SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

Size: px
Start display at page:

Download "SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB"

Transcription

1 SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

2 POLAR AND NON POLAR BONDS

3 BOND POLARITY 1. Atoms with different electronegative from polar bonds (difference in EN) 2. Depicted as polar arrow : 3. Example : C - Cl δ δ + C - Cl # Polar bond

4 POLAR BOND electron poor region electron rich region H F Polar bond 4

5 NON POLAR BOND F F Non polar bond 5

6 BOND POLARITY Example : C F δ + δ C - F # Polar bond C C (no difference of electronegativity) # Non polar bond

7 ELECTRONEGATIVITY Electronegativity of an atom is the ability of an atom that is covalently bonded to another atom to attract electrons to itself An atom with a high electronegativity will attract electrons towards itself and away from the atom with a lower electronegativity Electronegativity of an atom is inversely proportional to its size. The smaller the atomic size, the stronger the attraction for the bonding electrons and the higher electronegativity.

8

9 NON POLAR BONDS 1. For covalent bond that consists of two identical atoms, the bonding electrons are shared equally between the two atoms and are attracted equally to both the atoms. This type of bond is called non-polar bond. 2. Diatomic molecules such as H 2, O 2, Cl 2, N 2, have non polar bonds because the atoms in the molecules have same electronegativity. These molecules are called non polar molecules.

10 POLAR BOND 1. In covalent bond that contains two atoms that are not identical. The bonding electrons will be attracted more strongly by the more electronegative element and this result in unsymmetrical distribution of electrons. 2. Ex : H Cl. The more electronegative chlorine atom attracts the bonding electron pair more strongly than hydrogen does. 3. HCl is a polar molecule and it contains polar bond. 4. The separation of charge in polar covalent bond like H-Cl is called polarisation. 5. When two electrical charge of opposite signs are separated by small distance, a dipole is established. Thus, HCl has a dipole because the H-Cl is a polar.

11 DIPOLE MOMENT (μ) A quantitative measure of the polarity of a bond is its dipole moment ( µ ). µ = Q r Where : µ = dipole moment Q = the product of the charge from electronegativity r = distance between the charges Dipole moments are usually expressed in debye units(d) 1D (Debye) = 3.36 x Cm

12 RESULTANT (NET) DIPOLE MOMENT 1. Determined by molecular shape and bond polarity Resultant dipole moment > 0 (polar molecule) Resultant dipole moment = 0 (non-polar molecule) 2. Example : I - I EN = 0 (charge in electronegativity) μ = 0 I 2 is a non polar molecule

13 RESULTANT (NET) DIPOLE MOMENT CI - I 3. Example : EN 0 (charge in electronegativity) μ 0 I 2 is a polar molecule

14 RESULTANT (NET) DIPOLE MOMENT CO 2 O = C = O 4. Example : CO 2 shape =linear The two bond dipoles cancel each other (molecule is symmetrical) Resultant dipole moment, μ = 0 CO 2 is a non polar molecule

15 RESULTANT (NET) DIPOLE MOMENT OCS O = C = S 5. Example : OCS shape =linear The two bond dipoles do not cancel each other Resultant dipole moment, μ 0 OCS is a polar molecule

16 RESULTANT (NET) DIPOLE MOMENT BF 3 F 6. Example : BF 3 shape =trigonal planar The two bond dipoles cancel each other Resultant dipole moment, μ = 0 BF 3 is a NON polar molecule F B F

17 RESULTANT (NET) DIPOLE MOMENT BF 2 Br F 7. Example : BF 3 Br shape =trigonal planar The three bond dipoles do not cancel each other Resultant dipole moment, μ 0 BF 3 Br is a polar molecule F B Br

18 Carbon tetrachloride, CCl 4 - molecular geometry : tetrahedral - Chlorine is more electronegative than carbon, - Dipole moment can cancel each other - has no net dipole moment (µ = 0) - therefore CCl 4 is a nonpolar molecule.

19 Chloromethane, CH 3 Cl - molecular geometry : tetrahedral - Cl is more electronegative than C, C is more electronegative than H - Dipole moment cannot cancel each other - has a net dipole moment (µ 0) - therefore CH 3 Cl is a polar molecule.

20 Ammonia, NH 3 - molecular geometry : tetrahedral - N is more electronegative than H, - Dipole moment cannot cancel each other - has a net dipole moment (µ 0) - therefore NH 3 is a polar molecule.

21 BOND MOMENTS AND RESULTANT DIPOLE MOMENTS H

22 DIFFERENCE BETWEEN POLAR BOND AND POLAR MOLECULES 1. Polar molecules possess polar bond. 2. A bond is polar when the two atoms that are participating in the bond formation have different electronegativities. In polar molecule, all the bonds collectively should produce a polarity. 3. Though a molecule has polar bonds, it does not make the molecule polar. 4. If the molecule is symmetric and all the bonds are similar, then the molecule may become non polar. 5. Therefore, not all the molecules with polar bonds are polar.

23 KEEP IN MIND! The presence of polar bonds does not always lead to a polar molecule C O is a polar bond But, CO 2 is a non polar molecule O = C = O We have to CONSIDER BOTH (bond polarity and molecular shape)

24 A SUMMARY ON HOW TO DETERMINE MOLECULAR POLARITY 1. A molecule will be nonpolar if : a) The bonds are non-polar CI CI (non polar) b) No lone pair in the central atom and all the surrounding atoms are the same POLAR F B F B NON POLAR F Br F F

25 A SUMMARY ON HOW TO DETERMINE MOLECULAR POLARITY 1. A molecule will be nonpolar if : c) A molecule in which the central atom has lone pair electron will usually be polar with few exceptions N O H H POLAR H H POLAR H

26 A SUMMARY ON HOW TO DETERMINE MOLECULAR POLARITY 1. A molecule will be nonpolar if : c) A molecule in which the central atom has lone pair electron will usually be polar with few exceptions F F F Br F S POLAR F F POLAR F

27 A SUMMARY ON HOW TO DETERMINE MOLECULAR POLARITY 2. Exceptions : (NON POLAR MOLECULES) X X X F F A A Xe X X F F X LINEAR SQUARE PLANAR

28 Exercises : Predict the polarity of the following molecules: SO 2 ; HBr ; SO 3 ; CH 2 Cl 2 ; ClF 3 ; CF 4 ; H 2 O ; XeF 4 ; NF 3 28

29 HYBRID ORBITAL OVERLAP AND HYBRIDIZATION 1. VSEPR theory : predict molecular shapes by assuming that electron groups tend to minimize their repulsions 2. But, it does not tell how those shapes (which is observed experimentally), can be explained from the interactions of atomic orbitals.

30 VALENCE BOND (VB) THEORY 1. Covalent bonds are formed by sharing electrons from overlapping atomic orbitals 2. Two types of bonds : σ bond and π bond 3. Example :

31 DIRECT OVERLAP OF s AND p ORBITAL 1. Atoms in simple molecules or ions such as H 2, HF, N 2, etc. use pure s and/or p orbitals in forming covalent bonds. 2. Example : H 2 (hydrogen molecules)

32 DIRECT OVERLAP OF s AND p Example : HF (Hydrogen Flouride) H = 1s 1 F = 1s 2 2s 2 2p 5 ORBITAL Example : F 2 (Flourine molecules) F = 1s 2 2s 2 2p 5

33 HYBRIDIZATION 1. Mixing of two or more atomic orbitals to form a new set of equivalent hybrid orbitals in the same energy level 2. The spatial orientation of the new orbitals is cause more stable bonds and are consistent with the observed molecular shape types of hybridization : sp, sp 2, sp 3 hybridization

34 4.3.2 Formation Hybrid orbitals Overlapping of hybrid orbitals and the pure orbitals occur when different type of atoms are involved in the bonding. Hybridization of orbitals: mixing of two or more atomic orbitals to form a new set of hybrid orbitals The purpose of hybridisation is to produce new orbitals which have equivalent energy Number of hybrid orbitals is equal to number of pure atomic orbitals used in the hybridization process.

35 Hybridization Hybrid orbitals have different shapes from original atomic orbitals Types of hybridisation reflects the shape/geometry of a molecule Only the central atoms will be involved in hybridisation

36 HYBRIDIZATION s orbital p orbital sp orbital

37 TYPES OF HYBRID ORBITALS Type Examples Electron group Electron group arrangement sp BeCl 2 2 Linear sp 2 BF 3 3 Trigonal planar sp 3 CH 4 4 Tetrahedral

38 DETERMINING HYBRID ORBITALS 1. Draw Lewis structure 2. Predict electron group arrangement using VSEPR model 3. Deduce the hybridization of the central atom by matching the arrangement of the electron groups with the hybrid orbitals 4. Use partial the orbital diagram to explain the mixing of atomic orbitals

39 Molecular formula Lewis Structure Molecular shape and electron group arrangement Hybrid orbitals

40 SIGMA (σ) BOND 1. Resulting from end to end overlap 2. Has highest electron density along the bond axis 3. Allow free rotation 4. All single bonds are σ bond

41 bond It formed when orbitals overlap from end to end Example: i. overlapping s orbitals H + H H H 41 bond

42 ii. Overlapping of s and p orbitals P x orbital H + x H x bond 42

43 iii. Overlapping of p orbitals x + x x bond 43

44 Pi (π) Bond 1. Resulting from side to side overlap 2. Has two regions of electron density One above and one below the σ bond axis 3. One π bond hold two electrons that move through both regions of the bond 4. π bond restricts rotation

45 bond It formed when two p-orbitals of the same orientation overlap sideways Double bond consists of one σ bond and one π bond Example : y y y y + bond

46 bond Example : π π O = C = O σ σ CO 2 has two π bond and one σ bond Triple bond always consists of one σ bond and two π bond N N π σ π

47 How do I predict the hybridization of the central atom? Count the number of lone pairs AND the number of atoms bonded to the central atom No of Lone Pairs + No of Bonded Atoms Hybridization Examples sp sp 2 sp 3 BeCl 2 BF 3 CH 4, NH 3, H 2 O

48 48 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

49 FORMATION OF sp HYBRIDIZATION Two equivalents sp hybrid orbitals that lie 180 apart 2 electron groups (from VSEPR theory) Electron group arrangement : linear Molecular shape : linear sp sp 180

50 FORMATION OF sp HYBRIDIZATION Lewis structure BeCl 2 σ σ Cl Be Cl Valence electron configuration Be O 1 : O 2 : 2s 2s 2p 2p Hybridisation sp sp 2p 2p sp orbitals Empty 2p orbitals One s orbital + one p orbital two equivalent sp orbitals

51 51

52 FORMATION OF sp 2 HYBRIDIZATION Three equivalents sp 2 hybrid orbitals that lie 120 apart 3 electron groups (from VSEPR theory) Electron group arrangement : trigonal planar Molecular shape : trigonal planar sp 2 sp 2 sp 2 120

53 Lewis structure FORMATION OF sp 2 HYBRIDIZATION Valence electron configuration B O 1 : O 2 : BF 3 2s 2s 2p 2p F σ σ F B σ F Hybridisation sp 2 sp 2 sp 2 2p sp 2 orbitals Empty 2p orbitals One s orbital + two p orbital three equivalent sp 2 orbitals

54 TRY DRAW THEM sp 2 hybrid!!

55 FORMATION OF sp 3 HYBRIDIZATION Bond angle : electron groups (from VSEPR theory) Electron group arrangement : tetrahedral Molecular shape : tetrahedral sp 3 sp 3 sp 3 sp

56 Lewis structure FORMATION OF sp 3 HYBRIDIZATION Valence electron configuration C O 1 : O 2 : CH 4 2s 2s 2p 2p H σ σ σ H C H σ H Hybridisation sp 3 sp 3 sp 3 sp 3 sp 3 orbitals Empty 2p orbitals One s orbital + three p orbital four equivalent sp 3 orbitals

57 TRY DRAW THEM sp 3!!

58 Example : Methane, CH 4 Ground state : C : 1s 2 2s 2 2p 2 Excitation: to have 4 unpaired electrons 1s 2s 2p Lewis Structure H H C H H H Excited state : 1s 2s 2p sp 3 sp 3 hybrid H sp 3 C sp 3 sp 3 H H shape: tetrahedral

59 sp 3 -Hybridized C atom in CH 4 sp 3 1s sp 3 sp 3 sp 3 1s 1s 59

60 sp 3 hybrid Mixing of s and three p orbitals sp 3 sp 3

61 Other Example: 1. BF 3 Lewis structure : Valence Electron configuration : F : B ground state : B hybrid : Molecular geometry Orbital overlap/hybridisation:

62 Example: BF 3 Pure p orbital sp2 sp 2 sp 2 F : 1s 2 2s 2 2p 5 Shape : trigonal planar

63 2. NH 3 Lewis structure : Other Example : Valence orbital diagram ; H : N ground state : N hybrid : Orbital Overlap : Molecular Geometry :

64 sp 3 1s sp 3 sp 3 sp 3 1s 1s 64

65 3. H 2 O Other Example: Lewis structure : Valence orbital diagram; O ground state : O hybrid : Molecular geometry Orbitals overlap: 65

66 HYBRIDISATION IN MOLECULES CONTAINING DOUBLE AND TRIPLE BONDS

67 FORMATION OF HYBRIDIZATION Lewis structure Valence electron configuration C O 1 : O 2 : C 2 H 4 2s 2s (ETHANE) 2p 2p H H σ C = C π H H Hybridisation sp 2 sp 2 sp 2 2p sp 2 orbitals UNHYBRIDIZED 2p orbitals One s orbital + two p orbital three equivalent sp 2 orbitals

68 HOW TO DRAW?

69 bonds bond 69

70 70

71 FORMATION OF HYBRIDIZATION Lewis structure Valence electron configuration C O 1 : O 2 : C 2 H 2 2s 2s (ACETYLENE) 2p 2p H σ C C π π H Hybridisation sp sp 2p 2p sp orbitals UNHYBRIDIZED 2p orbitals One s orbital + one p orbital two equivalent sp orbitals

72 HOW TO DRAW?

73 73

74 FORMATION OF HYBRIDIZATION Lewis structure C 6 H 6 (BENZENE) Valence electron configuration C O 1 : O 2 : 2s 2s 2p 2p Hybridisation sp 2 sp 2 sp 2 2p sp 2 orbitals UNHYBRIDIZED 2p orbitals One s orbital + two p orbital three equivalent sp 2 orbitals

75 BENZENE???? (Look at the notes!)

76 QUESTIONS: For each of the following, draw the orbital overlap to show the formation of covalent bond a) H 2 O b) N 2 c) CH 3 Cl d) AlCl 3 76

77 INERTNESS OF NITROGEN MOLECULE 1. Nitrogen is a very electronegative element. 2. It is an inert (unreactive) element. 3. Inertness due to 2 factors : a) Strong triple bond b) Non polarity of N 2 4. Bond energy N N is very high due to triple bond. 5. This strong bond must be broken first, then it can form with other compounds. 6. A lot of energy needed to break 7. Only at high temperature, nitrogen can react with other elements to form compounds. 8. Nitrogen molecules is non-polar. The absence of polarity on the molecule explains why nitrogen is unreactive.

78 COVALENT CHARACTER IN IONIC COMPOUNDS 1. Not all compounds are ionic, and not all compounds are covalent. 2. Polarisation of chemical bonds also occur in an ionic bond. 3. Most ionic compounds have covalent character due to incomplete transfer of electrons. 4. If a small cation with high electric charge approaches a large anion, the cation will attract the electron cloud from the negative ion. 5. It causes a distortion of the electron cloud of an anion. 6. These distortion produces a certain amount of covalent character in the bond. 7. Polarisation : The distortion of electron cloud of the anion by a neighbouring cation.

79 COVALENT CHARACTER IN IONIC COMPOUNDS 8. Polarising power : The extent to which a cation (positive ion) can polarise an anion (negative ion) 9. Percentage of covalent character in an ionic bond depends on the polarisibility of anion. 10. The larger the size of an anion, the weaker the attraction between nucleus and electrons. Then, electron cloud is easier to be polarised. 11. The greater the degree of polarisation of the anion, the greater the amount of covalent character in the ionic bond.

80 COVALENT CHARACTER IN IONIC COMPOUNDS 12. The polarising power of a cation towards an anion is proportional to the charge density. charge charge density = ionic radius (size) 13. Small and highly charged cations such as Li + and Al 3+ have high charge density, so, high polarising power. Covalent character Al 2 Cl 6, BeCl 3 Ionic bond with slightly covalent bond Al 2 O 3, BeO 2 Small cations, high charge, high charge density, high polarising power

81 Question 1 Arrange the following chlorides in order of increasing covalent character. Explain your answer. NaCl, MgCl 2, AlCl 3

82 Answer 1 NaCl < MgCl 2 < AlCl 3 The charge density of the cations increases in the order : Na + < Mg 2+ < Al 3+ Hence, polarising power of the cations towards the Cl _ ion increases in the same order. Polarising power of Al 3+ is high so, it is a covalent compound.

83 Question 2 Arrange two compounds of beryllium order of increasing covalent character. BeF 2, BeI 2

84 ANSWER 2 The size of I ion is larger than F ion, hence it is easier to be polarised by the Be 2+ ion BeI 2 is expected to have a high degree of covalent character.

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB

CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB CHAPTER 3 CHEMICAL BONDING NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL, JB LEARNING OUTCOMES (ionic bonding) 1. Describe ionic (electrovalent) bonding such as NaCl and MgCl 2 LEARNING OUTCOMES (metallic

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Find the difference in electronegativity between the hydrogen and chlorine atoms

Find the difference in electronegativity between the hydrogen and chlorine atoms Answers Questions 16.2 Molecular polarity 1. Write a dot diagram for the HCl molecule. Find the difference in electronegativity between the hydrogen and chlorine atoms Difference in electronegativity =

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

CHAPTER-4 CHEMICAL BONDING AND MOLECULAR STRUCTURE

CHAPTER-4 CHEMICAL BONDING AND MOLECULAR STRUCTURE CHAPTER-4 CHEMICAL BONDING AND MOLECULAR STRUCTURE OCTET RULE- During a chemical reaction the atoms tend to adjust their electronic arrangement in such a way that they achieve 8 e - in their outermost

More information

Molecular Structure and Bonding- 2. Assis.Prof.Dr.Mohammed Hassan Lecture 3

Molecular Structure and Bonding- 2. Assis.Prof.Dr.Mohammed Hassan Lecture 3 Molecular Structure and Bonding- 2 Assis.Prof.Dr.Mohammed Hassan Lecture 3 Hybridization of atomic orbitals Orbital hybridization was proposed to explain the geometry of polyatomic molecules. Covalent

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Downloaded from

Downloaded from CHAPTER-4 CHEMICAL BONDING AND MOLECULAR STRUCTURE OCTET RULE- During a chemical reaction the atoms tend to adjust their electronic arrangement in such a way that they achieve 8 e - in their outermost

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

1. Explain the formation of a chemical bond. Solution:

1. Explain the formation of a chemical bond. Solution: 1. Explain the formation of a chemical bond. Existence of a strong force of binding between two or many atoms is referred to as a chemical bond and it results in the formation of a stable compound with

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

Chapter 1: Structure and Bonding

Chapter 1: Structure and Bonding 1. What is the ground-state electronic configuration of a carbon atom? A) 1s 2, 2s 2, 2p 5 B) 1s 2, 2s 2, 2p 2 C) 1s 2, 2s 2, 2p 6 D) 1s 2, 2s 2, 2p 4 2. What is the ground-state electronic configuration

More information

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure

STD-XI-Science-Chemistry Chemical Bonding & Molecular structure STD-XI-Science-Chemistry Chemical Bonding & Molecular structure Chemical Bonding Question 1 What is meant by the term chemical bond? How does Kessel-Lewis approach of bonding differ from the modern views?

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #4 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Chemical Bonding I. MCQ - Choose Appropriate Alternative 1. The energy required to break a chemical bond to

More information

10. CHEMICAL BONDING

10. CHEMICAL BONDING CLASS-10 1. List the factors that determine the type of bond that will be formed between two atoms? A. The factors that determine the type of bond that will be formed between two atoms are (i) Number of

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

CHAPTER 6 CHEMICAL BONDING TEXT BOOK EXERCISE Q.1. Select the correct statement. i. An ionic compound A + B - is most likely to be formed when ii. iii. a. the ionization energy of A is high and electron

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups.

4/25/2017. VSEPR Theory. Two Electron Groups. Shapes of Molecules. Two Electron Groups with Double Bonds. Three Electron Groups. Chapter 10 Lecture Chapter 10 Bonding and Properties of Solids and Liquids 10.3 Shapes of Molecules and Ions (VSEPR Theory) Learning Goal Predict the three-dimensional structure of a molecule or a polyatomic

More information

Unit Six --- Ionic and Covalent Bonds

Unit Six --- Ionic and Covalent Bonds Unit Six --- Ionic and Covalent Bonds Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry

Class XI Chapter 4 Chemical Bonding and Molecular Structure Chemistry Book Name: NCERT Solutions Question : Explain the formation of a chemical bond. Solution : A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Unit-3 Chemical Bonding Practice Exam

Unit-3 Chemical Bonding Practice Exam Name: Class: _ Date: _ Unit-3 Chemical Bonding Practice Exam Multiple Choice - NO CALCULATORS, show your work and justify your answers. 1. The concentration of a red colored solution of cobalt ions needs

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Fructose Water Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules Carbon Dioxide Ammonia Title and Highlight TN Ch 10.1 Topic: EQ: Right Side NOTES

More information

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 8. Chemical Bonding I: Basic Concepts Chapter 8 Chemical Bonding I: Basic Concepts Topics Lewis Dot Symbols Ionic Bonding Covalent Bonding Electronegativity and Polarity Drawing Lewis Structures Lewis Structures and Formal Charge Resonance

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed

AP Chemistry. Unit #7. Chemical Bonding & Molecular Shape. Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING. Discrete molecules formed AP Chemistry Unit #7 Chemical Bonding & Molecular Shape Zumdahl Chapters 8 & 9 TYPES OF BONDING BONDING INTRA (Within (inside) compounds) STRONG INTER (Interactions between the molecules of a compound)

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information

10-1. The Shapes of Molecules, chapter 10

10-1. The Shapes of Molecules, chapter 10 10-1 The Shapes of Molecules, chapter 10 The Shapes of Molecules; Goals 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory 10.3 Molecular

More information

Bonding Test pg 1 of 4 Name: Pd. Date:

Bonding Test pg 1 of 4 Name: Pd. Date: Bonding Test pg 1 of 4 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How many electrons are shared in a single covalent bond? 1. A) 2 B) 3 C)

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1 Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical species

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.3 Bond Polarity and Dipole Moments 8.5 Energy Effects in Binary Ionic Compounds 8.6 Partial Ionic Character

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

HYBRIDIZATION THEORY

HYBRIDIZATION THEORY HYBRIDIZATION THEORY According to carbon's orbital diagram, it should only be able to form two bonds... 1s 2s 2p But we know carbon forms 4 bonds, not 2!!! Dec 5 8:19 PM HYBRIDIZATION THEORY Scientists

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction

Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction Adapted from CHM 130 Maricopa County, AZ Molecular Geometry and Lewis Dot Formulas Introduction A chemical bond is an intramolecular (within the molecule) force holding two or more atoms together. Covalent

More information

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction ionic compound- a metal reacts with a nonmetal Ionic bonds form when an atom that

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept Chem 1075 Chapter 12 Chemical Bonding Lecture Outline Slide 2 Chemical Bond Concept Recall that an atom has and electrons. Core electrons are found to the nucleus. Valence electrons are found in the s

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE

Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE Chemistry, 10e (Brown) Chapter 9, Molecular Geometry and Bonding Theories Instant download Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten CLICK HERE http://testbankair.com/download/test-bank-for-chemistry-the-central-science-10th-edition-by-brown-lemay-bursten/

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015 chapter 8 Bonding General Concepts.notebook Chapter 8: Bonding: General Concepts Mar 13 11:15 AM 8.1 Types of Chemical Bonds List and define three types of bonding. Bonds are forces that hold groups of

More information

Q. No. 2 Bond formation is. Neither exothermic nor endothermic

Q. No. 2 Bond formation is. Neither exothermic nor endothermic Q. No. 1 Which combination will give the strongest ionic bond? K + and Cl - K + and O 2- Ca 2+ and Cl - Ca 2+ and O 2- In CaO, the polarizability of O 2- is very less therefore it has the maximum ionic

More information

Shapes of Molecules VSEPR

Shapes of Molecules VSEPR Shapes of Molecules In this section we will use Lewis structures as an introduction to the shapes of molecules. The key concepts are: Electron pairs repel each other. Electron pairs assume orientations

More information

What Is Organic Chemistry?

What Is Organic Chemistry? What Is Organic Chemistry? EQ: What is Organic Chemistry? Read: pages 1-3 Answer the questions in your packet Basics of Organic Chem 1 Chapter 1: Structure and Bonding Key terms Organic Chemistry Inorganic

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

AP Chemistry Chapter 7: Bonding

AP Chemistry Chapter 7: Bonding AP Chemistry Chapter 7: Bonding Types of Bonding I. holds everything together! I All bonding occurs because of! Electronegativity difference and bond character A. A difference in electronegativity between

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten

Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten Test bank for Chemistry The Central Science 10th Edition by Brown, LeMay, Bursten Chapter 9, Molecular Geometry and Bonding Theories Multiple-Choice and Bimodal 1) For a molecule with the formula A) linear

More information

Bonding. Honors Chemistry 412 Chapter 6

Bonding. Honors Chemistry 412 Chapter 6 Bonding Honors Chemistry 412 Chapter 6 Chemical Bond Mutual attraction between the nuclei and valence electrons of different atoms that binds them together. Types of Bonds Ionic Bonds Force of attraction

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information