Synthesis of Double Bonds

Size: px
Start display at page:

Download "Synthesis of Double Bonds"

Transcription

1 Synthesis of Double Bonds Wittig eaction!!! Georg Wittig: Nobel Prize 1979 For their development of the use of boronand phosphorous-containing compounds respectively, into important reagents in organic synthesis. (shared prize with. C. Brown) P X Li P ylide P P 84%

2 General Principles!!! 3 P C Y 3 P Y - can get high selectivity for either E or Z olefin depending on: 1. ylide type 2. type of C= 3. reaction conditions Ylide Types & utcomes stabilized ylides: have strongly conjugating functionality (C 2, CN, S 2 ) favor formation of trans olefin moderately stabilized ylides: have less strongly conjugating functionality (allyl, aryl) show little stereoselectivity non stabilized ylides: have no conjugating substituents favor formation of cis olefin

3 General Principles!!! early example Br P 3 Ac Na, Me 98% vitamin A BASF 1956 ylide preparation X Δ X strong base - bases include: Na, K nbuli, Li LDA, LiMDS, NaMDS, KMDS tbuk C 3 (S=)C 2 -

4 Nonstabilized Ylides!!! original mechanism - stepwise, ionic process (betaine mechanism) anti (E) syn (Z) betaine oxaphosphatane 80 kcal/mol 130 kcal/mol

5 Nonstabilized Ylides!!! alternate mechanism - synchronous cycloddition process ([22] mechanism) [22]? P 3 consistent with available evidence, but does not rule out other possibilities!

6 Nonstabilized Ylides!!! counterion dependence - generally consider nonstabilized ylides to give cis olefins - BUT, reaction is complex! X 1. base 2. C LiMDS 50 : 50 KMDS 98 : 2 - use salt free conditions - NaX, KX less soluble; ppt out of reaction medium

7 Nonstabilized Ylides!!! Schlosser modification - Li catalyzes oxaphosphatane opening (stabilizes betaine) - excess salt promotes equilibration and formation of E alkene - Na, K counterions do not have sufficient Lewis acidity to cleave oxaphosphatane (not recommended for Schlosser). -78 C Li -78 C β-oxido ylide tbu oxaphosphatane warm to rt (E) X 1. LiMDS 2. C 3. Li, -78 C 4. tbu --> rt 4 : 96

8 Nonstabilized Ylides!!! Trisubstituted lefins - reaction with ketones typically not stereoselective - rare exceptions large steric difference between ketone groups Me Me Et Me Me Me Me ~ 1 : 1 Me Me

9 Nonstabilized Ylides!!! Trisubstituted lefins - reaction with α-alkoxy ketones can be stereoselective TP Me TP TP - branching at α position of ketone increases selectivity 41 : 1 TP Me TP TP 200 : 1 - branching at α' position of ketone not tolerated TP Me TP TP 1 : 1

10 Nonstabilized Ylides!!! Trisubstituted lefins - reaction with α-alkoxy ketones can be stereoselective - application to α-santalol P 3 1. Me 2. Ac (aq) > 99 : 1

11 Stabilized Ylides!!! C 2 Me C - corresponding phosphonium salt can be deprotonated with weaker base - trans selective - will not react with ketones Bz Bz C C C benzene, Δ C 2 Me C 2 Me buffer ph 8.4 C 60%

12 osphonates!!! orner-wadsworth-emmons eaction Et P Et W - orner described use of phosphine oxides in Wittig type reactions in : Wadsworth and Emmons described the increased reactivity of phosphonate stabilized carbanions with α-electron withdrawing groups. - no alkene produced if W = alkyl Et P Et C 2Et C 2 Et Na

13 osphonates!!! orner-wadsworth-emmons eaction preparation: Arbuzov reaction (Et) 3 P Br C 2 Et (Et) 3 P C 2 Et Br - EtBr Et P Et C 2Et deprotonation: nbuli, tbuk, Na

14 orner-wadsworth-emmons eaction!!! mechanism P - C 2Me C P kinetic product C 2Me slow P C 2 Me (Z) C 2 Me C P C 2Me fast DS P C 2 Me (E) C 2 Me

15 orner-wadsworth-emmons eaction!!! application to prostaglandin synthesis prostaglandin F 2α C 2 Me Me C

16 orner-wadsworth-emmons eaction!!! application to prostaglandin synthesis Et P Et C 5 7 prostaglandin F 2α Ac C Na Ac 1. Zn(B 4 ) 2 2. separate Ac 1. K 2 C 3 (aq) 2. DP, pts 3. DIBAL TP TP C 2 - Ac TP TP

17 orner-wadsworth-emmons eaction!!! Trisubstituted lefins - reaction with ketones typically not stereoselective - rare exceptions large steric difference between ketone groups TBS Et P C 2Et Et Na TBS Et TBS 4 : 1 Et Et P Et C 2Et Et 2 C C 2 Et Na 9 : 1

18 orner-wadsworth-emmons eaction!!! Trisubstituted lefins - reaction with ketones typically not stereoselective - can get useful levels of selectivity with α-substituted phosphonates C Et P C 2Et Et Na C 2 Et 14 : 1 E : Z

19 orner-wadsworth-emmons eaction!!! Trisubstituted lefins Still-Gennari modification - cis selective! - selectivities from 10 to 50 : 1 CF 3 C 2 P CF 3 C 2 C 2Me CF 3 C 2 P CF 3 C 2 C 2Me CF 3 C 2 P CF 3 C 2 C 2Me 18-cr-6 KMDS C 2 Me CF 3 C 2 P CF 3 C 2 C 2Me 18-cr-6 KMDS C 2 Me

20 orner-wadsworth-emmons eaction!!! Trisubstituted lefins Still-Gennaro modification - cis selective! - selectivities from 10 to 50 : 1 C CF 3 C 2 P CF 3 C 2 C 2Me 18-cr-6 KMDS C 2 Me 78% >50:1 (Z:E)

21 osphorous Ylides & osphonates Selectivity Summary!! Unstabilized Ylides C Wittig C TP Schlosser TP Still

22 osphorous Ylides & osphonates Selectivity Summary!! Stabilized Ylides C 2 C " " P X C 2 C C C 2 with stabilized ylide or phosphonate C C 2 Still-Gennari (X = ; " = CF 3 C 2 ) C 2 Still-Gennari (X = Me; " = CF 3 C 2 )

CHE 322 Study Guide Wittig Reaction

CHE 322 Study Guide Wittig Reaction CE 322 Study Guide Wittig Reaction The Diels Alder reaction was our first great synthetic reaction. The Wittig reaction is the second. It allows one to selectively prepare alkenes in a manner unmatched

More information

PHOSPHORUS AND SULPHUR YLIDES

PHOSPHORUS AND SULPHUR YLIDES PHOSPHORUS AND SULPHUR YLIDES 1 The Chemistry of Phosphorus and Sulphur Ylides A ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Chapter 17: Carbonyl Compounds II

Chapter 17: Carbonyl Compounds II Chapter 17: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Tips for taking exams in 852

Tips for taking exams in 852 Comprehensive Tactical Methods in rganic Synthesis W. D. Wulff 1) Know the relative reactivity of carbonyl compounds Tips for taking exams in 852 Cl > > ' > > ' N2 eg: 'Mg Et ' 1equiv. 1equiv. ' ' Et 50%

More information

Wittig Reaction. Mulcahy, Seann P. Boston University Boston University

Wittig Reaction. Mulcahy, Seann P. Boston University Boston University Boston University penbu Chemistry http://open.bu.edu rganic Chemistry Laboratory Experiments 2012-01-03 Wittig Reaction Mulcahy, Seann P. https://hdl.handle.net/2144/2688 Boston University The Wittig Reaction

More information

Chapter 18: Carbonyl Compounds II

Chapter 18: Carbonyl Compounds II Chapter 18: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Chapter 11. Reactions of carbonyl compounds

Chapter 11. Reactions of carbonyl compounds hapter 11. eactions of carbonyl compounds The most important mechanistic feature of all reaction involving = (aldehydes, ketones, derivatives of carboxylic acids) is the addition of a nucleophile = formation

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes

Chapter 16. Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group. Physical Properties of Aldehydes and Ketones. Synthesis of Aldehydes Nomenclature of Aldehydes and Ketones Chapter 16 Aldehydes and Ketones I. Aldehydes replace the -e of the parent alkane with -al The functional group needs no number Nucleophilic Addition to the Carbonyl

More information

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry A. Loupy, B.Tchoubar Salt Effects in Organic and Organometallic Chemistry 1 Introduction - Classification of Specific Salt Effects 1 1.1 Specific Salt Effects Involving the Salt's Lewis Acid or Base Character

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Chapter 13: Alcohols and Phenols

Chapter 13: Alcohols and Phenols Chapter 13: Alcohols and Phenols [ Chapter 9 Sections: 9.10; Chapter 13 Sections: 13.1-13.3, 13.9-13.10] 1. Nomenclature of Alcohols simple alcohols C3 C3C2 Eddie Sachs 1927-1964 larger alcohols find the

More information

C 13 -C 14 C CHO. CrCl 2, Ni(COD) 2 4Å mol sieves. NHK reaction. nbuli HN(TMS) 2. aldol reaction

C 13 -C 14 C CHO. CrCl 2, Ni(COD) 2 4Å mol sieves. NHK reaction. nbuli HN(TMS) 2. aldol reaction Introduction to Synthesis: Design (E 66) Spring 2015 Problem Set #2 KEY 1. The Evans synthesis of (+)-discodermolide appears in the Ph.D. thesis of David alstead (arvard, 1999). copy of this work is posted

More information

Chapter 19: Aldehydes and Ketones: Nucleophilic Addition Reactions NOMENCLATURE OF ALDEHYDES AND KETONES NATURAL OCCURRENCE OF ALDEHYDES

Chapter 19: Aldehydes and Ketones: Nucleophilic Addition Reactions NOMENCLATURE OF ALDEHYDES AND KETONES NATURAL OCCURRENCE OF ALDEHYDES Chapter 19: Aldehydes and Ketones: Nucleophilic Addition eactions The Carbonyl Group C carbon with a double bond to oxygen it is planar has bond angles of 120 is permanently polarized NENCLATUE F ALDEYDES

More information

Structure and Reactivity: Prerequired Knowledge

Structure and Reactivity: Prerequired Knowledge Structure and eactivity: Prerequired Knowledge!!! The concepts presented in this summary are required for lecture and examination!!! 1. Important Principles in rganic Chemistry In general, structures which

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents)

Chem 263 Nov 14, e.g.: Fill the reagents to finish the reactions (only inorganic reagents) hem 263 ov 14, 2013 More examples: e.g.: Fill the reagents to finish the reactions (only inorganic reagents) Br 2 hv Br a 2 r 4 S 2 or swern oxidation Mg Li 0 0 MgBr Li e.g. : Fill the reagents (any reagents

More information

Hydroboration. Carreira: Chapter 7

Hydroboration. Carreira: Chapter 7 ydroboration Carreira: Chapter 7 ydroboration of alkenes/alkynes is one of the most versatile reactions available. Most commonly, the resulting alkyl borane intermediates are not isolated, but are used

More information

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I. Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Still More Carbonyl Chemistry

Still More Carbonyl Chemistry Lecture 17 Still More arbonyl hemistry ' ' A B P( 6 5 ) 3 A P( 6 5 ) 3 B March 22, 2018 eaction Theme The most common reaction of a carbonyl group is addition of a nucleophile to form a tetrahedral addition

More information

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group

Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Chapter 16 Aldehydes and Ketones I Nucleophilic Addition to the Carbonyl Group Nomenclature of Aldehydes and Ketones Aldehydes are named by replacing the -e of the corresponding parent alkane with -al

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

O or R E + R. - Keto-Enol Tautomerization (enol form usually very minor for simple ketones)

O or R E + R. - Keto-Enol Tautomerization (enol form usually very minor for simple ketones) General eactivity base or acid or E + E - Keto-Enol Tautomerization (enol form usually very minor for simple ketones) - Can enhance rate / concentration by addition of acid or base + catalyzed + + + base

More information

Aldehydes and Ketones 2. Based on Organic Chemistry, J. G. Smith 3rde.

Aldehydes and Ketones 2. Based on Organic Chemistry, J. G. Smith 3rde. Aldehydes and Ketones 2 Based on Organic Chemistry, J. G. Smith 3rde. The Wittig Reaction Wittig reaction, named for German chemist Georg Wittig, who was awarded the Nobel Prize in Chemistry in 1979 for

More information

Topic 4 Aldehydes and Ketones

Topic 4 Aldehydes and Ketones 4-1 Topic 4 Aldehydes and Ketones 16.1 4-2 Aldehydes and Ketones ' aldehyde ketone The polarized oxygen-carbon -bond renders aldehydes and ketones electrophilic: ' The electrophilicity of the oxygen-carbon

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions

Chapter 5B. Functional Group Transformations: The Chemistry. Related Reactions Chapter 5B Functional Group Transformations: The Chemistry of fcarbon-carbon C b π-bonds B d and Related Reactions Oxymercuation-Demercuration Markovnikov hydration of a double bond 1 Mechanism Comparision

More information

Chapter 18: Ketones and Aldehydes. I. Introduction

Chapter 18: Ketones and Aldehydes. I. Introduction 1 Chapter 18: Ketones and Aldehydes I. Introduction We have already encountered numerous examples of this functional group (ketones, aldehydes, carboxylic acids, acid chlorides, etc). The three-dimensional

More information

Sp2002 Final Organic II 200pts (Weighted as 300) Good luck ( I believe in you, you can do it, etc.) and please read the questions!

Sp2002 Final Organic II 200pts (Weighted as 300) Good luck ( I believe in you, you can do it, etc.) and please read the questions! Sp2002 Final rganic II 200pts (Weighted as 300) NAME: To not have your graded script placed outside my office please check this box Good luck ( I believe in you, you can do it, etc.) and please read the

More information

Background Information

Background Information ackground nformation ntroduction to Condensation eactions Condensation reactions occur between the α-carbon of one carbonyl-containing functional group and the carbonyl carbon of a second carbonyl-containing

More information

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure:

Ketones and Aldehydes Reading Study Problems Key Concepts and Skills Lecture Topics: Structure of Ketones and Aldehydes Structure: Ketones and Aldehydes Reading: Wade chapter 18, sections 18-1- 18-21 Study Problems: 18-43, 18-44,18-50, 18-51, 18-52, 18-59, 18-60, 18-62, 18-64, 18-72. Key Concepts and Skills: Interpret the IR, NMR,

More information

Chapter 7: Alkenes and Alkynes

Chapter 7: Alkenes and Alkynes Chapter 7: Alkenes and Alkynes ydrocarbons Containing Double and Triple Bonds Unsaturated Compounds (Less than Maximum Atoms) Alkenes also Referred to as Olefins Properties Similar to those of Corresponding

More information

Lecture Notes Chem 51B S. King I. Conjugation

Lecture Notes Chem 51B S. King I. Conjugation Lecture Notes Chem 51B S. King Chapter 16 Conjugation, Resonance, and Dienes I. Conjugation Conjugation occurs whenever p-orbitals can overlap on three or more adjacent atoms. Conjugated systems are more

More information

Chapter 14: Conjugated Dienes

Chapter 14: Conjugated Dienes Chapter 14: Conjugated Dienes Coverage: 1. Conjugated vs Nonconjugated dienes and Stability 2. MO picture of 1,3-butadiene 3. Electrophilic addition to Dienes 4. Kinetic vs Thermodynamic Control 5. Diels-Alder

More information

First Year Organic Chemistry THE CHEMISTRY OF THE CARBONYL GROUP: CORE CARBONYL CHEMISTRY

First Year Organic Chemistry THE CHEMISTRY OF THE CARBONYL GROUP: CORE CARBONYL CHEMISTRY First Year rganic Chemistry TE CEMISTY F TE CABNYL GUP: CE CABNYL CEMISTY Professor Tim Donohoe 8 lectures, T, weeks 1-4, 2015 Wednesdays at 9am; Fridays at 10am (Dyson Perrins) andout A You will be able

More information

Graphical Abstract. Tandem Epoxysilane Rearrangement/Wittig-Type Reactions Using γ- Phosphinoyl- and γ-phosphonio-α β-epoxysilane

Graphical Abstract. Tandem Epoxysilane Rearrangement/Wittig-Type Reactions Using γ- Phosphinoyl- and γ-phosphonio-α β-epoxysilane Graphical Abstract Tandem Epoxysilane earrangement/wittig-type eactions Using γ- Phosphinoyl- and γ-phosphonio-α β-epoxysilane Michiko Sasaki, Mai orai, Kei Takeda * Tf t BuMe Si PPh. n-buli. C SiMe Bu

More information

WITTIG REACTION. Solo Experiment 2 Individual Lab Report (due at 12:00 pm one week after the lab is performed)

WITTIG REACTION. Solo Experiment 2 Individual Lab Report (due at 12:00 pm one week after the lab is performed) WITTIG REACTION Solo Experiment 2 Individual Lab Report (due at 2:00 pm one week after the lab is performed) Last Name: Atique First Name: Anika TA Name: Davin Date Lab Performed: 2/26/204 Date Lab Submitted:

More information

Amines and Heterocycles. McMurry: Chapter 24

Amines and Heterocycles. McMurry: Chapter 24 Amines and Heterocycles McMurry: Chapter 24 Introduction to Amines and Heterocycles Amines and heterocycles (cyclic amines) are ammonia derivatives, many of whichare found widely in livingorganisms: 2

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck!

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! CEMISTRY 314-01 MIDTERM # 2 November 02, 2009 Name... The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck! 1. (8 pts) Mark as true (T) or false (F) the following

More information

Organic Chemistry I (Chem340), Spring Final Exam

Organic Chemistry I (Chem340), Spring Final Exam rganic Chemistry I (Chem340), pring 2005 Final Exam This is a closed-book exam. No aid is to be given to or received from another person. Model set and calculator may be used, but cannot be shared. Please

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

Ch 18 Ethers and Epoxides

Ch 18 Ethers and Epoxides Ch 18 Ethers and Epoxides Ethers (R-O-R ) are compounds with two organic groups attached to an sp 3 oxygen. Epoxides are cyclic ethers where the sp 3 O is a part of a 3-membered ring. Thiols (R-S-H ) and

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl -

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl - CEM 109A 1. Predict the products of the following reactions (a-c E2, d-f E1 KEY focuses only on elimination products, in most cases there will also be substitution products.) a. - LG must be axial - are

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

CHAPTER 21 HW: ALDEHYDES + KETONES

CHAPTER 21 HW: ALDEHYDES + KETONES CAPTER 21 W: ALDEYDES + KETES MECLATURE 1. Give the name for each compound (IUPAC or common name). Structure 6 5 4 1 C 2 ame 3,3-dimethyl-2-pentanone (or 1,1-dimethylpropyl methyl ketone) 5-hydroxy-4-methylhexanal

More information

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages CEM 330 Final Exam December 11, 2007 Your name: This a closed-notes, closed-book exam The use of molecular models is allowed This exam contains 12 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4. / 40

More information

CHEM 234: Organic Chemistry II Reaction Sheets

CHEM 234: Organic Chemistry II Reaction Sheets EM234:rganichemistry eactionsheets ucleophilic addition at carbonyl groups: Grignards and reducing agents u: u u u: u u = or = or l u u u ucleophilic addition at carbonyl groups: oxygen and nitrogen nucleophiles:

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

Learning Guide for Chapter 15 - Alcohols (II)

Learning Guide for Chapter 15 - Alcohols (II) Learning Guide for Chapter 15 - Alcohols (II) I. Introduction to alcohol reactivity II. Reactions of alcohols with acids III. Reactions of alcohols with electrophiles alogenated phosphorus and sulfur compounds

More information

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom. Alkenes and Alkynes Saturated compounds (alkanes): ave the maximum number of hydrogen atoms attached to each carbon atom. Unsaturated compounds: ave fewer hydrogen atoms attached to the carbon chain than

More information

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES.

ORGANIC - BROWN 8E CH ALDEHYDES AND KETONES. !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

ONLY under acidic conditions usually done directly on alcohol

ONLY under acidic conditions usually done directly on alcohol Alkenes 1. Common functional group in nature and synthetic methodology 2. Many different substitution patterns complicate discussion a) acyclic i) monosubstituted (terminal) ii) 1,1-disubstituted iii)

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

CHEM 203. Topics Discussed on Oct. 16

CHEM 203. Topics Discussed on Oct. 16 EM 203 Topics Discussed on Oct. 16 ydrogenation (= saturation) of olefins in the presence of finely divided transition metal catalysts (Ni, Pd, Pt, Rh, Ru...): generic alkene R 1 finely divided Pd (or

More information

Alcohol Synthesis. Dr. Sapna Gupta

Alcohol Synthesis. Dr. Sapna Gupta Alcohol Synthesis Dr. Sapna Gupta Synthesis of Alcohols Alcohols can be synthesized from several functional groups. Nucleophilic substitution of O - on alkyl halide ydration of alkenes water in acid solution

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 18, 2013 Your name: This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4.

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

Homework - Review of Chem 2310

Homework - Review of Chem 2310 omework - Review of Chem 2310 Chapter 1 - Atoms and Molecules Name 1. What is organic chemistry? 2. Why is there an entire one year course devoted to the study of organic compounds? 3. Give 4 examples

More information

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010 Enantioselective Borylations David Kornfilt Denmark Group Meeting Sept. 14 th 2010 30.000-foot View Enantioenriched Organoboranes What to do with them Crudden C. M. et. al., Eur. J. Org. Chem. 2003, 46

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURE 6 Dr Ali El-Agamey 1 Oxidation States Easy for inorganic salts: CrO 4 2- reduced to Cr 2 O 3. KMnO 4 reduced to MnO 2. Oxidation: Gain of O,

More information

and Ultraviolet Spectroscopy

and Ultraviolet Spectroscopy Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 15 Conjugated Systems, Orbital Symmetry, and Ultraviolet Spectroscopy 2010, Prentice all Conjugated Systems Conjugated double bonds are separated

More information

R N R N R N. primary secondary tertiary

R N R N R N. primary secondary tertiary Chapter 19 Amines omenclature o assification of amines Amines are classified as 1, 2, or 3 based on how many R groups are attached to the nitrogen R R R R R R primary secondary tertiary When there are

More information

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation

Chapter 14: Dienes and Conjugation. Topics Dienes: Naming and Properties. Conjugation. 1,2 vs 1,4 addition and the stability of the allyl cation rganic hemistry otes by Jim Maxka hapter 14: Dienes and onjugation Topics Dienes: aming and Properties onjugation 1,2 vs 1,4 addition and the stability of the allyl cation Diels Alder eaction Simple rbital

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

CHAPTER 23 HW: ENOLS + ENOLATES

CHAPTER 23 HW: ENOLS + ENOLATES CAPTER 23 W: ENLS + ENLATES KET-ENL TAUTMERSM 1. Draw the curved arrow mechanism to show the interconversion of the keto and enol form in either trace acid or base. trace - 2 trace 3 + 2 + E1 2 c. trace

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction? Practice Questions Practice Questions D B F C E A G How many steps are there in this reaction? 1 Practice Questions D B F C E A G What is the highest-energy transitions state? Practice Questions D B F

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Learning Guide for Chapter 11 - Alkenes I

Learning Guide for Chapter 11 - Alkenes I Learning Guide for Chapter 11 - Alkenes I I. Introduction to alkenes - p 1 bond structure, classifying alkenes, reactivity, physical properties, occurrences and uses, spectroscopy, stabilty II. Unsaturation

More information

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols. hapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols Alkanes arbon - arbon Multiple Bonds arbon-heteroatom single bonds basic Alkenes X X= F, l,, I Alkyl alide amines hapter 23 nitro

More information

Chapter 11 Reaction of Alcohols

Chapter 11 Reaction of Alcohols Chapter 11 eaction of Alcohols xidation of alcohols Alcohols are at the same oxidation level as alkenes Therefore alkenes can be converted to alcohols with acidic water PDC or PCC 2 C C 2 3 + X 3 C 3 C

More information

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate

Chemistry 335 Supplemental Slides: Interlude 1. Reduction: addition of hydrogen to the substrate. Oxidation: addition of oxygen to the substrate Interlude 1: Oxidations, Reductions & Other Functional Group Interconversions (FGI) 1. Definition of Oxidation and Reduction For practical purposes in organic chemistry, oxidation and reduction are defined

More information

Chapter 8 Alkyl Halides and Elimination Reactions

Chapter 8 Alkyl Halides and Elimination Reactions Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 8 Alkyl Halides and Elimination Reactions Prepared by Rabi Ann Musah State University of New York at Albany Copyright

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Tautomerism and Keto Enol Equilibrium

Tautomerism and Keto Enol Equilibrium Tautomerism and Keto Enol Equilibrium Enols & enolates are important nucleophiles in organic & biochemistry. Keto-Enol Equilibrium: Tautomerisation can be catalyzed by either acids or bases. Relative stability

More information

ORGANIC CHEMISTRY- 1

ORGANIC CHEMISTRY- 1 ORGANIC CEMISTRY- 1 ALKENES Alkenes are also called Olefins (C n 2n ) unsaturated hydrocarbons. Alkenes occur abundantly in nature. Ethylene ( 2 C=C 2 ) is a plant hormone that induces ripening in fruit.

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Dienes & Polyenes: An overview and two key reactions (Ch )

Dienes & Polyenes: An overview and two key reactions (Ch ) Dienes & Polyenes: An overview and two key reactions (h. 14.1-14.5) Polyenes contain more than one double bond and are very common in natural products (ex: carotene). Diene chemistry applies to trienes,

More information

Chapter 15: Reactions of Substituted Benzenes

Chapter 15: Reactions of Substituted Benzenes Learning Objectives: Chapter 15: Reactions of Substituted Benzenes 1. Be able to recognize and utilize the oxidative and reductive reactions involving the substituents on benzene. 2. Recognize whether

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 15, 2010 Your name: ANSWERS This a closed-notes, closed-book exam You may use your set of molecular models This test contains 15 pages Time: 2h 30 min 1. / 16 2. / 15 3. / 24

More information

به نام خدا روشهای سنتز مواد آلی

به نام خدا روشهای سنتز مواد آلی به نام خدا روشهای سنتز مواد آلی 1 References: 1. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Reactions and Synthesis (Part B), 5th ed., Springer, 2007. 2. Carey, F. A.; Sundberg, R. J. Advanced

More information

Chapter 17 Aldehydes and Ketones

Chapter 17 Aldehydes and Ketones hapter 17 Aldehydes and Ketones arbonyl Groups polarized (1) Aldehydes and Ketones ' aldehydes ketones : and : are poor leaving groups (2) arboxylic Acid Derivatives l ' ' 2 carboxylic acid substituent

More information

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Aldehydes and Ketones Reactions. Dr. Sapna Gupta Aldehydes and Ketones Reactions Dr. Sapna Gupta Reactions of Aldehydes and Ketones Nucleophilic Addition A strong nucleophile attacks the carbonyl carbon, forming an alkoxide ion that is then protonated.

More information

CHEM 203. Final Exam December 16, This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 16, This a closed-notes, closed-book exam. You may use your set of molecular models CEM 203 Final Exam December 16, 2014 Your name: This a closed-notes, closed-book exam You may use your set of molecular models This test consists of 10 pages Time: 2h 30 min 1. / 20 2. / 20 3. / 30 4.

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information