Chemical Bonds: Formation of Compounds

Size: px
Start display at page:

Download "Chemical Bonds: Formation of Compounds"

Transcription

1 hapter 11 s 1 st shell 2 nd shell d hemical Bonds: Formation of ompounds dsubshell p Periodic System consists of periods (n= 1, 2, ) called shells, Each shell contains subshells(s, p, d, f ). Elements are classified in groupshaving similar chemical characteristics. Noble gases have filled sand psubshell, effectively having 8 e-in the valence shell. f Transition metals populate 4s before 3d. Before we continue with filling 4p, 10 e-must go into 3d. We put them in a loop since we are. stalled filling 4 th shell. detour f subshell can be placed in another loop. This Periodic table has 8 groups.

2 Ionization energy is the energy required to remove an e-from the atom. It increasesleft to right across a period Atomic properties and increases bottom to top, up a group. The behavior exactly oppositeto that of atomic radii! Ionization Energy vs. Atomic Number Atomic radii increase right to left across the period, and top to bottom down the group.

3 hemical Bonding A moleculeis a collection of atoms bound together. It is considered as an elementif all atoms are of the same type (e.g. 2 ), or a compoundif it is made of different atoms. A bond between two atoms of hydrogen will occur spontaneously if the atoms are within a close proximity, i.e. when attractive forces between the nucleus of one atom and the e - of the other overcome repulsive forces among their e -, thus pulling the atoms together. In a covalent bond between two hydrogen atoms, each atom apparently has 2 electrons in its shell. That gives each atom the electronic configuration of the closest noble gas, e. Electrons are shared between two atoms. ovalent bond can be presented as any of the following ways: : Remember that the line stands for a pair of e -! 74 pm 1 pm = m The bond that is formed is called covalent bond. (o-means partner, valentrefers to valence electrons). It always releases energy. Filled-shell e - (or core e - ) are almost never involved in the bond as they are too close to their own nucleus. 2 e atoms will never form a bond because the energy of e 2 > 2 e.

4 Molecules and the Octet Rule Elements want to have the electronic configuration identical to that of noble gas (8e-). When form a molecule, atoms achieve the octet(8e - ) by sharing e - with other atoms. ydrogen is an exception, as it only needs one more electron to fill its 1s orbital. ow many electrons an element needs to satisfy the octet rule could be found in two ways: 1) From the position of the element in periodic table with respect to noble gas; 2) From short electron configuration: 1) Ois two places left of Ne needs 2 e- 2)O: [e] 2s 2 2p 4 has 6 e-, needs two. : [e] 2s 2 2p 2 Needs 4 e- a: [Ar] 4s 2 Needs 6 e- Gaining six electrons is difficult. For a to obtain octet, it is easier to loose two e-. All atoms in the molecule have the electronic configuration identical to that of the closest noble gas. Valence electrons Nonmetals usually gain electrons, metals loose them. Four atoms form covalent bonds with the atom Electron from atom ore electrons Electron from atom : 8e - : 2e - O: 8e - : 2e -

5 Step 1: Find the total number of valence e - for each atom by adding e-in the short electron configuration. For ions, adjust e-count accordingly (subtract e - for cation, add for anion). Step 2: Assume that the first nonhydrogen atomin the formula of the group is the central (less electronegative)atom. onnect peripheral atoms with the central atom with single bonds. The central atom must form multiple bonds, hence can never be the central atom. Step 3: Subtract 2e - for each bond from total #e - to get#e - in lone pairs. Step 4: Put in the remaining electrons, two at a time, as lone pairs. Satisfy octet to the terminal atoms first; ifthere are any e - pairs left, put them on the central atom. Step 5: heckthat each atom has octetsatisfied (doublet for ). If not, move e - pair(s) from the adjacent atom to form multiple bonds. Practice with O 2-3, SO 3, etc. Drawing Dot Diagrams O O 2 [e] 2s 2 2p 2 [e] 2s 2 2p 2 [e] 2s 2 p 4 [e] 2s 2 2p 4 4e x 6e - 4 e e - Total: 16e - Total: 10e - O Technically, no central atom here, but the rule applies as is less electronegative atom. 10e 2e= 8e - in lone pairs : O : O O 16e 4e= 12e - in lone pairs :O.. O : :O.. O : :O.. O : : O :. O. = = O.. : O Ξ O : : Ξ O : : O Ξ O : Equivalent structures, or resonance forms. or or

6 O 3 2-4e+ (3 x 6e)+ 2e= 24e - O O O 24e (3 x 2e) = 18e - : O O: :. O. : Octet rule not satisfied for in lone pairs : O O: :. O. : total Which is the central atom? In symmetrical molecules, BOT! 2x4e+4x1e=12e - total Two more resonance structures for O 3 2- ion are possible. 12e (5x2e) = 2e - in lone pairs : Octet rule not satisfied for has no e - to give in for double bonds : l : 2 2 l 2 2x4e+ 2x1e+ 2x7e= 24e - total cannot pull electrons from l. : l : : l : Two more structures can be made: : l: : l: : l : These are NOT resonance structures! SO 3 is identical to this; try it yourself.

7 The bond between metals and non-metals is usually ionic. Metals give away their e-and become positively charged (cations). Nonmetals accept them and become anions. The ionic bond is formed as a result of attraction between oppositely charged ions. The compound is called ionic compound, and the three-dimensional ordered network of the ions is called ionic lattice. Electronegativity and the Polar ovalent Bond The difference in EN defines the bond. EN = 0, covalent; EN = 1.0, polar covalent (23% ionic); EN = 1.9, polar covalent (60% ionic); EN > 1.9, ionic. Electrons are rarely shared equally between atoms. Electronegativity (EN) is numerical rating of an atoms ability to attract to itself the shared electrons in a covalent bond. Generally, electronegativity of metals is low, and that of nonmetals is high. The least electronegative atom (except!)is the central atom in dot structures. Polar covalent bondis a covalent bond in which e - are shared unequally (large EN). A partial negative charge (δ-) occurs on the more EN atom. A partial positive charge (δ+) occurs on the less EN atom. Ionic and covalent are two extremes at the ends of a continuum bonding types.

8 The Shape of the Molecules Valence Shell Electron Pair Repulsion (VSEPR) theory is the model mostly used to predict molecular shape. Electron pairs on the central atom repel one another. The two dimensional dot structure of methane, 4. gives the angles between electron pairs of 90 o. But the dot structure angles are arbitrary. Electron pairs move further away in three dimensions. The molecule of methane is tetrahedralwith bond angles of o between electron pairs. Four electron pairs around an atom assume tetrahedral arrangement. When there are not enough electrons for single bonds the molecule forms multiple bonds and the structure differs. VSEPR theory treats each multiple bond as a single electron group, because it occupies roughly the same region of space. The number of electron groups around an atom is called the atom s steric number (SN). Dot structures of formaldehyde and acetylene are arbitrarily shown with angles of 90 o. Their true geometry has bond angles of 120 o and 180 o, respectively. :O : formaldehyde Ξ acetylene Dot structures : O : Ξ True geometry

9 VSEPR arrangements of electron groups around an atom having no lone pair electrons Molecular arrangement may differ from that of the electrons. We only see stationary atoms, not the fast moving electrons. Lone pair(s) of electrons are thereforeignored. The molecule of N 3 has a pyramidal shape. O = = O Lone pairs on the central atom are considered in the prediction of the electron arrangement. The dot diagram of ammonia presents the atom in a plane. There are 4 electron pairs around nitrogen in N 3 (3 bonding pairs and a lone pair). They assume tetrahedral arrangement. Electrons in the lone pairoccupy more space than the bonding pairs. They squeeze-n- bond angle to approx. 107 o... N Each lone pair of e-on a period-2 atom compresses the remaining bond angles around that atom by ~2 o.

10 Using VSEPR 1. Draw a dot diagram. 2. ount the number of e- pairs around the central atom, including lone pairs (i.e. the steric number, SN). A multiple bond counts as a single e- group. 3. Find the best arrangement of the electrons using SN. 4. Pretending the lone e- pairs are invisible, describe the resulting shape of the molecule. Practice on 2 O and O 3. -O- bond angle ~105 o. bent O-O-O bond angle 120 o. bent O : O: O: SN=4 SN=3 O.... Molecular polarity depends on the position of the centers of negative and positive charge.

11 W, hapter 11 (p.247): 3, 9, 19, 37, Which one in each pair has the larger radius? Explain. a atom or a 2+ ion; l atom or l - ion; Mg 2+ or Al 3+ ; Na atom or Si atom. K + ion or Br - ion. 9. Using the table of electronegativity values (Table 11. 5) indicate which element is more positive and which is more negative in these compounds: 2 O; Rbl; N 3 ; PbS; PF 3 ; ow many electrons must be gained or lost for the following to achieve a noble gas electron configuration? K atom; Al ion; Br atom; Se atom. 37.Draw Lewis structures for the following: Nl 3 ; 2 O 3 ; 2 6 ; NaNO Use VSEPR theory to predict the shape of these molecules: Si 4 ; P 3 ; SeF 2.

OFB Chapter 3 Chemical Periodicity and the Formation of Simple Compounds

OFB Chapter 3 Chemical Periodicity and the Formation of Simple Compounds OFB hapter 3 hemical Periodicity and the Formation of Simple ompounds 3-1 Groups of Elements 3-2 The Periodic Table 3-3 Ions and Ionic ompounds 3-4 ovalent Bonding and Lewis Structures 3-5 3-6 Naming ompounds

More information

OFB Chapter 3 Chemical Periodicity and the Formation of Simple Compounds

OFB Chapter 3 Chemical Periodicity and the Formation of Simple Compounds OFB hapter 3 hemical Periodicity and the Formation of Simple ompounds 3-1 Groups of Elements 3-2 The Periodic Table 3-3 Ions and Ionic ompounds 3-4 ovalent Bonding and Lewis Structures 3-5 Drawing Lewis

More information

Chapter 6. The Chemical Bond

Chapter 6. The Chemical Bond Chapter 6 The Chemical Bond Some questions Why do noble gases rarely bond to other elements? How does this relate to why the atoms of other elements do form bonds? Why do certain elements combine to form

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry 11.1 Periodic Trends in Atomic Properties Discuss the atomic trends Metals are located on the left side of the periodic

More information

Quick Review. 1. Radii/Size Trend. 2. Ionization Energy Trend. 3. Second and Third Ionization Energy. 4. Electron Affinity.

Quick Review. 1. Radii/Size Trend. 2. Ionization Energy Trend. 3. Second and Third Ionization Energy. 4. Electron Affinity. Quick Review 1. Radii/Size Trend. 2. Ionization Energy Trend. 3. Second and Third Ionization Energy. 4. Electron Affinity. hemical Bonding Localized Electron Model Why do elements combine to form compounds?

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information

A Simple Model for Chemical Bonds

A Simple Model for Chemical Bonds A Simple Model for hemical Bonds Multiple hoice 1. Modern organic chemistry a. is the study of carbon-containing compounds. b. is the study of compounds from living organisms. c. deals exclusively with

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

Carbon-based molecules are held together by covalent bonds between atoms

Carbon-based molecules are held together by covalent bonds between atoms hapter 1: hemical bonding and structure in organic compounds arbon-based molecules are held together by covalent bonds between atoms omposition: Mainly nonmetals; especially,, O, N, S, P and the halogens

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding

Chapter 10. Valence Electrons. Lewis dot symbols. Chemical Bonding Chapter 10 Chemical Bonding Valence Electrons Recall: the outer electrons in an atom are valence electrons. Valence electrons are related to stability Valence electrons can be represented with dots in

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds

Chapter 8. Ions and the Noble Gas. Chapter Electron transfer leads to the formation of ionic compounds Chapter 8 Chemical Bonding: General Concepts 1 8.1 Electron transfer leads to the formation of ionic compounds Ionic compounds form when metals and nonmetals react The attraction between positive and negative

More information

Chapter 7. Chemical Bonding I: Basic Concepts

Chapter 7. Chemical Bonding I: Basic Concepts Chapter 7. Chemical Bonding I: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Section 12: Lewis Structures

Section 12: Lewis Structures Section 12: Lewis Structures The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 12.01 Electronegativity Chemistry (5)(C) 12.02 Electron

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 12 Chemical Bonding by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 12 1 Chemical Bond Concept

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. HCl

Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. HCl Covalent bonding occurs in nonmetal compounds. Use the highlighter to select the compounds that are covalently bonded. 2 C 2 Cl Li NaF Mg C 4 N NaCl 3 Drag this to the target to reveal the answers. Properties

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

EXPERIMENT 15: MOLECULAR MODELS

EXPERIMENT 15: MOLECULAR MODELS EXPERIMENT 15: MLEULAR MDELS Introduction: Given formulas of some molecules and ions, you will use the periodic table, valence electron count, and electronegativities to deduce their geometry and polarities.

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview

Chapter 9: Chemical Bonding I: Lewis Theory. Lewis Theory: An Overview Chapter 9: Chemical Bonding I: Lewis Theory Dr. Chris Kozak Memorial University of ewfoundland, Canada Lewis Theory: An verview Valence e - play a fundamental role in chemical bonding. e - transfer leads

More information

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 7: Chemical Bonding and Molecular Structure Chapter 7: Chemical Bonding and Molecular Structure Ionic Bond Covalent Bond Electronegativity and Bond Polarity Lewis Structures Orbital Overlap Hybrid Orbitals The Shapes of Molecules (VSEPR Model) Molecular

More information

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds

Molecular Compounds Compounds that are bonded covalently (like in water, or carbon dioxide) are called molecular compounds Chapter 8: Covalent Bonding Section 1: Molecular Compounds Bonds are Forces that hold groups of atoms together and make them function as a unit. Two types: Ionic bonds transfer of electrons (gained or

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

1. What is the phenomenon that occurs when certain metals emit electrons when illuminated by particular wavelengths of light? a.

1. What is the phenomenon that occurs when certain metals emit electrons when illuminated by particular wavelengths of light? a. CHEMISTRY 123-07 Midterm #3 solution key December 02, 2010 Statistics: Average: 77 p (77%); Highest: 100 p (100%); Lowest: 33 p (33%) Number of students performing at or above average: 54 (52%) Number

More information

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration.

Bonding Chapter 7. Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Bonding Chapter 7 Bond an attractive force that holds two atoms together. Atoms bond to obtain a more stable electronic configuration. Ionic bonds attraction between oppositely charged atoms/molecules

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Test Review # 4. Chemistry: Form TR4.11A

Test Review # 4. Chemistry: Form TR4.11A Chemistry: Form TR4.11 REVIEW Name Date Period Test Review # 4 Bonding. The electrons of one atom are attracted to the protons of another. When atoms combine, there is a tug of war over the valence electrons.

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

CHEM 1305 Introductory Chemistry

CHEM 1305 Introductory Chemistry CHEM 1305 Introductory Chemistry Introductory Chemistry: Concepts and Critical Thinking 7 th Edition, Charles H. Corwin Chapter 12. Chemical Bonding Modified by: Dr. Violeta F. Coarfa 1 Chemical Bond Concept

More information

IB Chemistry. Chapter 4.1

IB Chemistry. Chapter 4.1 IB Chemistry Chapter 4.1 Chemical Bonds Atoms or ions that are strongly attached to one another Chemical bonds will form if potential energy decreases (becomes more stable) 2 Valence Electrons Valence

More information

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond Bonding: Part Two Three types of bonds: Ionic Bond transfer valence e - Metallic bond mobile valence e - Covalent bond (NaCl) (Fe) shared valence e - (H 2 O) 1 Single Covalent Bond H + H H H H-atoms H

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

CHEMICAL BONDING. Valence Electrons. Chapter Ten

CHEMICAL BONDING. Valence Electrons. Chapter Ten CHEMICAL BONDING Chapter Ten Valence Electrons! The electrons occupying the outermost energy level of an atom are called the valence electrons; all other electrons are called the core electrons.! The valence

More information

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds An attractive force that holds two atoms together in a more complex unit Three basic types of bonds Ionic Electrons are transferred from one

More information

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons

Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons Covalent Bonds Ch. Why do atoms bond? Atoms want noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent bonds there is a of electrons to get an

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance CHEMICAL BONDING Chemical bonds are strong attractive force that exists between the atoms of a substance Chemical Bonds are commonly classified into 3 types: 1. IONIC BONDING Ionic bonds usually form between

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Molecular Geometry & Polarity Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized

More information

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CEMISTRY The Molecular Nature of Matter SIXT EDITIN Jespersen Brady yslop Chapter 9 The Basics of Chemical Bonding Copyright 2012 by John Wiley & Sons, Inc. Chemical Bonds Attractive forces that hold atoms

More information

Chem 115: Chapter 9 Dr. Babb

Chem 115: Chapter 9 Dr. Babb Periodic Properties of the Atom Properties that depend on position of element in the periodic table. Factors that affect the periodic properties: 1. Principal quantum number of valence shell (n valence

More information

Life Science 1a Review Notes: Basic Topics in Chemistry

Life Science 1a Review Notes: Basic Topics in Chemistry Life Science 1a Review Notes: Basic Topics in Chemistry Atomic Structure and the Periodic Table The history of the discovery of the atom will be left for you to read in the textbook. What are atoms? What

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are.

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are. UNIT 3: TE NATURE MATTER: MLECULES There are fewer than one hundred naturally occurring elements on the earth, but there are billions of compounds made of those elements. In this unit, we will examine

More information

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two)

What is Bonding? The Octet Rule. Getting an Octet. Chemical Bonding and Molecular Shapes. (Chapter Three, Part Two) Chemical Bonding and Molecular Shapes (Chapter Three, Part Two) What is Bonding? Bonding describes how atoms interact with each other in an attractive sense. There are three types of bonding: Ionic bonding

More information

BIG IDEA: A covalent bond forms when nonmetal atoms share one or more pairs of electons with one another

BIG IDEA: A covalent bond forms when nonmetal atoms share one or more pairs of electons with one another Chemistry 20 notes molecular compounds BIG IDEA: A covalent bond forms when nonmetal atoms share one or more pairs of electons with one another Can be solid, liquid or gas at SATP (Standard Ambient Temperature

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei.

Molecular Geometries. Molecular Geometries. Remember that covalent bonds are formed when electrons in atomic orbitals are shared between two nuclei. Molecular Geometries Lewis dot structures are very useful in determining the types of bonds in a molecule, but they may not provide the best insight into the spatial geometry of a molecule, i.e., how the

More information

CHEMISTRY XL-14A CHEMICAL BONDS

CHEMISTRY XL-14A CHEMICAL BONDS CHEMISTRY XL-14A CHEMICAL BONDS July 16, 2011 Robert Iafe Office Hours 2 July 18-July 22 Monday: 2:00pm in Room MS-B 3114 Tuesday-Thursday: 3:00pm in Room MS-B 3114 Chapter 2 Overview 3 Ionic Bonds Covalent

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 12 Chemical Bonding Structure

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Chemical Bonding by Christopher G. Hamaker Illinois State University Chemical Bond Concept Recall that

More information

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4

MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) SeF 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 MONDAY, Dec. 8: COVALENT NOMENCLATURE Name the following covalent compounds. 1) P 4 S 5 2) O 2 3) Se 6 4) Si 2 Br 6 5) SCl 4 6) CH 4 December 10, 2014 Write the formulas for the following covalent compounds.

More information

Chem 105 Monday, 31 Oct 2011

Chem 105 Monday, 31 Oct 2011 Chem 105 Monday, 31 Oct 2011 Ch 7: Ion sizes; Ionization Potential Ch 8: Drawing Lewis Formulas Formal charge Resonance 10/31/2011 1 Sizes of Ions Cations (remember ca + ion) always SMALLER than corresponding

More information

Introduction to Chemical Bonding Chemical Bond

Introduction to Chemical Bonding Chemical Bond Introduction to Chemical Bonding Chemical Bond Mutual attraction between the and electrons of different atoms that binds the atoms together. Ionic Bond o that results from the attraction between large

More information

Move salts to after ionic

Move salts to after ionic Move salts to after ionic BNDING Ahem-I mean, Chemical Bonding n 1. Chemical bond attraction between atoms in a compound or a molecule Forming a bond n a. When a chemical bond is formed, ENERGY is. RELEASED

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Experiment #2. Lewis Structures

Experiment #2. Lewis Structures Experiment #2. Lewis Structures A Lewis structure shows how the valence electrons are arranged and indicates the bonding between atoms in a molecule. We represent the elements by their symbols. The shared

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chapter 12 CHEMICAL BONDING

Chapter 12 CHEMICAL BONDING Chapter 12 CHEMICAL BONDING Sharing electrons is fun! H F Do you smell what the Rock is cooking? I. Types of Chemical Bonds A. Formation of Covalent Bonds B. Lewis Symbols and Covalent Bonding C. Other

More information

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C.

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C. Do Now Date: Monday, February 6, 2017 Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C N O F Ne Valence Electrons Remember: in chemical bonds we re talking

More information

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7

Covalent Bonding. Chapter 8. Diatomic elements. Covalent bonding. Molecular compounds. 1 and 7 hapter 8 ovalent bonding ovalent Bonding A metal and a nonmetal transfer An ionic bond Two metals just mix and don t react An alloy What do two nonmetals do? Neither one will give away an electron So they

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Questions to Consider What is meant by the term chemical bond? Why do atoms bond with each other to form compounds? How do atoms bond with each other to form

More information

Bonding in Organic Compounds

Bonding in Organic Compounds Bonding in rganic ompounds hapter 1 1 Bonding in rganic ompounds APTER SUMMARY rganic chemistry is the study of compounds of carbon This is a separate branch of chemistry because of the large numbers of

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + -

Bonding. Polar Vs. Nonpolar Covalent Bonds. Ionic or Covalent? Identifying Bond Types. Solutions + - Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Bonding onors Chemistry 412 Chapter 6 Types of Bonds Ionic Bonds Force of attraction

More information

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date:

Chapter 8 Test Study Guide AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date: Chapter 8 Test Study Guide Name: AP Chemistry 6 points DUE AT TEST (Wed., 12/13/17) Date: Topics to be covered on the December 13, 2017 test: bond bond energy ionic bond covalent bond polar covalent bond

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding

c. Ionic bonding d. Covalent bonding i. nonpolar covalent bonding Chapter 11: Chemical Bonding I. Introduction to Chemical Bonding a. Types of chemical bonding i. A chemical bond is a mutual attraction between nuclei and the valence electrons of different atoms that

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

Chapter 01 Covalent Bonding and Shapes of Molecules. Atomic Structure. Chapter 01 Topics. Structure. Atomic Structure. Subatomic Particles

Chapter 01 Covalent Bonding and Shapes of Molecules. Atomic Structure. Chapter 01 Topics. Structure. Atomic Structure. Subatomic Particles hapter 01 ovalent Bonding and Shapes of Molecules EM 240: Fall 2016 Prof. Greg ook hapter 01 Topics Mostly a review of general chemistry Atomic Structure Lewis Models and Bonding Bonding and Shapes of

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CEMICAL BNDING Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to the

More information

Ionic Versus Covalent Bonding

Ionic Versus Covalent Bonding Ionic Versus Covalent Bonding Ionic compounds are formed when electrons are transferred from one atom to another The transfer of electrons forms ions Each ion is isoelectronic with a noble gas Electrostatic

More information

Ch. 12 Section 1: Introduction to Chemical Bonding

Ch. 12 Section 1: Introduction to Chemical Bonding Name Period Date Chemical Bonding & Intermolecular Forces (Chapter 12, 13 &14) Fill-in the blanks during the PowerPoint presentation in class. Ch. 12 Section 1: Introduction to Chemical Bonding Chemical

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Chemical Bonding. Burlingame High School

Chemical Bonding. Burlingame High School Chemical Bonding Electronegativity Is a measure of the ability of an atom in a molecule to attract electrons to itself. Concept proposed by Linus Pauling 1901-1994 Electronegativity Trends Forms of Chemical

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

POS Checklist: Lewis Dot Diagrams. Electronegativity. Atomic Theory and Valence Electrons. Gilbert Newton Lewis. Aug 20 12:38 PM.

POS Checklist: Lewis Dot Diagrams. Electronegativity. Atomic Theory and Valence Electrons. Gilbert Newton Lewis. Aug 20 12:38 PM. Chem 20 Unit A Bonding Lewis Dot Diagrams and Electronegativity You will... PS Checklist: use electron dot diagrams to support and explain ionic bonding theory. draw electron dot diagrams. define the term

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information