Class 14-light and lasers

Size: px
Start display at page:

Download "Class 14-light and lasers"

Transcription

1 Class 14-light and lasers Today - light & glass - light & lasers (complete with awesome graphics!) a. What is different/special about laser light. b. How does a laser work. review atomic discharge streetlight. how light interacts with atoms how these ideas are used to make laser. lasers W laser pointers 10,000 W metal cutters (infrared) (5 W in lab, hurts!) all kinds of colors, times--continuous down to sec long pulses. 1

2 Q: Why is the sky blue? Light scatters off atoms in the atmosphere. Blue light scatters more than red, SUN Scattering process depends upon wavelength (blue better) closer to matching energy levels of nitrogen and oxygen. (Not quite same as book, but right.) Blue scatters Red goes through excited level of nitrogen (O close) Earth surface Energy of light E = hc/λ, Red bigger wavelength, smaller energy photons. Blue closer to match, more absorption and spitting out 2 = scattering.

3 sunset light, gone through so much air all the blue is scattered out. Only red left. 3

4 Absorption, Scattering, Reflection Sky blue and sunset red because of how light scatters off atoms and dust in the air. Dyes different colors because of which colors absorbed, the rest scatter off. Other ways light can interact with matter: reflection and refraction why snow is white, water and ice shiny, stars twinkle, glass lenses bend light. 4

5 Speed of light through space = c = 3 x 10 8 m/s Light travels slower in all other materials (air, glass, diamonds, water) Speed of light in a material = c/(index of refraction) = c/n Speed of light in space > speed in air > speed in water > speed in glass What happens when light suddenly slows down when hits glass? Air, velocity =.9999c (n = ) Some reflected Glass n glass ~ 1.5 Slower velocity Velocity of light = wavelength x frequency (frequency fixed wavelength changes, smaller in glass) Some Refracted (heading in different Direction). 5

6 Light travels more slowly in glass than in air. Car Model of bending. Amount of Bend depends on: 1. Speed of light in material. Index of Refraction (n). For Glass, n=1.5 (light travels 50% slower in glass than air) 2. Angle at which light hits surface. Amount of light reflected: 1. Depends on angle of light hitting interface 2. Depends on difference in speed of light.. Greater change, more reflection AIR, N=1 GLASS, N=1.5 AIR, N=1 Small Reflection Light Beam 6

7 A car changes directions at a concrete/sand interface because the sand slows it down. Concrete (air) Sand (glass) v v 7

8 Diffraction gratings bend longer wavelengths more. What about prisms? Prism demo from last time Speed of light in glass: A) Is slower for red photons than for blue photons B) Is slower for blue photons than for red photons C) Is the same for blue photons and for red photons 8

9 Diffraction gratings bend longer wavelengths more. What about prisms? Prism demo from last time Speed of light in glass: A) Is slower for red photons than for blue photons B) Is slower for blue photons than for red photons C) Is the same for blue photons and for red photons 9

10 What happens when light exits glass. Which path does it follow: a. b. c. Small reflection a b AIR, N=1 GLASS, N=1.5 c AIR, N=1 ans. a. Like car. Front right tire in air first, goes faster, turns car more toward top. 10

11 Why snow and white paint are white. Look at perfect giant block of ice (frozen lake) where beam of sunlight is hitting it. It will look what color? a. blue b. white c. black d. yellow e. red c. black!! If perfect block, light only reflects straight up or goes on through. No light scatters or reflects into eyeball. If no light comes from object, it looks black!! 11

12 Same thing but add some more ice on top of it in form of snow. Look at where beam of sunlight is hitting it. It will look what color? a. blue b. white c. black d. yellow e. red 12

13 magnify Same thing but add some more ice on top of it in form of snow. Look at where beam of sunlight is hitting it. It will look what color? a. blue b. white c. black d. yellow e. red b. white, each chunk of frozen ice has many surfaces. Some reflect light into eye. Reflect all colors the same, so look white! White paint works same way. Scatters all colors of light equally, absorbs none. 13 Grey absorbs all a little.

14 Why do stars and distant lights twinkle? Bending of light by air. reflected light slows down in transparent material- index of refraction, n air, v =.9999c (n = ) material, v = c/n refracted. Amount of bend depends on angle of surface and the difference in indices of refraction (speed of light in air vs. material) index of refraction and hence amount of bending from air always small but depends on pressure and temperature. 14

15 patch of colder air, blowing through, bends light to go into eye for a moment, then blows away. Amount of light increases then drops. twinkling just cause air bends light around and different temp blobs of air moving around bending light a little bit so amount reaching eye increases and decreases. must be long ways away, so goes through large air blob to bend enough. 15

16 What would make Murray the MOST WORRIED about his eyesight a. Shining a laser into his eye because it is a more dangerous color b. Shining a laser into his eye because it has more power in the beam c. Shining a laser into his eye because power is concentrated to a much smaller spot and could hurt his retina d. Shining a flashlight into his eye because it would contract the black of his eye (pupil) e. Nothing worries Murray because he is Mister cool c. focuses to much smaller spot, local burn. Why lasers are good for surgery: can make a spot much smaller than scalpel, get to retina or lens of eye without damaging stuff in front, send down tiny fiber running down artery to get into middle of body with only tiny hole. laser light is special and useful because all light exactly the same color and direction. Can be controlled much better, focused into smaller spot, sent in more parallel beam etc. On to how laser works. 16

17 Review of atom discharge lamps-- neon signs. Energy levels metal, bulb filament, or not stuck in atom (like sun). If hot, jump between all diff. levels. Wiggle around, all colors. Energy levels in isolated atom. kick up, only certain wavelengths when come down. In discharge lamps, lots of electrons given bunch of energy (voltage). Bash into atoms. ( discharge tube ) 120 V or more with long tube 17

18 atoms lazy- always want to go back to lowest energy state. Have to get rid of energy, send it off as light. 1 Fast electron or right color light hits atom 2 Excited atom 3 Atom back to low energy e or e Light emitted e e Ground state (lowest possible) 18

19 Glow-in-the-dark toys (phosphorescence) Pumping ON e e e e e e e e e e OFF Lifetime of an excited state: the average time electrons spend in the excited state (somewhere between < 10-9 s and > 1000 s) 19

20 look at neon lamp with diffraction gratings. (much more stuff like this in lab this week) Hold grating only by edges...oil from hands ruins grating. Hold close to eye... See rainbow from lights. Turn so rainbow is horizontal. See lines from neon lamp. 20

21 Review: compare flor. light, neon lamp and laser light from pointer. If you look at light from laser pointer with a diffraction grating, it will look a) more like from light bulb with a range of colors, b) like from neon lamp, but with only a single color c) will not show up at all when you look at it through diffraction grating. d) will be a single bright color but too intense to look at without discomfort. b) It is light of all exactly the same color, so no spread with grating. Focus flashlight beam and laser beam with lens. a) both will focus to same size spot b) laser will focus to much smaller spot with much more power in it c) flashlight will focus to smaller spot with more power in it d) laser will focus to smaller spot but with less total power. d) flashlight actually has quite a lot more power, but not as intense because spread out over much larger region. All laser light the same so focuses into same spot, (or very nearly) 21

22 Small detour: Spectra of materials what it is good for Every material (atom, molecule) has a characteristic emission spectrum ( fingerprint ). Thus by looking at the spectrum of an unknown material you can figure out its composition (cool!). This is how we knew the rings of Saturn are mostly composed of water ice before we actually sent there a satellite to look closely. Astronomers learn about the Universe by observing light from distant astronomical objects, like stars or galaxies. Light contains information, and since it is much easier to observe a star than it is to travel to one, there is clearly a benefit to being able to understand what the light is telling us! Fig. A false color image of the water content in Saturn s rings. (Taken in UV and not visible). More blue (turquoise) means more water, red means less water. Note the fine 22 structure of the rings.

23 Laser-- Light Amplification by Stimulated Emission of Radiation repeated cloning of photons to produce LOTS of identical photons of light. Requirements: stimulated emission (always have) population inversion of bunch of atoms (hard) optical feedback (mirror) or? photon, little piece of wave, we often draw as little ball because less work. Everything to know about interaction of light and atoms. 3 easy steps. photon 1. absorption of light atom electron in higher energy level e 2. Spontaneous emission of light. Electron jumps down from 23 upper level, gives off light. Randomly in any direction.

24 3. Stimulated emission of light. First realized by A. Einstein Photon hits atom already in higher energy level. What happens? a. gets absorbed by the atom, electron goes to even higher energy level. b. goes right on through, atom does not notice, c. original photon continues and second identical one comes out of atom. d. original photon scatters off in random direction. Second identical photon comes out. Cloning photons. Amplifying amount of light x 2. P2k applet. If send in light faster, what happens? 24

25 Surprising fact. Chance of stimulated emission of excited atom EXACTLY the same as chance of absorption by ground state atom. Equal chance bottom atom will absorb photon leaving no photon, as top atom will jump down and so have two photons. glass tube full of atoms, discharge lamp I would expect that a. more photons will come out right hand end of tube, b. less come out right, c. same number as go in, d. none will come out. 25

26 glass tube full of atoms, discharge lamp I would expect that b. less come out right, 2 atoms inside get excited. How do we know it is 2 and not all 3? We don t. I made it up. A matter of chance, sometimes could be 0, sometimes 1, sometimes 2 or 3, and 3,2,1 or 0 photons make it through. Depends on number of atoms and how close they are together. But most of the time will be less photons coming out because more lower level atoms than upper. To amplify number of photons going through the atoms I need a. more atoms in lower energy level, b. half in lower, half upper, c. more in upper energy level, d. a sufficient number in upper level 26 and it does not matter how many are in the lower.

27 To amplify number of photons going through the atoms I need c. more in upper energy level than in lower. Lower eats them up, upper clones them (adds energy). Equal prob. so amplification or loss is just N upper -N lower. N upper > N lower, more out than in. (atoms change) N upper < N lower, fewer out than in. (and atoms change) 27

28 so get amplification if more in upper level than lower this condition very unnatural known as population inversion how to get population inversion? try getting by shining lots of light on atoms. If turn light way up will get a. population inversion with all atoms excited to upper level, b. no atoms in upper, c. half the atoms in upper. 28

29 To get population inversion, need at least 3 energy levels involved. Need rate into 3 faster than rate out. What color light could come out on 3 to 1 transition? a. green, b. blue, c. red, d. a and b., e. a and c c. red. Has to be lower energy than the green needed for 1 to 2. 2 also can kick up by bashing with electron Smaller the separation between 3 and 1, slower the rate from 3 to 1. So these two factors why 3 easier to get lasers at longer wavelengths than at shorter wavelengths. 1 pumping process to produce population inversion 29

30 so now see how to get population inversion, will give amplification of red light. If enough atoms in upper, will lase. p2k animation But much easier if not let light all escape. Reuse. mirror to reflect the light. 30

31 gas laser like Helium Neon. Just like neon sign with with helium and neon mixture in it and mirrors on end. Diode laser- same basic idea, but light produced like in light emitting diode at P-N diode junction. Mirrors on it. p2k laser. Show working. If only pump a little bit what happens? 31

32 p2k laser. If pump just a little tiny bit a. never will produce laser light, b. will take very long time but will give laser light, c. will give laser light as quickly but will just produce very little light. a. spontaneous emission of light will keep too few atoms in excited level to have population inversion. Never will amplify. 32

33 what will come out on the right? Think before you pick a. 1 photon, b. 2 photons, c. 3 photons, d. 4 photons, e. 8 c. 3 Double at first atom, then both hit second but atom only has enough energy to give off one more photon. Remember, photon energy E = hc/λ must match difference in energy levels for electron. e e atom 1 atom 2 33

34 What have we learned today: 1) Lasers (pump up to population inversion, put mirrors around it, stimulated emission will take care of the rest) 2) For operation, lasers need at least 3 energy levels (ground state and 2 excited states). It helps if the middle level has a long lifetime ( metastable) 3) How glow in the dark toys work 4) Lots of cool demonstrations. Looked at emission spectra. Disassembled a working laser. 34

35 skip? two excited atoms in a row what will come out on the right? Think before you pick be ready to explain. a. 1 photon, b. 2 photons, c. 3 photons, d. 4 photons, e. 8 35

36 reading quiz. 1. stimulated emission of radiation refers to a) a type of decay of radioactive nuclei, b) the emission of a duplicate photon by an atom when another photon is passing by, c) colliding electrons with atoms causing them to produce light d) very energetic radioactive particles being emitted. 2. incoherent light is light that is a) babbling nonsensically b) made up of a single electromagnetic wave c) made up of many different electromagnetic waves d) coming out of multiple widely separated light bulbs e) light reflected from a punk rock CD. 3. the laser medium mostly a) amplifies light b) absorbs light c) calls back ghosts of dead lasers d) reflects light e) none of the above 36

37 half the atoms in upper. Once in lower level absorb, so start absorbing, going to upper level. But then ones in upper level start getting stimulated back down. When really lot of light just go to balance with equal up and down. NO POPULATION INVERSION!! To get population inversion, need at least one more energy level involved. 2 also can kick up by bashing with electron (probably skip this and the next slide) 3 to have most of the atoms piled up in state 3 (pop. inversion with lower) you would need a. rate out of 3 slower than rate up to 2. b. rate from 2 to 3 faster than 3 to 1, c. rate out of 3 faster than 2 to 3 but slower than 1 to 2, d. a and b 1 d. rate out of 3 slower than into it. pumping process to produce population inversion 37

What can laser light do for (or to) me?

What can laser light do for (or to) me? What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly

More information

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: 14.3 Next Up: Cameras and optics Eyes to web: Final Project Info 1 Group Exercise Your pennies will simulate a two state atom; tails = ground state,

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second

More information

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri 1 Name: Laboratory Exercise Atomic Spectra A Kirchoff Potpourri Purpose: To examine the atomic spectra from several gas filled tubes and understand the importance of spectroscopy to astronomy. Introduction

More information

Prof. Jeff Kenney Class 5 June 1, 2018

Prof. Jeff Kenney Class 5 June 1, 2018 www.astro.yale.edu/astro120 Prof. Jeff Kenney Class 5 June 1, 2018 to understand how we know stuff about the universe we need to understand: 1. the spectral analysis of light 2. how light interacts with

More information

PH300 Spring Homework 06

PH300 Spring Homework 06 PH300 Spring 2011 Homework 06 Total Points: 30 1. (1 Point) Each week you should review both your answers and the solutions for the previous week's homework to make sure that you understand all the questions

More information

PE summary from last class:

PE summary from last class: PH300 Modern Physics SP11 Today: Finish photoelectric effect Photons Next Week: Atomic spectra/balmer series Lasers learned very early the difference between knowing the name of something and knowing something.!

More information

You Are the Spectrometer! A Look Inside Astronomy's Essential Instrument (Robert B. Friedman & Matthew K. Sharp)

You Are the Spectrometer! A Look Inside Astronomy's Essential Instrument (Robert B. Friedman & Matthew K. Sharp) You Are the Spectrometer! A Look Inside Astronomy's Essential Instrument (Robert B. Friedman & Matthew K. Sharp) Introduction Astronomy is a unique science because unlike many of the other sciences, the

More information

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer. Experiment 9 Emission Spectra 9.1 Objectives By the end of this experiment, you will be able to: measure the emission spectrum of a source of light using the digital spectrometer. find the wavelength of

More information

Review: Properties of a wave

Review: Properties of a wave Radiation travels as waves. Waves carry information and energy. Review: Properties of a wave wavelength (λ) crest amplitude (A) trough velocity (v) λ is a distance, so its units are m, cm, or mm, etc.

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy. 30 Light Emission Answers and Solutions for Chapter 30 Reading Check Questions 1. At these high frequencies, ultraviolet light is emitted. 2. Discrete means unique, that other states don t overlap it.

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

Laboratory Atomic Emission Spectrum

Laboratory Atomic Emission Spectrum Laboratory Atomic Emission Spectrum Pre-Lab Questions: Answer the following questions in complete sentences by reading through the Overview and Background sections below. 1. What is the purpose of the

More information

Atomic Theory C &03

Atomic Theory C &03 Atomic Theory Part One: Flame Tests Part Two: Atomic Spectra Part Three: Applications of Spectra (optional) C12-2-02 &03 This activity will focus on the visible portion of the electromagnetic spectrum.

More information

Telescopes (Chapter 6)

Telescopes (Chapter 6) Telescopes (Chapter 6) Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on Our planetary system and Jovian planet systems Chapter 5 on Light will be useful for understanding

More information

Fingerprinting the Stars Lab

Fingerprinting the Stars Lab Name: Block: Fingerprinting the Stars Lab Background: Every element produces a unique fingerprint of spectral lines. By identifying the spectral features in stellar spectra, we can determine the composition

More information

A sound wave needs a medium through which it is transmitted. (MS-PS4-2)

A sound wave needs a medium through which it is transmitted. (MS-PS4-2) Title: Visible Light: Why is the Sky Blue? Time: 40 min Grade level: 4 th and 5 th Synopsis: In an effort to teach wavelength and frequency in the electromagnetic spectrum, students will look at the visible

More information

IDS 102: Electromagnetic Radiation and the Nature of Light

IDS 102: Electromagnetic Radiation and the Nature of Light IDS 102: Electromagnetic Radiation and the Nature of Light Major concepts we will cover in this module are: electromagnetic spectrum; wave intensity vs. wavelength, and the difference between light reflection,

More information

10/31/2017. Calculating the temperature of earth (The greenhouse effect) IR radiation. The electromagnetic spectrum

10/31/2017. Calculating the temperature of earth (The greenhouse effect)   IR radiation. The electromagnetic spectrum Calculating the temperature of earth (The greenhouse effect) EM radiation so far Spectrum of EM radiation emitted by many objects may be approximated by the blackbody spectrum Blackbody spectrum (plot

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

More information

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER

SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER SECTION 3 & 4 LIGHT WAVES & INFORMATION TRANSFER Light Waves Light is a type of energy that travels as waves. Light is different than other waves because it does not need matter to travel. Light waves

More information

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA

hf = E 1 - E 2 hc = E 1 - E 2 λ FXA 2008 Candidates should be able to : EMISSION LINE SPECTRA 1 Candidates should be able to : EMISSION LINE SPECTRA Explain how spectral lines are evidence for the existence of discrete energy levels in isolated atoms (i.e. in a gas discharge lamp). Describe the

More information

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc. Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion #1: A body continues at rest or in uniform motion in a straight line unless acted upon by a force. Why doesn t the soccer ball move on its own? What causes a soccer ball to roll

More information

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st.

Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st. Announcements HW #3: Available online now. Due in 1 week, Nov 3rd, 11pm. Buy-back points tallied and added: 750 points bought-back. Last Withdrawal date: this friday, Oct 31st. Evening Observing: next

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com

Grade 5. Practice Test. What is Light? How Light Behaves. Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Name Date Grade 5 What is Light? How Light Behaves Photo Credits (in order of appearance): Alexandr Mitiuc/Dreamstime.com Today you will read two passages. Read these sources carefully to gather information

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

The Basics of Light. Sunrise from the Space Shuttle, STS-47 mission. The Basics of Light

The Basics of Light. Sunrise from the Space Shuttle, STS-47 mission. The Basics of Light The Basics of Light The sun as it appears in X-ray light (left) and extreme ultraviolet light (right). Light as energy Light is remarkable. It is something we take for granted every day, but it's not something

More information

Spectroscopy Lesson Outline

Spectroscopy Lesson Outline Spectroscopy Lesson Outline Syllabus References 9.7.3.1 Spectroscopy is a vital tool for astronomers and provides a wealth of information Pre-video Activity: Spectroscopy Worksheet Resources Video: Spectra

More information

Chapter 5 Light and Matter

Chapter 5 Light and Matter Chapter 5 Light and Matter Stars and galaxies are too far for us to send a spacecraft or to visit (in our lifetimes). All we can receive from them is light But there is much we can learn (composition,

More information

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, Is Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Spectrometers. Materials: Easy Spectrometer. Old CD Razor Index card Cardboard tube at least 10 inches long

Spectrometers. Materials: Easy Spectrometer. Old CD Razor Index card Cardboard tube at least 10 inches long Spectrometers Overview: Spectrometers (spectroscopes) are used in chemistry and astronomy to measure light. In astronomy, we can find out about distant stars without ever traveling to them, because we

More information

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus The electron should be thought of as a distribution or cloud of probability around the nucleus that on average behave like a point particle on a fixed circular path Types of Spectra How do spectrum lines

More information

Clouds and Rain Unit (3 pts)

Clouds and Rain Unit (3 pts) Name: Section: Clouds and Rain Unit (Topic 8A-2) page 1 Clouds and Rain Unit (3 pts) As air rises, it cools due to the reduction in atmospheric pressure Air mainly consists of oxygen molecules and nitrogen

More information

Spectral Lines. I've done that with sunlight. You see the whole rainbow because the prism breaks the light into all of its separate colors.

Spectral Lines. I've done that with sunlight. You see the whole rainbow because the prism breaks the light into all of its separate colors. Spectral Lines At the end of 19th century, physicists knew there were electrons inside atoms, and that the wiggling of these electrons gave off light and other electromagnetic radiation. But there was

More information

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature Lightbulbs EM radiation so far EM radiation is a periodic modulation of the electric field: travels as a wave Wavelength (or frequency) determines: - type of EM radiation - if in visible range, wavelength

More information

Experiment 7: Spectrum of the Hydrogen Atom

Experiment 7: Spectrum of the Hydrogen Atom Experiment 7: Spectrum of the Hydrogen Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30-6:30PM INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 Introduction The physics behind: The spectrum of

More information

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Lightbulbs Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Reminders: HW 7 due Monday at 10pm Simulations available in G116 Reading quiz on Tuesday, 10.1 EM radiation so far EM radiation

More information

Sunlight. 1 radiation.

Sunlight. 1 radiation. Sunlight The eye has evolved to see a narrow range of EM waves which we call 'visible light'. This visible range of frequency is due to the light comes from the Sun. The photosphere of the Sun is a blackbody

More information

School. Team Number. Optics

School. Team Number. Optics School Team Number Optics Physical Optics (30%) Proceed to the laser shoot (40%) when your team number is called. 1. What are the four colors used in the CMYK color model? (2 points) 2. Muscae Volitantes

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th 1) Taking a look at the 10-micrometer wavelength world.. 2) The decrease in RECEIVED RADIANT ENERGY as you move away

More information

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I

Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part I Purpose Investigate Kirchhoff s Laws for continuous, emission and absorption spectra Analyze the solar spectrum and identify unknown lines

More information

5.3. Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model Chemistry 5-3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the

More information

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence Light Emission Excitation Emission Spectra Incandescence Absorption Spectra Today s Topics Excitation/De-Excitation Electron raised to higher energy level Electron emits photon when it drops back down

More information

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction Chapter 8 Spectroscopy 8.1 Purpose In the experiment atomic spectra will be investigated. The spectra of three know materials will be observed. The composition of an unknown material will be determined.

More information

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011

Core Concept. PowerPoint Lectures to accompany Physical Science, 8e. Chapter 7 Light. New Symbols for this Chapter 3/29/2011 PowerPoint Lectures to accompany Physical Science, 8e Chapter 7 Light Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Core Concept Light is electromagnetic radiation

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle

Modern physics ideas are strange! L 36 Modern Physics [2] The Photon Concept. How are x-rays produced? The uncertainty principle L 36 Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s Modern physics ideas are strange!

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

IGHT RADE ASSESSMENT PACKET Discover refraction, reflection, beam scattering, optical density, transmission, and absorption as you investigate the electromagnetic spectrum using lenses, mirrors and filters

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Hubble Space Telescope

Hubble Space Telescope Before the first telescopes were invented at the beginning of the 17th century, people looked up at the stars with their naked eyes. The first refracting telescope that Galileo developed in 1609 was likely

More information

Decomposing white light into its components:

Decomposing white light into its components: Decomposing white light into its components: a. Look through a spectroscope at a white light from within the lab (if possible a fluorescent bulb output as well as a regular incandescent bulb) and the natural

More information

From Last Time Pearson Education, Inc.

From Last Time Pearson Education, Inc. From Last Time Light: Absorption, Emission, Transmission, Reflection, and Scattering c=λ x f E=h x f Light (electromagnetic radiation) extends from gamma rays (high E, high f, small λ) to radio waves (small

More information

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

More information

Recall: The Importance of Light

Recall: The Importance of Light Key Concepts: Lecture 19: Light Light: wave-like behavior Light: particle-like behavior Light: Interaction with matter - Kirchoff s Laws The Wave Nature of Electro-Magnetic Radiation Visible light is just

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

Susan Cartwright Our Evolving Universe 1

Susan Cartwright Our Evolving Universe 1 Atoms and Starlight Why do the stars shine? planets shine by reflected sunlight but what generates the Sun s light? What does starlight tell us about the stars? their temperature their chemical composition

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY SPECTROSCOPY SYNOPSIS: In this lab you will eplore different types of emission spectra, calibrate a spectrometer using the spectrum of a known element, and use your calibration to identify an unknown element.

More information

Light Emission.

Light Emission. Light Emission www.physics.sfasu.edu/friedfeld/ch29lec.ppt Radio waves are produced by electrons moving up and down an antenna. Visible light is produced by electrons changing energy states in an atom.

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Lecture #8. Light-matter interaction. Kirchoff s laws

Lecture #8. Light-matter interaction. Kirchoff s laws 1 Lecture #8 Light-matter interaction Kirchoff s laws 2 Line emission/absorption Atoms: release and absorb photons with a predefined set of energies (discrete). The number of protons determine the chemical

More information

Review: Light and Spectra. Absorption and Emission Lines

Review: Light and Spectra. Absorption and Emission Lines 1 Review: Light and Spectra Light is a wave It undergoes diffraction and other wave phenomena. But light also is made of particles Energy is carried by photons 1 Wavelength energy of each photon Computer

More information

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations

Today. life the university & everything. Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations life the university & everything Phys 2130 Day 41: Questions? The Universe Reminders: Review Wed & Fri Eyes to the web Final Exam Tues May 3 Check in on accomodations Today Today: - how big is the universe?

More information

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1

Kinds of Energy. Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation. Conservation of Energy. Sco; Denning CSU ESMEI ATS 1 Defining Energy is Hard! EXPLAIN: 1. Energy and Radiation Energy is the capacity to perform work (but physicists have a special definition for work, too!) Part of the trouble is that scientists have appropriated

More information

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE- ANSWER KEY Name HR Date

Planetary Science: Investigations 9-10 I-Check Quiz STUDY GUIDE- ANSWER KEY Name HR Date 1. How are different types of radiation arranged along the electromagnetic spectrum? A. By how fast they travel incorrect answer B. By their sources incorrect answer C. By the amount of energy they carry

More information

ASTRO Fall 2012 LAB #7: The Electromagnetic Spectrum

ASTRO Fall 2012 LAB #7: The Electromagnetic Spectrum ASTRO 1050 - Fall 2012 LAB #7: The Electromagnetic Spectrum ABSTRACT Astronomers rely on light to convey almost all of the information we have on distant astronomical objects. In addition to measuring

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules 1 Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller.

The Sun s center is much hotter than the surface. The Sun looks large and bright in the sky. Other stars look much smaller. The Sun A star is a huge ball of hot, glowing gases. The Sun is a star. The width of the Sun is equal to the width of 100 Earths placed side by side. The Sun is extremely hot. The surface of the Sun has

More information

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements Lecture 12 ASTR 111 Section 002 Measurements in Astronomy In astronomy, we need to make remote and indirect measurements Think of an example of a remote and indirect measurement from everyday life Using

More information

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom Periodic Table of Elements Taking Fingerprints of Stars, Galaxies, and Other Stuff Absorption and Emission from Atoms, Ions, and Molecules Universe is mostly (97%) Hydrogen and Helium (H and He) The ONLY

More information

We have already discussed what color is.

We have already discussed what color is. The Atom The Electrons in the Atom Reading Assignment: Read the entire chapter. Homework: see the web site for homework. http://web.fccj.org/~smilczan/psc/homework7_11.htm Electrons are the glue that hold

More information

Student Guide From Molecular Cores to Stars

Student Guide From Molecular Cores to Stars Team Members: Date: Student Guide From Molecular Cores to Stars Dust Hunt Driving Question: What are the characteristics of dust in our classroom, and how did it get here? Science Objectives: 1. Collect

More information

Chemistry 212 ATOMIC SPECTROSCOPY

Chemistry 212 ATOMIC SPECTROSCOPY Chemistry 212 ATOMIC SPECTROSCOPY The emission and absorption of light energy of particular wavelengths by atoms and molecules is a common phenomenon. The emissions/absorptions are characteristic for each

More information

Properties of Thermal Radiation

Properties of Thermal Radiation Observing the Universe: Telescopes Astronomy 2020 Lecture 6 Prof. Tom Megeath Today s Lecture: 1. A little more on blackbodies 2. Light, vision, and basic optics 3. Telescopes Properties of Thermal Radiation

More information

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction Introduction In this lab you will use a diffraction grating to split up light into its various colors (like a rainbow). You will assemble a spectrometer, incorporating the diffraction grating. A spectrometer

More information

Reading for Meaning and the Electromagnetic Spectrum!

Reading for Meaning and the Electromagnetic Spectrum! Earth Science Zimmerman Name: Period: Reading for Meaning and the Electromagnetic Spectrum! HOOK: An astronomer discovers a new galaxy. How can the Doppler Effect be applied to determine if that galaxy

More information

THE SUN, THE MOON AND OUR SOLAR SYSTEM TEACHER NOTES TO SHARE WITH STUDENTS

THE SUN, THE MOON AND OUR SOLAR SYSTEM TEACHER NOTES TO SHARE WITH STUDENTS THE SUN, THE MOON AND OUR SOLAR SYSTEM TEACHER NOTES TO SHARE WITH STUDENTS The Sun is the biggest feature in our solar system. It is the largest object and contains approximately 98% of the total solar

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds

Taking fingerprints of stars, galaxies, and interstellar gas clouds - - Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun. 6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

More information

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline Lecture Outline 5.1 Basic Properties of Light and Matter Chapter 5: Light: The Cosmic Messenger Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning How do we experience light? How do light and matter interact? How do we experience light?

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Name Date Class _. Please turn to the section titled The Nature of Light.

Name Date Class _. Please turn to the section titled The Nature of Light. Please turn to the section titled The Nature of Light. In this section, you will learn that light has both wave and particle characteristics. You will also see that visible light is just part of a wide

More information

Physics and the Quantum Mechanical Model

Physics and the Quantum Mechanical Model chemistry 1 of 38 Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its

More information

What is LIGHT? Reading Question

What is LIGHT? Reading Question Reading Question What is LIGHT? A. Light is a wave, like sound only much faster. B. Light is like little particles. Each one is a photon. C. Light is the absence of dark. D. A kind of energy we model with

More information

Lecture5PracticeQuiz.txt

Lecture5PracticeQuiz.txt TAKEN FROM HORIZONS 7TH EDITION CHAPTER 6 TUTORIAL QUIZ 1. The difference between radiation and sound is that a. radiation exhibits the Doppler effect, whereas sound does not. b. radiation travels much

More information

Astronomy 101 Lab: Spectra

Astronomy 101 Lab: Spectra Name: Astronomy 101 Lab: Spectra You will access your textbook in this lab. Pre-Lab Assignment: In class, we've talked about different kinds of spectra and what kind of object produces each kind of spectrum.

More information