=>in 3D, 6 messages instead of 26)

26

27

28

29 Main changes Parallelisation hidden in set_up_parallelisation and update_sides Many new variables to store parallelisation information Loop limits depend on whether global domain boundary or local subdomain

30

31 Simplest communication Not optimal uses blocking send/receive

32 Better: using non-blocking (isend/irecv)

33 Performance: theoretical analysis

34 How much time is spent communicating? Computation time volume (N x^3) Communication time surf. area (N x^2) =>Communication/Computation 1/N x =>Have as many points/cpu as possible!

35 Is it better to split 1D, 2D or 3D? E.g., 256x256x256 points on 64 CPUs 1D split: 256x256x4 points/cpu Area=2x(256x256)=131,072 2D split: 256x32x32 points/cpu Area=4x(256x32)=32,768 3D split:64x64x64 points/cpu Area=6x(64x64)=24,576 =>3D best but more messages needed

36 Model code performance (Time per step or iteration) Computation : t=an 3 Communication : t=nl+bn 2 /B (L=Latency, B=bandwidth) TOTAL : t= an 3 +nl+bn 2 /B

37 Example: Scalar Poisson equation 2 u = f t= an 3 +nl+bn 2 /B Assume 15 operations/point/iteration & 1 Gflop performance Þa=15/1e9=1.5e-8 If 3D decomposition, n=6, b=6*4 (single precision) Gigabit ethernet: L=40e-6 s, B=100 MB/s Quadrics: L=2e-6 s, B=875 MB/s

38 Time/iteration vs. #cpus Quadrics, Gonzales-size cluster

39 Up to 2e5 CPUs (Quadrics communication)

40 Efficiency

41 Now multigrid V cycles Smooth 32x32x32 Smooth 16x16x16 Smooth 8x8x8 Residues (=error) corrections Exact solution 4x4x4

42 Application to StagYY Cartesian or spherical

43 StagYY iterations: 3D Cartesian Change in scaling from same-node to cross-node communication Simple-minded multigrid: Very inefficient coarse levels! Exact coarse solution can take long time!

44 New treatment: follow minima Keep #points/core > minimum (tuned for system) Different for onnode and cross-node communication

45 Multigrid now (& before): yin-yang 1.8 billion

46 Summary For very large-scale problems, need to parallelise code using MPI For finite-difference codes, the best method is to assign different parts of the domain to different CPUs ( domain decomposition ) The code looks similar to before, but with some added routines to take care of communication Multigrid scales fine on 1000s CPUs if: Treat coarse grids on subsets of CPUs Large enough total problem size

47 For more information el_comp/ puting ssing_interface

48 Programming: Finite Prandtl number convection (i.e., almost any fluid) Ludwig Prandtl ( )

49 Values of the Prandt number Pr Viscous diffusivity Pr = ν κ Thermal diffusivity Liquid metals: Air: 0.7 Water: Rock: ~10 24!!! (effectively infinite)

50 Finite-Prandtl number convection Existing code assumes infinite Prandtl number also known as Stokes flow appropriate for highly-viscous fluids like rock, honey etc. Fluids like water, air, liquid metal have a lower Prandtl number so equations must be modified

51 Applications for finite Pr Outer core (geodynamo) Atmosphere Ocean Anything that s not solid like the mantle

52 Equations Conservation of mass (= continuity ) Conservation of momentum ( Navier- Stokes equation: F=ma for a fluid) Conservation of energy Claude Navier ( ) Sir George Stokes ( )

53 Finite Pr Equations Navier-Stokes equation: F=ma for a fluid Coriolis force ρ v t + v v = P + ρν 2 v + 2ρΩ v + gραtŷ ma Valid for constant viscosity only continuity and energy equations same as before T t + v T = κ 2 T + Q v = 0 ρ=density, ν=kinematic viscosity, g=gravity, α=thermal expansivity

54 Non-dimensionalise the equations Reduces the number of parameters Makes it easier to identify the dynamical regime Facilitates comparison of systems with different scales but similar dynamics (e.g., analogue laboratory experiments compared to core or mantle)

55 Non-dimensionalise to thermal diffusion scales Lengthscale D (depth of domain) Temperature scale (T drop over domain) Time to Velocity to Stress to D 2 /κ κ / D ρνκ / D 2

56 Nondimensional equations v = 0 T t + v T = 2 T 1 Pr v t + v v = P + 2 v + 1 Ek Ω v + Ra.Tˆ y Pr = ν Ek = κ ν 2ΩD 2 Ra = gα TD 3 νκ Prandtl number Ekman number Rayleigh number

57 As before, use streamfunction v x = ψ y v y = ψ x Also simplify by assuming 1/Ek=0

58 Eliminating pressure Take curl of 2D momentum equation: curl of grad=0, so pressure disappears Replace velocity by vorticity: ω = v in 2D only one component of vorticity is needed (the one perpendicular to the 2D plane), 2 ψ = ω z 1 Pr ω t + v x ω x + v y ω y = 2 ω Ra T x

59 => the streamfunction-vorticity formulation 1 Pr ω t + v x ω x + v y ω y = 2 ω Ra T x 2 ψ = ω ( v,v ) = ψ x y y, ψ x T t + v T = 2 T + Q

60 Note: Effect of high Pr 1 Pr ω t + v x ω x + v y ω y = 2 ω Ra T x If Pr->infinity, left-hand-side=>0 so equation becomes Poisson like before: 2 ω = Ra T x

61 Taking a timestep (i) Calculate ψ from ω using: 2 ψ = ω (ii) Calculate v from ψ ( v x,v ) y = ψ ψ, y x (iii) Time-step ω and T using explicit finite differences: T t = v x ω t = v x T x v y ω x v y T y + 2 T ω y + Pr 2 ω RaPr T x

62 T time step is the same as before T new T old Δt = v x T old x v y T old y + 2 T old T T new = T old + Δt 2 T old v old x x v y T old y w must now be time stepped in a similar way ω new ω old Δt = v x ω old x v y ω old y + Pr 2 ω old RaPr T old x ω ω new = ω old + Δt Pr 2 ω old v old x x v y ω old y RaPr T old x

63

64 Stability condition Diffusion: Advection: dt diff = a diff h 2 dt adv = a adv min max(pr,1) h maxval(abs(vx)), h max val(abs(vy)) Combined: dt = min(dt diff, dt adv )

65 Modification of previous convection program Replace Poisson calculation of w with timestep, done at the same time as T time-step Get a compiling code! Make sure it is stable and convergent for values of Pr between 0.01 and 1e2 Hand in your code, and your solutions to the test cases in the following slides Due date: 18 December (2 weeks from today)

66 Test cases All have nx=257, ny=65, Ra=1e5, total_time=0.1, and random initial T and w fields, unless otherwise stated Due to random start, results will not look exactly as these, but they should look similar (i.e.. width of upwellings & downwellings & boundary layers similar, but number and placement of upwellings/downwellings different).

67 Pr=10

68 Pr=1

69 Pr=0.1

70 Pr=0.01

71 Pr=0.01, time=1.0

72 Pr=0.1, Ra=1e7

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016

Numerical Modelling in Fortran: day 10. Paul Tackley, 2016 Numerical Modelling in Fortran: day 10 Paul Tackley, 2016 Today s Goals 1. Useful libraries and other software 2. Implicit time stepping 3. Projects: Agree on topic (by final lecture) (No lecture next

More information

Numerical Modelling in Fortran: day 9. Paul Tackley, 2017

Numerical Modelling in Fortran: day 9. Paul Tackley, 2017 Numerical Modelling in Fortran: day 9 Paul Tackley, 2017 Today s Goals 1. Implicit time stepping. 2. Useful libraries and other software 3. Fortran and numerical methods: Review and discussion. New features

More information

Turbulence in geodynamo simulations

Turbulence in geodynamo simulations Turbulence in geodynamo simulations Nathanaël Schaeffer, A. Fournier, D. Jault, J. Aubert, H-C. Nataf,... ISTerre / CNRS / Université Grenoble Alpes Journée des utilisateurs CIMENT, Grenoble, 23 June 2016

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Case Study: Numerical Simulations of the Process by which Planets generate their Magnetic Fields. Stephan Stellmach UCSC

Case Study: Numerical Simulations of the Process by which Planets generate their Magnetic Fields. Stephan Stellmach UCSC Case Study: Numerical Simulations of the Process by which Planets generate their Magnetic Fields Stephan Stellmach UCSC 1 The Scientific Problem 2 The Magnetic Field of the Earth http://en.wikipedia.org/wiki/image:magnetosphere_rendition.jpg

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

Zonal modelling approach in aerodynamic simulation

Zonal modelling approach in aerodynamic simulation Zonal modelling approach in aerodynamic simulation and Carlos Castro Barcelona Supercomputing Center Technical University of Madrid Outline 1 2 State of the art Proposed strategy 3 Consistency Stability

More information

An Overview of Fluid Animation. Christopher Batty March 11, 2014

An Overview of Fluid Animation. Christopher Batty March 11, 2014 An Overview of Fluid Animation Christopher Batty March 11, 2014 What distinguishes fluids? What distinguishes fluids? No preferred shape. Always flows when force is applied. Deforms to fit its container.

More information

Numerical Methods in Geophysics. Introduction

Numerical Methods in Geophysics. Introduction : Why numerical methods? simple geometries analytical solutions complex geometries numerical solutions Applications in geophysics seismology geodynamics electromagnetism... in all domains History of computers

More information

Chapter 5. Methods for Solving Elliptic Equations

Chapter 5. Methods for Solving Elliptic Equations Chapter 5. Methods for Solving Elliptic Equations References: Tannehill et al Section 4.3. Fulton et al (1986 MWR). Recommended reading: Chapter 7, Numerical Methods for Engineering Application. J. H.

More information

ES265 Order of Magnitude Phys & Chem Convection

ES265 Order of Magnitude Phys & Chem Convection ES265 Order of Magnitude Phys & Chem Convection Convection deals with moving fluids in which there are spatial variations in temperature or chemical concentration. In forced convection, these variations

More information

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand

Numerical modelling of phase change processes in clouds. Challenges and Approaches. Martin Reitzle Bernard Weigand Institute of Aerospace Thermodynamics Numerical modelling of phase change processes in clouds Challenges and Approaches Martin Reitzle Bernard Weigand Introduction Institute of Aerospace Thermodynamics

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J.

Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J. Three-dimensional numerical simulations of thermo-chemical multiphase convection in Earth s mantle Takashi Nakagawa a, Paul J. Tackley b a Department of Earth and Planetary Sciences, University of Tokyo,

More information

Numerical methods for the Navier- Stokes equations

Numerical methods for the Navier- Stokes equations Numerical methods for the Navier- Stokes equations Hans Petter Langtangen 1,2 1 Center for Biomedical Computing, Simula Research Laboratory 2 Department of Informatics, University of Oslo Dec 6, 2012 Note:

More information

Fluid Animation. Christopher Batty November 17, 2011

Fluid Animation. Christopher Batty November 17, 2011 Fluid Animation Christopher Batty November 17, 2011 What distinguishes fluids? What distinguishes fluids? No preferred shape Always flows when force is applied Deforms to fit its container Internal forces

More information

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics

Diffusion / Parabolic Equations. PHY 688: Numerical Methods for (Astro)Physics Diffusion / Parabolic Equations Summary of PDEs (so far...) Hyperbolic Think: advection Real, finite speed(s) at which information propagates carries changes in the solution Second-order explicit methods

More information

, 孙世玮 中国科学院大气物理研究所,LASG 2 南京大学, 大气科学学院

, 孙世玮 中国科学院大气物理研究所,LASG 2 南京大学, 大气科学学院 傅豪 1,2, 林一骅 1, 孙世玮 2, 周博闻 2, 王元 2 1 中国科学院大气物理研究所,LASG 2 南京大学, 大气科学学院 The Vortical Atmosphere & Ocean https://en.wikipedia.org/wiki/file:tropical_cyclon e_zoe_2002.jpg http://blogs.egu.eu/geolog/tag/mesoscale-eddy/

More information

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev

Implementation of 3D Incompressible N-S Equations. Mikhail Sekachev Implementation of 3D Incompressible N-S Equations Mikhail Sekachev Navier-Stokes Equations The motion of a viscous incompressible fluid is governed by the Navier-Stokes equations u + t u = ( u ) 0 Quick

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

10. Buoyancy-driven flow

10. Buoyancy-driven flow 10. Buoyancy-driven flow For such flows to occur, need: Gravity field Variation of density (note: not the same as variable density!) Simplest case: Viscous flow, incompressible fluid, density-variation

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

Computational Seismology: An Introduction

Computational Seismology: An Introduction Computational Seismology: An Introduction Aim of lecture: Understand why we need numerical methods to understand our world Learn about various numerical methods (finite differences, pseudospectal methods,

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline

- Part 4 - Multicore and Manycore Technology: Chances and Challenges. Vincent Heuveline - Part 4 - Multicore and Manycore Technology: Chances and Challenges Vincent Heuveline 1 Numerical Simulation of Tropical Cyclones Goal oriented adaptivity for tropical cyclones ~10⁴km ~1500km ~100km 2

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

ARTICLE IN PRESS. Physics of the Earth and Planetary Interiors xxx (2008) xxx xxx. Contents lists available at ScienceDirect

ARTICLE IN PRESS. Physics of the Earth and Planetary Interiors xxx (2008) xxx xxx. Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors xxx 2008 xxx xxx Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Modelling

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

Parallel Programming & Cluster Computing Transport Codes and Shifting Henry Neeman, University of Oklahoma Paul Gray, University of Northern Iowa

Parallel Programming & Cluster Computing Transport Codes and Shifting Henry Neeman, University of Oklahoma Paul Gray, University of Northern Iowa Parallel Programming & Cluster Computing Transport Codes and Shifting Henry Neeman, University of Oklahoma Paul Gray, University of Northern Iowa SC08 Education Program s Workshop on Parallel & Cluster

More information

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p.

Colloquium FLUID DYNAMICS 2012 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 2012 p. Colloquium FLUID DYNAMICS 212 Institute of Thermomechanics AS CR, v.v.i., Prague, October 24-26, 212 p. ON A COMPARISON OF NUMERICAL SIMULATIONS OF ATMOSPHERIC FLOW OVER COMPLEX TERRAIN T. Bodnár, L. Beneš

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry Theoretical Geomagnetism Lecture 3 Core Dynamics I: Rotating Convection in Spherical Geometry 1 3.0 Ingredients of core dynamics Rotation places constraints on motions. Thermal (and chemical buoyancy)

More information

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions

Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions Project 4: Navier-Stokes Solution to Driven Cavity and Channel Flow Conditions R. S. Sellers MAE 5440, Computational Fluid Dynamics Utah State University, Department of Mechanical and Aerospace Engineering

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics

General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics General Curvilinear Ocean Model (GCOM): Enabling Thermodynamics M. Abouali, C. Torres, R. Walls, G. Larrazabal, M. Stramska, D. Decchis, and J.E. Castillo AP0901 09 General Curvilinear Ocean Model (GCOM):

More information

Basic Aspects of Discretization

Basic Aspects of Discretization Basic Aspects of Discretization Solution Methods Singularity Methods Panel method and VLM Simple, very powerful, can be used on PC Nonlinear flow effects were excluded Direct numerical Methods (Field Methods)

More information

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics

SPARSE SOLVERS POISSON EQUATION. Margreet Nool. November 9, 2015 FOR THE. CWI, Multiscale Dynamics SPARSE SOLVERS FOR THE POISSON EQUATION Margreet Nool CWI, Multiscale Dynamics November 9, 2015 OUTLINE OF THIS TALK 1 FISHPACK, LAPACK, PARDISO 2 SYSTEM OVERVIEW OF CARTESIUS 3 POISSON EQUATION 4 SOLVERS

More information

Numerically Solving Partial Differential Equations

Numerically Solving Partial Differential Equations Numerically Solving Partial Differential Equations Michael Lavell Department of Applied Mathematics and Statistics Abstract The physics describing the fundamental principles of fluid dynamics can be written

More information

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999)

Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) Dan s Morris s Notes on Stable Fluids (Jos Stam, SIGGRAPH 1999) This is intended to be a detailed by fairly-low-math explanation of Stam s Stable Fluids, one of the key papers in a recent series of advances

More information

Thermal Analysis Contents - 1

Thermal Analysis Contents - 1 Thermal Analysis Contents - 1 TABLE OF CONTENTS 1 THERMAL ANALYSIS 1.1 Introduction... 1-1 1.2 Mathematical Model Description... 1-3 1.2.1 Conventions and Definitions... 1-3 1.2.2 Conduction... 1-4 1.2.2.1

More information

Earth System Modeling Domain decomposition

Earth System Modeling Domain decomposition Earth System Modeling Domain decomposition Graziano Giuliani International Centre for Theorethical Physics Earth System Physics Section Advanced School on Regional Climate Modeling over South America February

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

The Fast Multipole Method in molecular dynamics

The Fast Multipole Method in molecular dynamics The Fast Multipole Method in molecular dynamics Berk Hess KTH Royal Institute of Technology, Stockholm, Sweden ADAC6 workshop Zurich, 20-06-2018 Slide BioExcel Slide Molecular Dynamics of biomolecules

More information

Dedalus: An Open-Source Spectral Magnetohydrodynamics Code

Dedalus: An Open-Source Spectral Magnetohydrodynamics Code Dedalus: An Open-Source Spectral Magnetohydrodynamics Code Keaton Burns University of California Berkeley Jeff Oishi SLAC National Accelerator Laboratory Received ; accepted ABSTRACT We developed the magnetohydrodynamic

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

OpenFOAM selected solver

OpenFOAM selected solver OpenFOAM selected solver Roberto Pieri - SCS Italy 16-18 June 2014 Introduction to Navier-Stokes equations and RANS Turbulence modelling Numeric discretization Navier-Stokes equations Convective term {}}{

More information

Application of Chimera Grids in Rotational Flow

Application of Chimera Grids in Rotational Flow CES Seminar Write-up Application of Chimera Grids in Rotational Flow Marc Schwalbach 292414 marc.schwalbach@rwth-aachen.de Supervisors: Dr. Anil Nemili & Emre Özkaya, M.Sc. MATHCCES RWTH Aachen University

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 10: Case Study Computational Fluid Dynamics Michael Bader Winter 2012/2013 Module 10: Case Study Computational Fluid Dynamics, Winter 2012/2013 1 Fluid mechanics as a Discipline

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters

Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters Lattice Boltzmann simulations on heterogeneous CPU-GPU clusters H. Köstler 2nd International Symposium Computer Simulations on GPU Freudenstadt, 29.05.2013 1 Contents Motivation walberla software concepts

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

Workshop on Geophysical Data Analysis and Assimilation. 29 October - 3 November, Modelling Mantle Convection and Plate Tectonics

Workshop on Geophysical Data Analysis and Assimilation. 29 October - 3 November, Modelling Mantle Convection and Plate Tectonics 2373-16 Workshop on Geophysical Data Analysis and Assimilation 29 October - 3 November, 2012 Modelling Mantle Convection and Plate Tectonics Paul J. Tackley ETH Zuerich Switzerland Modelling Mantle Convection

More information

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras

Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Computational Techniques Prof. Sreenivas Jayanthi. Department of Chemical Engineering Indian institute of Technology, Madras Module No. # 05 Lecture No. # 24 Gauss-Jordan method L U decomposition method

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems

Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Accelerating incompressible fluid flow simulations on hybrid CPU/GPU systems Yushan Wang 1, Marc Baboulin 1,2, Karl Rupp 3,4, Yann Fraigneau 1,5, Olivier Le Maître 1,5 1 Université Paris-Sud, France 2

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 7 Numerical Fluid Mechanics Fall 2011 Lecture 7 REVIEW of Lecture 6 Material covered in class: Differential forms of conservation laws Material Derivative (substantial/total derivative) Conservation of Mass

More information

Chapter 9 Implicit integration, incompressible flows

Chapter 9 Implicit integration, incompressible flows Chapter 9 Implicit integration, incompressible flows The methods we discussed so far work well for problems of hydrodynamics in which the flow speeds of interest are not orders of magnitude smaller than

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Dual Reciprocity Boundary Element Method for Magma Ocean Simulations

Dual Reciprocity Boundary Element Method for Magma Ocean Simulations Dual Reciprocity Boundary Element Method for Magma Ocean Simulations Tyler W. Drombosky drombosk@math.umd.edu Saswata Hier-Majumder saswata@umd.edu 28 April 2010 Physical Motivation Earth s early history

More information

Unravel Faults on Seismic Migration Images Using Structure-Oriented, Fault-Preserving and Nonlinear Anisotropic Diffusion Filtering

Unravel Faults on Seismic Migration Images Using Structure-Oriented, Fault-Preserving and Nonlinear Anisotropic Diffusion Filtering PROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2019 SGP-TR-214 Unravel Faults on Seismic Migration Images Using Structure-Oriented,

More information

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations

Needs work : define boundary conditions and fluxes before, change slides Useful definitions and conservation equations Needs work : define boundary conditions and fluxes before, change slides 1-2-3 Useful definitions and conservation equations Turbulent Kinetic energy The fluxes are crucial to define our boundary conditions,

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

The Shallow Water Equations

The Shallow Water Equations If you have not already done so, you are strongly encouraged to read the companion file on the non-divergent barotropic vorticity equation, before proceeding to this shallow water case. We do not repeat

More information

Rapidly Rotating Rayleigh-Bénard Convection

Rapidly Rotating Rayleigh-Bénard Convection Rapidly Rotating Rayleigh-Bénard Convection Edgar Knobloch Department of Physics University of California at Berkeley 27 February 2008 Collaborators: Keith Julien, Applied Mathematics, Univ. of Colorado,

More information

Natural convection adjacent to a sidewall with three fins in a differentially heated cavity

Natural convection adjacent to a sidewall with three fins in a differentially heated cavity ANZIAM J. 48 (CTAC2006) pp.c806 C819, 2007 C806 Natural convection adjacent to a sidewall with three fins in a differentially heated cavity F. Xu 1 J. C. Patterson 2 C. Lei 3 (Received 31 August 2006;

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

High performance mantle convection modeling

High performance mantle convection modeling High performance mantle convection modeling Jens Weismüller, Björn Gmeiner, Siavash Ghelichkhan, Markus Huber, Lorenz John, Barbara Wohlmuth, Ulrich Rüde and Hans-Peter Bunge Geophysics Department of Earth-

More information

Numerical Methods of Applied Mathematics -- II Spring 2009

Numerical Methods of Applied Mathematics -- II Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.336 Numerical Methods of Applied Mathematics -- II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity

Entropy 2011, 13, ; doi: /e OPEN ACCESS. Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Entropy 011, 13, 100-1033; doi:10.3390/e1305100 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Generation at Natural Convection in an Inclined Rectangular Cavity Mounir

More information

Schwarz-type methods and their application in geomechanics

Schwarz-type methods and their application in geomechanics Schwarz-type methods and their application in geomechanics R. Blaheta, O. Jakl, K. Krečmer, J. Starý Institute of Geonics AS CR, Ostrava, Czech Republic E-mail: stary@ugn.cas.cz PDEMAMIP, September 7-11,

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Additive Manufacturing Module 8

Additive Manufacturing Module 8 Additive Manufacturing Module 8 Spring 2015 Wenchao Zhou zhouw@uark.edu (479) 575-7250 The Department of Mechanical Engineering University of Arkansas, Fayetteville 1 Evaluating design https://www.youtube.com/watch?v=p

More information

Simulations of Fluid Dynamics and Heat Transfer in LH 2 Absorbers

Simulations of Fluid Dynamics and Heat Transfer in LH 2 Absorbers Simulations of Fluid Dynamics and Heat Transfer in LH 2 Absorbers Kevin W. Cassel, Aleksandr V. Obabko and Eyad A. Almasri Fluid Dynamics Research Center, Mechanical, Materials and Aerospace Engineering

More information

Finite volume method for CFD

Finite volume method for CFD Finite volume method for CFD Indo-German Winter Academy-2007 Ankit Khandelwal B-tech III year, Civil Engineering IIT Roorkee Course #2 (Numerical methods and simulation of engineering Problems) Mentor:

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Lecture 3: The Navier-Stokes Equations: Topological aspects

Lecture 3: The Navier-Stokes Equations: Topological aspects Lecture 3: The Navier-Stokes Equations: Topological aspects September 9, 2015 1 Goal Topology is the branch of math wich studies shape-changing objects; objects which can transform one into another without

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations Basic hydrodynamics David Gurarie 1 Newtonian fluids: Euler and Navier-Stokes equations The basic hydrodynamic equations in the Eulerian form consist of conservation of mass, momentum and energy. We denote

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

arxiv: v2 [math.na] 21 Apr 2014

arxiv: v2 [math.na] 21 Apr 2014 Combustion Theory and Modelling Vol. 00, No. 00, Month 200x, 1 25 RESEARCH ARTICLE High-Order Algorithms for Compressible Reacting Flow with Complex Chemistry arxiv:1309.7327v2 [math.na] 21 Apr 2014 M.

More information

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion

Conservation of Mass. Computational Fluid Dynamics. The Equations Governing Fluid Motion http://www.nd.edu/~gtryggva/cfd-course/ http://www.nd.edu/~gtryggva/cfd-course/ Computational Fluid Dynamics Lecture 4 January 30, 2017 The Equations Governing Fluid Motion Grétar Tryggvason Outline Derivation

More information

Convective Vaporization and Burning of Fuel Droplet Arrays

Convective Vaporization and Burning of Fuel Droplet Arrays Convective Vaporization and Burning of Fuel Droplet Arrays Guang Wu and William A. Sirignano Mechanical & Aerospace Engineering University of California, Irvine May 19, 2009 Background and Task In many

More information

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature Chapter 1 Continuum mechanics review We will assume some familiarity with continuum mechanics as discussed in the context of an introductory geodynamics course; a good reference for such problems is Turcotte

More information

SWE Anatomy of a Parallel Shallow Water Code

SWE Anatomy of a Parallel Shallow Water Code SWE Anatomy of a Parallel Shallow Water Code CSCS-FoMICS-USI Summer School on Computer Simulations in Science and Engineering Michael Bader July 8 19, 2013 Computer Simulations in Science and Engineering,

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4607 SEMESTER: Autumn 2012-13 MODULE TITLE: Introduction to Fluids DURATION OF

More information

The Performance Evolution of the Parallel Ocean Program on the Cray X1

The Performance Evolution of the Parallel Ocean Program on the Cray X1 The Performance Evolution of the Parallel Ocean Program on the Cray X1 Patrick H. Worley Oak Ridge National Laboratory John Levesque Cray Inc. 46th Cray User Group Conference May 18, 2003 Knoxville Marriott

More information

High-Performance Scientific Computing

High-Performance Scientific Computing High-Performance Scientific Computing Instructor: Randy LeVeque TA: Grady Lemoine Applied Mathematics 483/583, Spring 2011 http://www.amath.washington.edu/~rjl/am583 World s fastest computers http://top500.org

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information