In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron Radiation

Size: px
Start display at page:

Download "In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron Radiation"

Transcription

1 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume In Situ High-Temperature Study Of Silver Behenate Reduction To Silver Metal Using Synchrotron Radiation Tom Blanton 1,3, Mark Lelental 1, Slawomir Zdzieszynski 2, Scott Misture 2 1 Eastman Kodak Company, Rochester, New York Alfred University, New York State College of Ceramics, Alfred, New York thomas.blanton@kodak.com ABSTRACT Silver behenate is utilized in commercially available photothermographic imaging elements. The silver metal (Ag ) image formation in these imaging elements is based on the heat-induced reduction of the silver behenate. The completed reduction process has historically been studied by conventional X-ray diffraction techniques. To enhance the understanding of the kinetics of silver metal formation, equipment and methods were developed allowing for in situ hightemperature monitoring of the AgBehenate Ag reduction process. To perform the necessary measurements a high-temperature sample stage and position sensitive detector were mounted on the X3B1 beam line powder diffractometer at the National Synchrotron Light Source, Brookhaven National Laboratories. The fraction of AgBehenate reduced and Ag developed was obtained from the synchrotron data and it was determined that the reaction rates for both processes followed a second order transformation. The activation energy was derived from the reaction rate data and was found to be 216 kj/mol for AgBehenate reduction and 156 kj/mol for Ag development. INTRODUCTION Medical imaging techniques such as CAT scans, MRI, and ultrasound utilize electronic means of image capture. However, there is still a need for hardcopy output of the image for further diagnostic evaluation, record keeping, and legal considerations. These hardcopy images are recorded using photothermographic films. Photothermographic films are comprised of silver halide, AgX (typically silver bromide, AgBr), for image capture, AgBehenate for image generation, binder, developer, toner, and additional chemicals necessary for optimizing the photographic performance, all coated onto a flexible polyester support. A digital image stored on a computer is transposed into an analog hardcopy by first scanning the photothermographic film with a tuned laser. The AgX captures the laser signal creating a latent image on the film. Unlike traditional wet chemistry techniques that require solutions of developer, stop bath, fixer and water rinse to convert the latent image into developed silver [1], photothermographic films utilize 15 seconds of thermal processing at 122 C to accomplish this conversion. The thermal process involves reduction of the AgBehenate to Ag and is made possible as a result of all of the required chemistry already present in the coated film medium [2]. Silver behenate is a crystalline long-chain silver carboxylate, CH 3 (CH 2 ) 20 COOAg that crystallizes as a dimer in a head-to-head configuration (Figure 1). The morphology of AgBehenate is typically plate-like, with the (00L) plane parallel to the plate surface [3]. When AgBehenate is dispersed in a binder and coated onto a polymeric support, these platelets will show preferential alignment parallel to the support resulting in the observation of a series of (00L) diffraction peaks in a diffraction pattern [4].

2 This document was presented at the Denver X-ray Conference (DXC) on Applications of X-ray Analysis. Sponsored by the International Centre for Diffraction Data (ICDD). This document is provided by ICDD in cooperation with the authors and presenters of the DXC for the express purpose of educating the scientific community. All copyrights for the document are retained by ICDD. Usage is restricted for the purposes of education and scientific research. DXC Website ICDD Website -

3 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume Figure 1. Head-to-head configuration of AgBehenate dimer,, - Ag atoms from respective molecules. Conventional X-ray diffraction (XRD) techniques have been utilized in the study of photothermographic films, typically in a pre- (starting amount of AgBehenate) and post- (final amount of AgBehenate and amount of developed Ag ) thermal processing mode. It is desirable to expand the understanding of the photothermographic process through the measurement of the kinetics of AgBehenate reduction and Ag development. The ability to study in-process AgBehenate reduction and Ag development by conventional laboratory source XRD is hampered by the speed at which the thermal process reaction occurs and the low coverage of silver in the silver containing phases in a photothermographic film (<250 µg/cm 2 ). Synchrotron radiation facilities lend themselves to the study of in-situ processes due to the availability of a high flux X-ray source. In this study, a high-temperature furnace and a position sensitive detector were installed on the X3B1 beam line at Brookhaven National Synchrotron Light Source. This experimental setup allowed for in-situ monitoring of the reduction of AgBehenate and development of Ag. The fraction of each phase transformed was then measured and activation energies calculated. EXPERIMENTAL Photothermographic Films All samples were prepared using commercially available photothermographic films (Eastman Kodak Company). The AgBehenate grains had a mean thickness of 0.1 µm and surface dimensions of µm. Silver halide grains were cubes with a mean edge length of 0.6 µm. The polymer support was 175 µm poly(ethylene terephthalate) (PET). Samples were exposed to conventional room fluorescent light before thermal processing. Data Collection X-ray diffraction measurements were performed at the National Synchrotron Light Source using beam line X3B1. A custom X-ray diffraction furnace built at Alfred University was attached to a Huber 424 θ-2θ goniometer. The diffraction furnace consists of Pt/Rh wire heating elements that create a 50 mm diameter spherical hot zone, capable of operating from room temperature to 1600 ºC. The temperature was controlled using a thermocouple mounted within 1 mm of the specimen with the power controlled using a Halder TC3 temperature controller. The photothermographic film specimen was mounted on a glass slide and the glass slide was mounted on an aluminum oxide plate with dimensions 10 by 100 mm. A smear of vacuum grease was utilized to ensure good thermal contact between the film and glass, and glass and aluminum oxide. To calibrate the temperature in this sample configuration, measurement of the phase transformation of AgI (β,γ-agi α-agi 147 C) was used. NIST SRM1976 was used to determine the exact wavelength used in the experiment, which was nm. Diffraction measurements were made with the incident angle fixed at 2 and an mbraun linear positionsensitive detector (PSD), which was fixed to cover an appropriate angular range to determine the

4 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume growth of silver metal and the decomposition of AgBehenate respectively. The Ag (111) line at 28.2 º2θ was used to determine the Ag growth rate, with the detector covering º2θ. The AgBehenate (004) line at 4.5 º2θ was used to track the AgBehenate reduction while the detector collected data from 3 to 14 º2θ. The PSD operation was fully computer-automated with the temperature controller, and data were binned into a multichannel analyzer using fixed count times with no delay between patterns. Data collection included isothermal measurements of Ag development and AgBehenate reduction at 106, 114, 122, 130, and 138 ºC, where 50 diffraction patterns were collected at each temperature after reaching the appropriate temperature. A fixed heating rate was used for all specimens, 120 ºC/min, and the temperature controller triggered the start of the XRD measurements immediately upon reaching the target temperature. In order to determine the amount of Agº formed after full conversion, each specimen was heated to 142 ºC after the sequential XRD measurements and a single diffraction pattern was collected. Data collection times ranged from 2 to 30 seconds per pattern, with shorter count times at higher temperatures where the reaction was observed to be more rapid. Data Analysis Data analysis was performed using Jade5 [5]. Several approaches for peak intensity determination were attempted, including profile fitting, automated peak height determination, and manual peak height determination. Except for the AgBehenate diffraction peaks early in the data collection, all diffraction peaks were weak and noisy. The most reproducible method for determining the fraction transformed vs. time was found to be manual peak height determination. Therefore each pattern was smoothed using a Savitsky-Golay filter and the background and peak heights were determined using a visual evaluation. All patterns for the Agº development were smoothed using a 51-point filter length, while the AgBehenate patterns were smoothed using a 13-point filter. Analysis of the kinetics was accomplished using the integral method, by attempting to fit the fraction transformed vs. time to the expected equations for first, second, third, and three-halves order transformations. After determining the appropriate order of the reaction, Arrhenius plots were used to determine the activation energy for AgBehenate reduction and Agº development. RESULTS AND DISCUSSION Examples of in-situ high-temperature XRD data for AgBehenate reduction and Ag development can be seen in Figures 2A and 2B respectively. Figure 2. Isothermal XRD patterns collected at 122 C, AgBehenate reduction Ag development.

5 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume In Figure 2A, several (00L) AgBehenate diffraction peaks are observed in the region of channels (~ θ). In the channel range, a portion of the diffraction pattern due to the PET support (broad peak) is also present. The loss of intensity of the AgBehenate diffraction peaks can be attributed to the reduction of AgBehenate during thermal processing. In Figure 2B, a peak in the region of channels (~ θ) is observed to grow with time. This peak is the (111) Ag peak, and is an indicator that silver development is occurring during thermal processing. The diffraction peak at ~200 channels is the (200) AgX peak, and an additional PET diffraction peak is present in the region of channels. Lower temperatures of thermal processing resulted in a slowing down of the reduction and growth processes, whereas thermal processing of the photothermographic film at elevated temperature caused an increase. The fraction of AgBehenate reduced and Ag developed as a function of time was determined for each isothermal dataset where the data collected for each sample at 142 C was defined as complete reduction of AgBehenate or maximum development of Ag (fraction transformed equals one). Figure 3 shows representative plots for data collected at 138 C for AgBehenate (Figure 3A) and Ag (Figure 3B). Fraction Transformed LB6 time vs LB6 FT Time (sec) Figure 3. Fraction transformed vs. time for AgBehenate reduction and Ag development based on isothermal data collected at 138 C. At 138 C, the reduction of AgBehenate and development of Ag both proceed at a fast rate. The scatter in the Ag data is a result of the weak intensity of the (111) silver metal peak. In contrast to the fast transformation times shown in Figures 3A and 3B, similar plots for data collected at lower temperatures have significantly slower times. For example, the time for 50% AgBehenate reduction at 138 C is ~18 seconds, at 122 C it is ~95 seconds, and ~600 seconds at 114 C. Several rate constant models were tested with the fraction transformed vs. time data. The best fit was obtained using second-order kinetics. kt = x/([a 0 ][A 0 -x]) (1) where: k = reaction rate x = fraction transformed Fraction Transformed ,, AB29 time vs AB29 Frac. Trans Time (sec)

6 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume t = time A 0 = original concentration of reactant In Figure 4, plots for determination of rate constants are shown for isothermal data collected at 114 C. As with the fraction transformed data of Figure 3, the Ag development data show more scatter due to weak diffraction peak intensity. LB15, Micro, 114C 4 AB21, Micro, 114C 1 LB15 time vs LB15 x/(1-x) x column 2 vs y column 2 3 AB21 time vs AB21 x/(1-x) x column 4 vs y column 4 x/(1-x) x/(1-x) time (sec) Time (sec) Figure 4. Rate constant plots for AgBehenate reduction and Ag development based on isothermal data collected at 114 C. The slope of the linear best-fit line is the rate constant, k, shown in equation 1. Taking the slope for the curves in Figures 4A and 4B, along with similar plots for the additional isothermal data collected in this study, one can generate an Arrhenius plot for AgBehenate reduction (Figure 5A) and Ag development (Figure 5B) Ag Behenate, Micro Arrhenius results second order: y = x, R2 = 0.91 Ea = 216 kj/mol = 51.5 kcal/mol 0-2 Micro Ag Growth, Second Order Kinetics y = x Ea = 156 kj/mol = 37.3 kcal/mol -3 ln k -4-5 ln k -4-6 Recip T vs ln k 3 pt. x column 5 vs y column /T (K) vs ln k x column 4 vs y column /T (K) /T (K) Figure 5. Arrhenius activation energy plots for AgBehenate reduction and Ag development. Rate constants generally are dependent on temperature, and increase with increasing temperature [6]. The Arrhenius equation can be used in many cases to determine the activation energy of a reaction:

7 Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume k = Ae -Ea/RT (2) can be rearranged to give: ln k = ln A - E a /RT (3) where: k = reaction rate Ea = activation energy R = gas constant T = temperature A = preexponential factor A plot of ln k vs. 1/T will give a straight line if the Arrhenius equation is obeyed, with slope -E a /R and intercept A. Based on the slopes derived from Figures 5A and 5B, the activation energy for AgBehenate reduction is 216kJ/mol and Ag development is 156 kj/mol. Based on equation 2, the lower activation energy for Ag development is an indication that the formation of silver is a faster process than the reduction of AgBehenate under the conditions utilized in this study. This result suggests that the minimum energy required to break the appropriate AgBehenate covalent bonds required to free up Ag atoms, is greater than the energy required to generate Ag metallic bonds resulting in the formation of the developed Ag image observed in a processed photothermographic film. SUMMARY Photothermographic films can be utilized as hardcopy media for many digital medical diagnostic applications. XRD is ideally suited to study the silver containing phases in photothermographic films due to the differences in crystal structure of the principle components AgBehenate, Ag, and AgX. In situ high-temperature synchrotron radiation experiments were determined to be well suited for studying the reduction of AgBehenate and Ag development. The ability to study the reaction kinetics of photothermographic films will allow for improved materials design and improved product features. ACKNOWLEDGEMENTS The SUNY X3 beam line at NSLS is supported by the Division of Basic Energy Sciences of the U.S. Department of Energy (DE-FG02-86ER45231). Financial support was provided by Eastman Kodak Company as well as the New York State Center for Advanced Technology at Alfred University. REFERENCES [1] Carrol, B.H., Higgins, G.C., James, T.H., Introduction to Photographic Theory, The Silver Halide Process, John Wiley & Sons, New York, 1980, 1-3. [2] Sahyun, M.R.V., J. Imaging Sci. Technol., 1998, 42(1), [3] Huang, T.C., Toraya, H., Blanton, T.N., Wu, Y., J. Appl. Cryst., 1993, 26, [4] Blanton, T.N., Barnes, C.L., Lelental, M., J. Appl. Cryst., 2000, 33, [5] Materials Data Incorporated, 1224 Concannon Blvd., Livermore, California [6] Levine, I.N., Physical Chemistry, McGraw-Hill Inc., New York, 1978,

AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS

AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS 96 AN EXAFS STUDY OF PHOTOGRAPHIC DEVELOPMENT IN THERMOGRAPHIC FILMS T. N. Blanton 1, D.R Whitcomb 2, and S.T. Misture 3 1 Eastman Kodak Company, Kodak Research Laboratories, Rochester, NY 14650-2106,

More information

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 2005, Advances in X-ray Analysis, Volume 48. 266 NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

More information

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE

IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 158 IMPROVING THE ACCURACY OF RIETVELD-DERIVED LATTICE PARAMETERS BY AN ORDER OF MAGNITUDE B. H.

More information

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION

ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION 173 ANALYSIS OF LOW MASS ABSORPTION MATERIALS USING GLANCING INCIDENCE X-RAY DIFFRACTION N. A. Raftery, L. K. Bekessy, and J. Bowpitt Faculty of Science, Queensland University of Technology, GPO Box 2434,

More information

MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT

MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 249 MATERIALS CHARACTERIZATION USING A NOVEL SIMULTANEOUS NEAR-INFRARED/X-RAY DIFFRACTION INSTRUMENT

More information

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA

THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS DIFFRACTION DATA Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 96 THE IMPORTANCE OF THE SPECIMEN DISPLACEMENT CORRECTION IN RIETVELD PATTERN FITTING WITH SYMMETRIC REFLECTION-OPTICS

More information

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES

USABILITY OF PORTABLE X-RAY SPECTROMETER FOR DISCRIMINATION OF VALENCE STATES Copyright (c)jcpds-international Centre for Diffraction Data 00, Advances in X-ray Analysis, Volume 45. 409 ISSN 1097-000 USABIITY OF POTABE X-AY SPECTOMETE FO DISCIMINATION OF VAENCE STATES I.A.Brytov,.I.Plotnikov,B.D.Kalinin,

More information

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS

FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS FUNDAMENTAL PARAMETER METHOD USING SCATTERING X-RAYS IN X-RAY FLUORESCENCE ANALYSIS 255 Yoshiyuki Kataoka 1, Naoki Kawahara 1, Shinya Hara 1, Yasujiro Yamada 1, Takashi Matsuo 1, Michael Mantler 2 1 Rigaku

More information

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. 783 SCOPE AND LIMITATIONS XRF ANALYSIS FOR SEMI-QUANTITATIVE Introduction Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K. Historically x-ray fluorescence spectrometry has

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL

X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 321 X-RAY MICRODIFFRACTION STUDY OF THE HALF-V SHAPED SWITCHING LIQUID CRYSTAL Kazuhiro Takada 1,

More information

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 369 ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM

More information

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE

XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE 314 315 XAFS STUDIES OF Ni, Ta AND Nb CHLORIDES IN THE IONIC LIQUID 1-ETHYL-3- METHYL IMIDAZOLIUM CHLORIDE / ALUMINUM CHLORIDE W. E. O 1,D.F.Roeper 1,2,K.I.Pandya 3 andg.t.cheek 4 1 Naval Research Laboratory,

More information

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials

Time-Resolved μ-xrf and Elemental Mapping of Biological Materials 296 Time-Resolved μ-xrf and Elemental Mapping of Biological Materials K. Tsuji 1,2), K. Tsutsumimoto 1), K. Nakano 1,2), K. Tanaka 1), A. Okhrimovskyy 1), Y. Konishi 1), and X. Ding 3) 1) Department of

More information

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS 390 ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS J. C. Rao 1, 2 *, M. Song 2, K. Mitsuishi 2, M. Takeguchi 2, K. Furuya 2 1 Department

More information

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD

AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Copyright JCPDS-International Centre for Diffraction Data 2014 ISSN 1097-0002 219 AEROSOL FILTER ANALYSIS USING POLARIZED OPTICS EDXRF WITH THIN FILM FP METHOD Takao Moriyama 1), Atsushi Morikawa 1), Makoto

More information

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE

FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE Copyright JCPDS-International Centre for Diffraction Data 26 ISSN 197-2 FACTORS AFFECTING IN-LINE PHASE CONTRAST IMAGING WITH A LABORATORY MICROFOCUS X-RAY SOURCE 31 K. L. Kelly and B. K. Tanner Department

More information

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS

A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 320 A COMPACT X-RAY SPECTROMETER WITH MULTI-CAPILLARY X-RAY LENS AND FLAT CRYSTALS Hiroyoshi SOEJIMA and

More information

EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION ACCURACY

EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION ACCURACY Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 424 EFFECT OF CALIBRATION SPECIMEN PREPARATION TECHNIQUES ON NARROW RANGE X-RAY FLUORESCENCE CALIBRATION

More information

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS 302 ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS M. Song 1, K. Mitsuishi 1, M. Takeguchi 1, K. Furuya 1, R. C. Birtcher 2 1 High Voltage Electron Microscopy Station, National

More information

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES

INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES 122 INFLUENCE OF GROWTH INTERRUPTION ON THE FORMATION OF SOLID-STATE INTERFACES I. Busch 1, M. Krumrey 2 and J. Stümpel 1 1 Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

More information

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY

CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY Copyright -International Centre for Diffraction Data 2010 ISSN 1097-0002 CALCULATION METHODS OF X-RAY SPECTRA: A COMPARATIVE STUDY B. Chyba, M. Mantler, H. Ebel, R. Svagera Technische Universit Vienna,

More information

Modeling Airplane Wings

Modeling Airplane Wings Modeling Airplane Wings Lauren Ault Physics Department, The College of Wooster, Wooster, Ohio 9 May 5, 000 Abstract: An air gyroscope is used to determine the nature of the viscous force of a sphere floating

More information

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA 315 C. K. Lowe-Ma, A. E. Chen, D. Scholl Physical & Environmental Sciences, Research and Advanced Engineering Ford Motor Company, Dearborn, Michigan, USA

More information

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA

RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA 90 RADIOACTIVE SAMPLE EFFECTS ON EDXRF SPECTRA Christopher G. Worley Los Alamos National Laboratory, MS G740, Los Alamos, NM 87545 ABSTRACT Energy dispersive X-ray fluorescence (EDXRF) is a rapid, straightforward

More information

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS

GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS 176 177 GLANCING INCIDENCE XRF FOR THE ANALYSIS OF EARLY CHINESE BRONZE MIRRORS Robert W. Zuneska, Y. Rong, Isaac Vander, and F. J. Cadieu* Physics Dept., Queens College of CUNY, Flushing, NY 11367. ABSTRACT

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS

FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 338 FINDING DESCRIPTORS USEFUL FOR DATA MINING IN THE CHARACTERIZATION DATA OF CATALYSTS C. K. Lowe-Ma,

More information

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS

MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS , MEASUREMENT CAPABILITIES OF X-RAY FLUORESCENCE FOR BPSG FILMS K.O. Goyal, J.W. Westphal Semiconductor Equipment Group Watkins-Johnson Company Scotts Valley, California 95066 Abstract Deposition of borophosphosilicate

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 14.1 Factors that Affect Reaction Rates 14.2 Reaction Rates 14.3 Concentration and Rate Laws 14.4 The Change of Concentration with Time 14.5 Temperature and Rate 14.6 Reaction Mechanisms 14.7

More information

Chapter VIII: Photographic films

Chapter VIII: Photographic films Chapter VIII: Photographic films 1 Photographic films First (integrating) dosimeters to be developed based on photographic techniques dosifilms Dosifilms were more and more replaced by dosimeters using

More information

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE

CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE CHARACTERIZING PROCESS SEMICONDUCTOR THIN FILMS WITH A CONFOCAL MICRO X-RAY FLUORESCENCE MICROSCOPE 218 Chris M. Sparks 1, Elizabeth P. Hastings 2, George J. Havrilla 2, and Michael Beckstead 2 1. ATDF,

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

LAB 01 X-RAY EMISSION & ABSORPTION

LAB 01 X-RAY EMISSION & ABSORPTION LAB 0 X-RAY EMISSION & ABSORPTION REPORT BY: TEAM MEMBER NAME: Ashley Tsai LAB SECTION No. 05 GROUP 2 EXPERIMENT DATE: Feb., 204 SUBMISSION DATE: Feb. 8, 204 Page of 3 ABSTRACT The goal of this experiment

More information

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD

SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD 73 SYNCHROTRON X-RAY MICROBEAM CHARACTERIZATION OF SMECTIC A LIQUID CRYSTALS UNDER ELECTRIC FIELD Atsuo Iida 1), Yoichi Takanishi 2) 1)Photon Factory, Institute of Materials Structure Science, High Energy

More information

X RAY METROLOGY IN SEMICONDUCTOR MANUFACTURING

X RAY METROLOGY IN SEMICONDUCTOR MANUFACTURING page 1 / 5 page 2 / 5 x ray metrology in pdf Real-time X-ray diffraction imaging for semiconductor wafer metrology and high temperature in situ experiments Real-time X-ray diffraction imaging for semiconductor

More information

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Chapter 13 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Kinetics Thermodynamics does a reaction take place? Kinetics how fast does

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Probing Atomic Crystals: Bragg Diffraction

Probing Atomic Crystals: Bragg Diffraction 1 Probing Atomic Crystals: Bragg Diffraction OBJECTIVE: To learn how scientists probe the structure of solids, using a scaled-up version of X-ray Diffraction. APPARATUS: Steel ball "crystal", microwave

More information

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES

RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 261 RIETVELD REFINEMENT WITH XRD AND ND: ANALYSIS OF METASTABLE QANDILITE-LIKE STRUCTURES G. Kimmel

More information

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands

Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands Characterizing Biological Macromolecules by SAXS Detlef Beckers, Jörg Bolze, Bram Schierbeek, PANalytical B.V., Almelo, The Netherlands This document was presented at PPXRD - Pharmaceutical Powder X-ray

More information

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY

XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Copyright(c)JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray Analysis,Vol.44 1 XRD RAPID SCREENING SYSTEM FOR COMBINATORIAL CHEMISTRY Bob B. He, John Anzelmo, Peter LaPuma, Uwe Preckwinkel,

More information

ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS

ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS 298 299 ULTRATHIN LAYER DEPOSITIONS A NEW TYPE OF REFERENCE SAMPLES FOR HIGH PERFORMANCE XRF ANALYSIS M. Krämer 1), R. Dietsch 1), Th. Holz 1), D. Weißbach 1), G. Falkenberg 2), R. Simon 3), U. Fittschen

More information

POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY

POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY Copyright (c)jcpds-international Centre for Diffraction Data 2002, Advances in X-ray Analysis, Volume 45. 306 POLYCAPILLARY OPTICS BASED NEUTRON FOCUSING FOR SMALL SAMPLE NEUTRON CRYSTALLOGRAPHY W.M. Gibson

More information

Data Acquisition. What choices need to be made?

Data Acquisition. What choices need to be made? 1 Specimen type and preparation Radiation source Wavelength Instrument geometry Detector type Instrument setup Scan parameters 2 Specimen type and preparation Slide mount Front loading cavity Back loading

More information

at Oak Ridge National Laboratory.

at Oak Ridge National Laboratory. 361 Designs for Neutron Radiography at Oak Ridge National Laboratory and Computed Tomography Dudley A. Raine lipv4, Camden R. Hubbard, Paul M. Whaley, and Michael C. Wright3 Oak Ridge National Laboratory

More information

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS

FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS 45 ABSTRACT FUNDAMENTAL PARAMETERS ANALYSIS OF ROHS ELEMENTS IN PLASTICS W. T. Elam, Robert B. Shen, Bruce Scruggs, and Joseph A. Nicolosi EDAX, Inc. Mahwah, NJ 70430 European Community Directive 2002/95/EC

More information

CHECKING AND ESTIMATING RIR VALUES

CHECKING AND ESTIMATING RIR VALUES Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42 287 Copyright(C)JCPDS-International Centre for Diffraction Data 2000, Advances in X-ray Analysis, Vol.42

More information

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT

MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 363 MCSHAPE: A MONTE CARLO CODE FOR SIMULATION OF POLARIZED PHOTON TRANSPORT J.E. Fernández, V.

More information

X-Ray Emission and Absorption

X-Ray Emission and Absorption X-Ray Emission and Absorption Author: Mike Nill Alex Bryant February 6, 20 Abstract X-rays were produced by two bench-top diffractometers using a copper target. Various nickel filters were placed in front

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device 1 EX/P4-8 Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device T. Hino 1,2), T. Hirata 1), N. Ashikawa 2), S. Masuzaki 2), Y. Yamauchi

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES

PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES 249 PERFORMANCE OF A ROOM TEMPERATURE GAS PROPORTIONAL SCINTILLATION COUNTER IN X-RAY ANALYSIS OF METALLIC ALLOYS EXCITED WITH ALPHA PARTICLES F. I. G. M. Borges, S. J. C. do Carmo, T. H. V. T. Dias, F.

More information

HOW TO ANALYZE SYNCHROTRON DATA

HOW TO ANALYZE SYNCHROTRON DATA HOW TO ANALYZE SYNCHROTRON DATA 1 SYNCHROTRON APPLICATIONS - WHAT Diffraction data are collected on diffractometer lines at the world s synchrotron sources. Most synchrotrons have one or more user facilities

More information

Master Projects in Materials Physics, 2014 / 2015

Master Projects in Materials Physics, 2014 / 2015 Master Projects in Materials Physics, 2014 / 2015 X-ray based characterization of functional materials Are you interested in experimental physics and/or advanced data analysis? - Then we have the right

More information

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION

STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 106 STRESS ANALYSIS USING BREMSSTRAHLUNG RADIATION F. A. Selim 1, D.P. Wells 1, J. F. Harmon 1,

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Electron Beam Curable Varnishes. Rapid Processing of Planarization Layers on Polymer Webs

Electron Beam Curable Varnishes. Rapid Processing of Planarization Layers on Polymer Webs Electron Beam Curable Varnishes Rapid Processing of Planarization Layers on Polymer Webs Juliane Fichtner, Michaela Hagenkamp, Markus Noss, Steffen Günther Fraunhofer Institute for Organic Electronics,

More information

Supporting Information. T g [ºC] b) E at 23 ºC [MPa]

Supporting Information. T g [ºC] b) E at 23 ºC [MPa] Supporting Information α-amino Acid-Based Poly(Ester Urea)s as Multi-Shape Memory Pol-ymers for Biomedical Applications Gregory I. Peterson, Andrey V. Dobrynin, Matthew L. Becker* The University of Akron,

More information

Calibration of the IXPE Instrument

Calibration of the IXPE Instrument Calibration of the IXPE Instrument Fabio Muleri (INAF-IAPS) On behalf of the IXPE Italian Team 13th IACHEC Meeting 2018 Avigliano Umbro (Italy), 9-12 April 2018 IXPE MISSION IXPE will (re-)open the polarimetric

More information

2D XRD Imaging by Projection-Type X-Ray Microscope

2D XRD Imaging by Projection-Type X-Ray Microscope 0/25 National Institute for Materials Science,Tsukuba, Japan 2D XRD Imaging by Projection-Type X-Ray Microscope 1. Introduction - What s projection-type X-ray microscope? 2. Examples for inhomogeneous/patterned

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chapter 13: Chemical Kinetics: Rates of Reactions Chemical Kinetics The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to products Chapter 3: Chemical Kinetics: Rates of Reactions

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation

Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Kinetics Dependence of rate on Concentration (RATE LAW) Reaction Mechanisms Dependence of rate on temperature Activation Energy E a Activated Complex Arrhenius Equation Mary J. Bojan Chem 112 1 A MECHANISM

More information

Supplementary Information

Supplementary Information ature anotechnology reference number: AO-06110617A Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties an-rong Chiou 1,2,3, Chunmeng Lu 1, Jingjiao

More information

Muffin-tin potentials in EXAFS analysis

Muffin-tin potentials in EXAFS analysis J. Synchrotron Rad. (5)., doi:.7/s6577555 Supporting information Volume (5) Supporting information for article: Muffin-tin potentials in EXAFS analysis B. Ravel Supplemental materials: Muffin tin potentials

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane

Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane DOI: 10.1038/NMAT2384 Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane Stefan Vajda, Larry A. Curtiss, Peter Zapol et al. Center for

More information

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE 1 THEORY EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE The field of chemical kinetics is concerned with the rate or speed at which a chemical reaction occurs. Knowledge of a chemical reaction

More information

custom reticle solutions

custom reticle solutions custom reticle solutions 01 special micro structures Pyser Optics has over 60 years experience in producing high quality micro structure products. These products are supplied worldwide to industries including

More information

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT Copyright JCPDS - International Centre for Diffraction Data 003, Advances in X-ray Analysis, Volume 46. 6 DEVELOPMENT OF MEASURING SYSTEM FOR STRESS BY MEANS OF IMAGE PLATE FOR LABORATORY X-RAY EXPERIMENT

More information

[ A] 2. [ A] 2 = 2k dt. [ A] o

[ A] 2. [ A] 2 = 2k dt. [ A] o Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions The reaction 2A P follows second-order kinetics The rate constant for the reaction is k350 0 4 Lmol s Determine the time required for the concentration

More information

Issues With TXRF Angle Scans and Calibration

Issues With TXRF Angle Scans and Calibration Copyright (C) JCPDS-International Centre for Diffraction Data 1999 794 Issues With TXRF Angle Scans and Calibration Dennis Werho, Stephen N. Schauer, and George F. Carney, Motorola, Inc., AZ Abstract Previous

More information

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place.

2/23/2018. Familiar Kinetics. ...and the not so familiar. Chemical kinetics is the study of how fast reactions take place. CHEMICAL KINETICS & REACTION MECHANISMS Readings, Examples & Problems Petrucci, et al., th ed. Chapter 20 Petrucci, et al., 0 th ed. Chapter 4 Familiar Kinetics...and the not so familiar Reaction Rates

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

2d-Laser Cantilever Anemometer

2d-Laser Cantilever Anemometer 2d-Laser Cantilever Anemometer Introduction Measuring principle Calibration Design Comparative measurement Contact: Jaroslaw Puczylowski University of Oldenburg jaroslaw.puczylowski@forwind.de Introduction

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Crystals! Table of Contents. Vocabulary 2. Word Search 6. What is a Crystal? 7. Atoms, Ions, Molecules. and the Unit Cell 13.

Crystals! Table of Contents. Vocabulary 2. Word Search 6. What is a Crystal? 7. Atoms, Ions, Molecules. and the Unit Cell 13. Crystals! Table of Contents Vocabulary 2 Word Search 6 What is a Crystal? 7 Atoms, Ions, Molecules and the Unit Cell 13 Crystal Shapes 15 X-Ray Crystallography 17 Recipes for Making A Booklet for Elementary

More information

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate CHEMISTRY Fifth Edition Gilbert Kirss Foster Bretz Davies Chapter 3 Chemical Kinetics: Reactions in the Atmosphere Chemistry, 5 th Edition Copyright 207, W. W. Norton & Company Chapter Outline 3.4 Reaction

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Structure Report for J. Reibenspies

Structure Report for J. Reibenspies X-ray Diffraction Laboratory Center for Chemical Characterization and Analysis Department of Chemistry Texas A & M University Structure Report for J. Reibenspies Project Name: Sucrose Date: January 29,

More information

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil

Supplementary Information for. Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil Supplementary Information for Silver Nanoparticles Embedded Anti-microbial Paints Based on Vegetable Oil Ashavani Kumar #, Praveen Kumar Vemula #, Pulickel M. Ajayan, George John * Department of Chemistry,

More information

5.5. Calibration and Test Procedures

5.5. Calibration and Test Procedures 5.5. Calibration and Test Procedures - List of Calibration Procedures 1. C-18-010-2000, Calibration procedure of melting point measuring apparatus 2. C-18-011-2000, Calibration procedure of calorimeter

More information

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs

Chemical Kinetics. Reaction Rate. Reaction Rate. Reaction Rate. Reaction Rate. Chemistry: The Molecular Science Moore, Stanitski and Jurs Chemical Kinetics Chemistry: The Molecular Science Moore, Stanitski and Jurs The study of speeds of reactions and the nanoscale pathways or rearrangements by which atoms and molecules are transformed to

More information

Experiment title: SAXS measurement of waterborne polymer/clay nanocomposites.

Experiment title: SAXS measurement of waterborne polymer/clay nanocomposites. Beamline: BM16 Shifts: 6 Experiment title: SAXS measurement of waterborne polymer/clay nanocomposites. Date of experiment: from: 02/05/07 to: 31/07/08 Local contact(s): Dr. Francois FAUTH Experiment number:

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

The Elzone II Particle Count and Size Analyzer

The Elzone II Particle Count and Size Analyzer The Elzone II 5390 Particle Count and Size Analyzer Elzone II Overview of Basic Theory Operates using the Electrical Sensing Zone (ESZ) Principle, also known as the Coulter Principle. First commercially

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Swanning about in Reciprocal Space. Kenneth, what is the wavevector?

Swanning about in Reciprocal Space. Kenneth, what is the wavevector? Swanning about in Reciprocal Space or, Kenneth, what is the wavevector? Stanford Synchrotron Radiation Laboratory Principles The relationship between the reciprocal lattice vector and the wave vector is

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Automated Determination of Crystal Reflectivity in the X-ray Laboratory

Automated Determination of Crystal Reflectivity in the X-ray Laboratory Automated Determination of Crystal Reflectivity in the X-ray Laboratory Bradley Wideman University of Rochester Laboratory for Laser Energetics 2008 High School Summer Research Program INTRODUCTION The

More information

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section:

4 α or 4 2 He. Radioactivity. Exercise 9 Page 1. Illinois Central College CHEMISTRY 132 Laboratory Section: Exercise 9 Page 1 Illinois Central College CHEMISTRY 132 Laboratory Section: Radioactivity Name: Equipment Geiger Counter Alpha, Beta, and Gamma source Objectives The objectives of this experiment are

More information