Terrestrial Mercury Dynamics

Size: px
Start display at page:

Download "Terrestrial Mercury Dynamics"

Transcription

1 Terrestrial Mercury Dynamics Plus: New Atmospheric Mercury Redox Chemistry 6 th GEOS- Chem Mee.ng May 7 th, 213 Bess Sturges Corbi@ corbi@@seas.harvard.edu Co- authors and collaborators: Elsie Sunderland, Daniel Jacob, Hannah Horowitz, Nicole Smith Downey, Daniel Obrist, Charley Driscoll, and David Streets

2 Global Terrestrial Mercury Model Coupled to GEOS- Chem

3 Atmosphere- Terrestrial Mercury Exchange Terrestrial emissions account for an es.mated 2-3% of total emissions to the atmosphere in the present- day. Much of the mercury in present- day soils is legacy mercury from historical emissions. Dynamic bidirec.onal exchange occurs at the atmosphere- terrestrial interface: Present- day soil Hg storage Smith- Downey et al. 21 Previous modeling work has shown that terrestrial soils are important long- term reservoirs of mercury, but the magnitude is poorly constrained. Amos et al. 213

4 New Developments to the Global Terrestrial Mercury Model Mercury binds strongly to reduced sulfur groups in soil organic Here we use soil pool sulfur content from the CENTURY model to scale the affinity of mercury binding to SOM. 5, Mg C R R C S Hg S R S Based on Skyllberg et al. 28 The GTMM is based on the CASA carbon model, which defines soil pools based on characteris.c overturning.me (Smith- Downey et al. 21, PoOer et al. 1993). GEOS- Chem runs to an equilibrium natural state then to the present using historical anthropogenic emissions (Streets et al. 211). Monthly Hg atmospheric deposi.on fluxes and climate data drive the GTMM. A frac.on of mercury is released to atmosphere during microbial respira.on. 15 7, Mg 25, Mg 5, Mg CorbiO et al. in prep.

5 Evalua.on with recent observa.ons of throughfall Hg and leaf, and soil Hg:C Leaves ng Hg g - 1 C , 1,5 1, 5 1, 7,5 5, *Preliminary results Hg:C increases as more C than Hg is released during microbial respira.on of SOM (~5% Hg per C li@er pools, 3% soil pools ref. Pokharel et al. 211, Obrist et al. 21). Con.nuing work to run a fully coupled spin up from natural steady- state condi.ons to the present. Further evalua.on with deposi.on measurements. Different soil storage pa@erns from previous modeling work have implica.ons for long- term fate of Hg in soils. Soil 2,5 CorbiO et al. in prep. Data from Obrist et al. 211, Yu et al. in prep.

6 Modeling the Atmospheric Redox Chemistry of Mercury

7 Atmospheric Oxida.on and Reduc.on Chemistry Modified from Holmes et al. 21 aqueous photoreduc6on NO 2, HO 2, BrO, ClO Atmospheric models have not previously considered reac.on of HgBr with more abundant radicals like NO 2 and HO 2. Upward revision of the dissocia.on of HgBr works in the opposite direc.on, but the overall effect is more oxida.on. An increase in the (poorly constrained) photoreduc.on rate results in model atmospheric Hg concentra.ons comparable to observa.ons. HgBr 2 HgCl 2 HgBrHO 2 Hg Oxidant Op.ons in GEOS- Chem: Hg + OH à HgOH Hg + O 3 à HgO 3 Hg + Br + X à HgBrX, X = Br, OH (recommended) Hg + Br + X à HgBrX, X =OH, BrO, ClO, NO 2, and HO 2 (in development) HgBrNO 2 HgBrNO 2 Dibble et al. 212

8 Preliminary Model Results for New Redox Chemistry Dibble et al. 212 Redox Chemistry faster NO 2, HO 2, BrO, ClO Modeled atmospheric concentra.ons using faster redox are consistent with observa.ons. Net oxida.on (and consequently deposi.on) shiks more toward the poles in the model. aqueous photoreduc6on rate constant x5 Surface Total Gaseous Mercury Hg II Dry Deposi.on Wet Deposi.on Hg II Surface Concentra.on TGM [ng m - 3 ]

9 UT/LS Atmospheric Mercury Trend Ozone [ppbv] Lower Stratosphere Hg CARIBIC Hg Standard Chem Hg New Chem Hg Al.tude [km] Zonal Hg : New Chemistry Hg [ng m - 3 ] W 9W 9E 18E New Standard Chemistry Hg CorbiO et al. in prep. Hg [ng m - 3 ] Addi.onal chemical mechanisms are needed to explain the sharp decline in total measured atmospheric mercury above the tropopause. Al.tude [km] W 9W 9E 18E Difference [%] +1% +5% - 5% - 1%

Revisi&ng atmospheric Hg oxida&on mechanisms in GEOS- Chem: constraints from observa&ons

Revisi&ng atmospheric Hg oxida&on mechanisms in GEOS- Chem: constraints from observa&ons Revisi&ng atmospheric Hg oxida&on mechanisms in GEOS- Chem: constraints from observa&ons Hannah M. Horowitz Daniel J. Jacob, Helen M. Amos, Theodore S. Dibble, Franz Slemr, Johan A. Schmidt, Daniel A.

More information

Revisi&ng the GEOS- Chem atmospheric Hg simula&on: chemistry and emissions

Revisi&ng the GEOS- Chem atmospheric Hg simula&on: chemistry and emissions Revisi&ng the GEOS- Chem atmospheric Hg simula&on: chemistry and emissions Hannah M. Horowitz Daniel J. Jacob, Helen M. Amos, Theodore S. Dibble, Franz Slemr, Johan A. Schmidt, Daniel A. Jaffe, Seth Lyman,

More information

Chemical sources and sinks of Hg(II) in the remote atmospheric marine boundary layer

Chemical sources and sinks of Hg(II) in the remote atmospheric marine boundary layer Cruise May 22 Atlantic Cruise August 23 April 24 Chemical sources and sinks of Hg(II) in the remote atmospheric marine boundary layer Christopher D. Holmes Daniel J. Jacob Department of Earth & Planetary

More information

CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014

CHEM/ENVS 380 S14, Midterm Exam ANSWERS 1 Apr 2014 PART- A. Multiple Choice Questions (5 points each): Each question may have more than one correct answer. You must select ALL correct answers, and correct answers only, to receive full credit. 1. Which

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

Mae Gustin University of Nevada

Mae Gustin University of Nevada Mae Gustin Mae Gustin University of Nevada General -atmospheric Hg and watersheds Atmospheric contribution i from mining i Sources Form Measuring deposition Effect of mining on deposition Local Nevada

More information

Planetary Atmospheres Part 2

Planetary Atmospheres Part 2 Planetary Atmospheres Part 2 Atmospheric Layers: The temperature gradient (whether it increases or decreases with altitude) is set by the type of absorption that occurs. We can affect this! Photo- disassocia,on

More information

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde

Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde Jesper H. Christensen NERI-ATMI, Frederiksborgvej 399 4000 Roskilde The model work is financially supported by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

New Science Implementation in CMAQ-Hg: Test over a Continental United States Domain

New Science Implementation in CMAQ-Hg: Test over a Continental United States Domain New Science Implementation in CMAQ-Hg: Test over a Continental United States Domain Che-Jen Lin 1, Pruek Pongprueksa 1, Taruna Vanjani Thomas C. Ho 1, Hsing-wei Chu 1 & Carey Jang 2 1 College of Engineering,

More information

CMAQ Modeling of Atmospheric Mercury

CMAQ Modeling of Atmospheric Mercury CMAQ Modeling of Atmospheric Mercury CMAQ Model Peer Review December 17, 2003 O. Russell Bullock, Jr.* Atmospheric Sciences Modeling Division NOAA - Air Resources Laboratory * On assignment to the National

More information

Global Mercury Modeling at Environment Canada. Ashu Dastoor &Didier Davignon. Air Quality Research Division Environment Canada

Global Mercury Modeling at Environment Canada. Ashu Dastoor &Didier Davignon. Air Quality Research Division Environment Canada Global Mercury Modeling at Environment Canada Ashu Dastoor &Didier Davignon Air Quality Research Division Environment Canada Atmospheric Mercury Cycling in Environment Canada s Mercury Model - GRAHM Transport

More information

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2

ClO + O -> Cl + O 2 Net: O 3 + O -> O 2 + O 2 Lecture 36. Stratospheric ozone chemistry. Part2: Threats against ozone. Objectives: 1. Chlorine chemistry. 2. Volcanic stratospheric aerosols. 3. Polar stratospheric clouds (PSCs). Readings: Turco: p.

More information

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry

Chapter 18. Redox Reac)on. Oxida)on & Reduc)on 4/8/08. Electrochemistry Chapter 18 Electrochemistry Redox Reac)on One or more elements change oxida)on number all single displacement, and combus)on, some synthesis and decomposi)on Always have both oxida)on and reduc)on split

More information

Supplementary Information. Measurement-based modeling of daytime and nighttime oxidation of. Maor Gabay, Mordechai Peleg, Erick Fredj, Eran Tas

Supplementary Information. Measurement-based modeling of daytime and nighttime oxidation of. Maor Gabay, Mordechai Peleg, Erick Fredj, Eran Tas Supplementary Information Measurement-based modeling of daytime and nighttime oxidation of atmospheric mercury Maor Gabay, Mordechai Peleg, Erick Fredj, Eran Tas Accurate characterization of gaseous elemental

More information

Light and Atmosphere 1

Light and Atmosphere 1 Light and Atmosphere 1 Vibrational Modes Electronic Energy States: With molecules there`s an addi3onal complexity. e - In addi3on to electronic energy levels, molecules have vibra&onal energy levels. p

More information

Atmospheric Mercury Deposition Modeling

Atmospheric Mercury Deposition Modeling Atmospheric Mercury Deposition Modeling Brief review and comments on remaining uncertainties Frank J. Marsik University of Michigan NADP Total Deposition Science Meeting October 28 th, 2011 Gaseous Dry

More information

Fluxes: measurements and modeling. Flux

Fluxes: measurements and modeling. Flux Fluxes: measurements and modeling Schlesinger and Bernhardt Pg 135-150 Gustin flux paper Denmead, 2008 Baldocchi, 2012 Flux C time Amount of material transferred from one reservoir to the other Source

More information

Redox Equilibria ( , , ) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between

Redox Equilibria ( , , ) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between Redox Equilibria (17.11.2014, 18.11.2014, 24.11.2014) 1. Defining standard electrode poten;al and simple galvanic cells 2. Difference between galvanic cell and electroly;c cell and predic;ng feasibility

More information

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin HTAP, NASA JPL, 2/2/2012 Transport of Asian ozone pollution into surface air over the western U.S. in spring Meiyun Lin Lin, M., A. M. Fiore, L. W. Horowitz, O. R. Cooper, V. Naik, J. S. Holloway, B. J.

More information

The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics

The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics The Effect of Future Climate Change on Aerosols: Biogenic SOA and Inorganics GCAP Phase 2 Science Team Meeting October 12, 2007 Havala O. T. Pye 1, Hong Liao 2, John Seinfeld 1, Shiliang Wu 3, Loretta

More information

Sulfur Biogeochemical Cycle

Sulfur Biogeochemical Cycle Sulfur Biogeochemical Cycle Chris Moore 11/16/2015 http://www.inorganicventures.com/element/sulfur 1 Sulfur Why is it important? 14 th most abundant element in Earth s crust Sulfate is second most abundant

More information

Dust in the Earth System EESC G9910

Dust in the Earth System EESC G9910 Dust in the Earth System EESC G9910 Chemical transforma0ons in the atmosphere and deposi0on Jean Guo 2/10/2016 Impact of air pollu

More information

Tropospheric OH chemistry

Tropospheric OH chemistry Tropospheric OH chemistry CO Oxidation mechanism: CO + OH CO 2 + H, H + O 2 + M HO 2 + M, HO 2 + NO OH + NO 2 NO 2 + hν (+O 2 ) NO + O 3 Initiation step Propagation Net: CO + 2 O 2 CO 2 + O 3 HO 2 + HO

More information

Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based

Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based Global es)mates of evapotranspira)on for climate studies using mul)- sensor remote sensing data: Evalua)on of three process- based approaches Vinukollu, R.K., Wood, E.F., Ferguson, C.R., Fisher, J.B.:

More information

Chem 30A. Ch 7. Chemical Reactions

Chem 30A. Ch 7. Chemical Reactions Chem 30A Ch 7. Chemical Reactions Chemical Equations Chemical Reactions Chemical reac+on: a process that involves the rearrangement of the ways atoms are grouped together Evidence for Chemical Reactions

More information

NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States

NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States NO X emissions, isoprene oxidation pathways, and implications for surface ozone in the Southeast United States Katherine (Katie) Travis CMAS 216: 1/26/16 Co-authors: D. J. Jacob, J. A. Fisher, P. S. Kim,

More information

Global atmospheric model for mercury including oxidation by bromine atoms

Global atmospheric model for mercury including oxidation by bromine atoms Global atmospheric model for mercury including oxidation by bromine atoms The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch

Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch Introduction to Atmospheric Photochemistry AOSC 433/633 & CHEM 433 Ross Salawitch Class Web Site: http://www.atmos.umd.edu/~rjs/class/spr2015 Lecture 9 9 March 2015 1 Chapman Chemistry Production of stratospheric

More information

Using gravity wave parameteriza1ons to address WACCM discrepancies

Using gravity wave parameteriza1ons to address WACCM discrepancies Using gravity wave parameteriza1ons to address WACCM discrepancies A. K. Smith, J. H. Richter, R. R. Garcia, and WACCM team NCAR* * NCAR is sponsored by the Na1onal Science Founda1on focus on the tropics

More information

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 10. Stratospheric chemistry Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 The ozone layer Dobson unit: physical thickness (0.01 mm) of ozone layer if compressed to 1 atm, 0 o

More information

Approach Estimating Mercury Dry Deposition for AMNeT Leiming Zhang

Approach Estimating Mercury Dry Deposition for AMNeT Leiming Zhang Approach Estimating Mercury Dry Deposition for AMNeT Leiming Zhang Air Quality esearch Division Science and Technology Branch Environment Canada, Toronto Gaseous oxidized Hg (GOM) Particulate-bound Hg

More information

Chemical Transport of Atmospheric Mercury over the Pacific

Chemical Transport of Atmospheric Mercury over the Pacific Chemical Transport of Atmospheric Mercury over the Pacific C. Jerry Lin 1, Li Pan 1, David G. Streets 2, Carey Jang 3, and Terry Keating 4 1 College of Engineering, Lamar University, Beaumont, TX 2 ANL

More information

Introduction to HadGEM2-ES. Crown copyright Met Office

Introduction to HadGEM2-ES. Crown copyright Met Office Introduction to HadGEM2-ES Earth System Modelling How the climate will evolve depends on feedbacks Ecosystems Aerosols Chemistry Global-scale impacts require ES components Surface temperature Insolation

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

Ammonia Emissions and Nitrogen Deposition in the United States and China

Ammonia Emissions and Nitrogen Deposition in the United States and China Ammonia Emissions and Nitrogen Deposition in the United States and China Presenter: Lin Zhang Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University Acknowledge: Daniel J.

More information

Diagnos(cs and new Ozone Climatology

Diagnos(cs and new Ozone Climatology Diagnos(cs and new Ozone Climatology Simone Tilmes, Jean Francois, Louisa Emmons, Andrew Conley, Francis Vi9 Outline Model Chemistry Evalua3on Program New Ozone Climatology for Model Evalua3on Average

More information

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010 The Atmosphere All of it. In one hour. Mikael Witte 10/27/2010 Outline Structure Dynamics - heat transport Composition Trace constituent compounds Some Atmospheric Processes Ozone destruction in stratosphere

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Zn 0 + Cu 2+ SO 4. Cu 0 + Zn 2+ SO Na + Cl. 2 Zn O.S.: 0 +2 Cu O.S.: +2 0

Zn 0 + Cu 2+ SO 4. Cu 0 + Zn 2+ SO Na + Cl. 2 Zn O.S.: 0 +2 Cu O.S.: +2 0 Reduc&on and Oxida&on In addi&on to acid/base chemistry, another founda&on of chemistry is reduc+on/oxida+on (redox) chemistry. To understand redox reac&ons, we first have to understand the concept of

More information

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column.

2. Sketch a plot of R vs. z. Comment on the shape. Explain physically why R(z) has a maximum in the atmospheric column. 190 PROBLEMS 10. 1 Shape of the ozone layer Consider a beam of solar radiation of wavelength λ propagating downward in the vertical direction with an actinic flux I at the top of the atmosphere. Assume

More information

3. Carbon Dioxide (CO 2 )

3. Carbon Dioxide (CO 2 ) 3. Carbon Dioxide (CO 2 ) Basic information on CO 2 with regard to environmental issues Carbon dioxide (CO 2 ) is a significant greenhouse gas that has strong absorption bands in the infrared region and

More information

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic.

Chapman. 4. O + O 3 2 O 2 ; k 4 5. NO + O 3 NO 2 + O 2 ; k 5 6. NO 2 + O NO + O 2 ; k 6 7. NO 2 + hν NO + O; k 7. NO X Catalytic. ATM 507 Lecture 8 Text reading Section 5.7 Problem Set # 2 due Sept. 30 Note: next week class as usual Tuesday, no class on Thursday Today s topics Mid-latitude Stratosphere Lower Stratosphere 1 Let s

More information

DESCRIPTIVE INORGANIC CHEMISTRY April 2, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME.

DESCRIPTIVE INORGANIC CHEMISTRY April 2, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME. DESCRIPTIVE INORGANIC CHEMISTRY QUIZ III April 2, 2013 INSTRUCTIONS: PRINT YOUR NAME > NAME. SHOW YOUR WORK FOR PARTIAL CREDIT THERE IS A PERIODIC TABLE AND A TABLE OF BOND ENERGIES ATTACHED THE LAST PAGES

More information

Stratosphere and Ozone

Stratosphere and Ozone Stratosphere and Ozone Ozone (Greek, ozein, to smell) O 3 Chapman Mechanism O 2 + hv O + O O + O 3 2O 2 O 3 + hv O 2 + O O + O 2 + M O 3 + M third-body. anything What units are used to report the amount

More information

Evalua&ng Snow- Albedo Feedback in Climate Models

Evalua&ng Snow- Albedo Feedback in Climate Models Evalua&ng Snow- Albedo Feedback in Climate Models Paul Kushner, Dept. of Physics, University of Toronto Collaborators: Chris Fletcher (U. Toronto) and Hongxu Zhao (Environment Canada) Richard Fernandes

More information

Impact of Solar and Sulfate Geoengineering on Surface Ozone

Impact of Solar and Sulfate Geoengineering on Surface Ozone Impact of Solar and Sulfate Geoengineering on Surface Ozone Lili Xia 1, Peer J. Nowack 2, Simone Tilmes 3 and Alan Robock 1 1 Department of Environmental Sciences, Rutgers University, New Brunswick, NJ

More information

Adsorptive Transport of Noble Gas Tracers in Porous Media

Adsorptive Transport of Noble Gas Tracers in Porous Media Adsorptive Transport of Noble Gas Tracers in Porous Media Matthew J. Paul 1, Steven R. Biegalski 1, Derek A. Haas 1, Justin D. Lowrey 2 1 The University of Texas at Austin 2 Pacific Northwest National

More information

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB

SCIAMACHY book. Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB SCIAMACHY book Ozone variability and long-term changes Michel Van Roozendael, BIRA-IASB 1928: start of CFC production 1971: 1 st observation of CFC in the atmosphere (J. Lovelock) 1974: identification

More information

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes

Global Carbon Cycle - I Systematics: Reservoirs and Fluxes OCN 401-10 Nov. 16, 2010 KCR Global Carbon Cycle - I Systematics: Reservoirs and Fluxes The Global carbon cycle Reservoirs: biomass on land in the oceans, atmosphere, soil and rocks, waters Processes:

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Descrip(on of Chemistry, Aerosols in CESM and WACCM

Descrip(on of Chemistry, Aerosols in CESM and WACCM Descrip(on of Chemistry, Aerosols in CESM and WACCM Presented by Simone Tilmes, Mike Mills NESL: ACD/CGD Chemistry- Climate WG Co- Chairs: Louisa Emmons, Stephen Ghan, Noelle Eckley Selin WACCM WG Co-

More information

Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions

Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005jd006780, 2006 Atmospheric mercury chemistry: Sensitivity of global model simulations to chemical reactions Christian Seigneur, 1 Krish Vijayaraghavan,

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System

Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System Johannes Flemming (ECMWF), Vincent Huijnen (KNMI) and Luke Jones (ECMWF) Deliverable D G-RG 4.6 1 Abstract

More information

Halogen Chemistry in CAM-CHEM & CCMVal

Halogen Chemistry in CAM-CHEM & CCMVal Halogen Chemistry in CAM-CHEM & CCMVal D. Kinnison, A. Saiz-Lopez, J.F. Lamarque, S. Tilmes, plus A. Gettelman, J. Orlando, S. Schauffler, E. Atlas, and R. Garcia February 12 CCSM CCWG Boulder, Co dkin@ucar.edu

More information

JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT

JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT JOINT RETRIEVAL OF CO AND VIBRATIONAL TEMPERATURE FROM MIPAS-ENVISAT Joanne Walker and Anu Dudhia Atmospheric, Oceanic and Planetary Physics, Oxford Universtity, UK ABSTRACT MIPAS is a limb viewing fourier

More information

The Atmosphere. 1 Global Environments: 2 Global Environments:

The Atmosphere. 1 Global Environments: 2 Global Environments: 1 Global Environments: 2 Global Environments: Composition Vertical structure Heat transfer Atmospheric moisture Atmospheric circulation Weather and climate 3 Global Environments: The earth s atmosphere

More information

Chapter 19 ElectroChemistry

Chapter 19 ElectroChemistry Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 11July2009 Chapter 19 ElectroChemistry These Notes are to SUPPLIMENT the Text,

More information

Sources and acidity of sulfate-nitrateammonium aerosol in Arctic spring

Sources and acidity of sulfate-nitrateammonium aerosol in Arctic spring Sources and acidity of sulfate-nitrateammonium aerosol in Arctic spring Jenny A. Fisher Harvard University D. J. Jacob, J. E. Dibb, R. Bahreini, A. Middlebrook, Q. Wang, J. Mao IPY Oslo Science Conference

More information

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151

Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 Lecture 15 Antarctic Ozone Hole ATOC/CHEM 5151 1 Ozone Hole Theories 1. Solar activity: During periods of high solar activity, energetic particles are deposited high in the atmosphere, creating NOx. Perhaps

More information

ATMOSPHERIC MERCURY SIMULATION WITH CMAQ VERSION 4.5.1

ATMOSPHERIC MERCURY SIMULATION WITH CMAQ VERSION 4.5.1 ATMOSPHERIC MERCURY SIMULATION WITH CMAQ VERSION 4.5.1 O. Russell Bullock, Jr.* NOAA Air Resources Laboratory, Research Triangle Park, NC, USA (in partnership with the U.S. Environmental Protection Agency)

More information

Human impacts on open ocean mercury concentrations

Human impacts on open ocean mercury concentrations Click Here for Full Article GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 21,, doi:10.1029/2006gb002876, 2007 Human impacts on open ocean mercury concentrations Elsie M. Sunderland 1 and Robert P. Mason 2 Received

More information

APPLICATION OF CMAQ ON HEMISPHERIC SCALES

APPLICATION OF CMAQ ON HEMISPHERIC SCALES APPLICATION OF CMAQ ON HEMISPHERIC SCALES O. Russell Bullock, Jr.* and Rohit Mathur US Environmental Protection Agency, Research Triangle Park, NC, USA Francis S. Binkowski and Neil N. Davis Carolina Environmental

More information

Terrestrial Climate Change Variables

Terrestrial Climate Change Variables Terrestrial Climate Change Variables Content Terrestrial Climate Change Variables Surface Air Temperature Land Surface Temperature Sea Level Ice Level Aerosol Particles (acid rain) Terrestrial Climate

More information

Responsibilities of Harvard Atmospheric Chemistry Modeling Group

Responsibilities of Harvard Atmospheric Chemistry Modeling Group Responsibilities of Harvard Atmospheric Chemistry Modeling Group Loretta Mickley, Lu Shen, Daniel Jacob, and Rachel Silvern 2.1 Objective 1: Compile comprehensive air pollution, weather, emissions, and

More information

Es#ma#ng the Low La#tude Free Tropospheric Water Vapor Feedback via GPS RO

Es#ma#ng the Low La#tude Free Tropospheric Water Vapor Feedback via GPS RO Es#ma#ng the Low La#tude Free Tropospheric Water Vapor Feedback via GPS RO E.R Kursinski & A. L. Kursinski Broad Reach Engineering COSMIC Workshop Oct 30- Nov 1, 2012 Outline Mo#va#on Approach Comparison

More information

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations

Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Chem 116 POGIL Worksheet - Week 12 - Solutions Second & Third Laws of Thermodynamics Balancing Redox Equations Key Questions 1. Does the entropy of the system increase or decrease for the following changes?

More information

Atmospheric models. Chem Christoph Knote - NCAR Spring 2013

Atmospheric models. Chem Christoph Knote - NCAR Spring 2013 Atmospheric models Chem 55 - Christoph Knote - NCAR Spring 203 based on: Introduction to Atmospheric Chemistry, D. Jacob, Princeton Press, 999 Prof. Colette Heald s course http://www.atmos.colostate.edu/~heald/teaching.html

More information

Chem 30A. Ch 14. Acids and Bases

Chem 30A. Ch 14. Acids and Bases Chem 30A Ch 14. Acids and Bases Acids and Bases Acids and Bases Acids Sour taste Dissolve many metals Turn litmus paper red. Egs. Ace9c acid (vinegar), citric acid (lemons) Bases Bi>er taste, slippery

More information

When reading Chapter 4: Skip p (Balancing Redox Equations/Redox Titrations)

When reading Chapter 4: Skip p (Balancing Redox Equations/Redox Titrations) Announcements When reading Chapter 4: Skip p. 154-157 (Balancing Redox Equations/Redox Titrations) On to Chapter 5 today (Gases) Hour Exam 2 Aug 26 Goal is to cover up to and include Chapter 6.2-6.5 Don

More information

Introduction to basic mechanism of mercury removal from flue gas downstream incineration plants

Introduction to basic mechanism of mercury removal from flue gas downstream incineration plants Margot Bittig Institut für Energieund Umwelttechnik e.v. Introduction to basic mechanism of mercury removal from flue gas downstream incineration plants Building capacities for the improvement of the air

More information

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen 1 Physical Environment: EVPP 110 Lecture Fall 2003 Dr. Largen 2 Physical Environment: Atmosphere Composition Heat transfer Atmospheric moisture Atmospheric circulation Weather and climate 3 Physical Environment:

More information

Natural and anthropogenic aerosols in the UTLS: Sources and role of Asian monsoon transport

Natural and anthropogenic aerosols in the UTLS: Sources and role of Asian monsoon transport Natural and anthropogenic aerosols in the UTLS: Sources and role of Asian monsoon transport Mian Chin, NASA Goddard Space Flight Center + Tom Kucsera, Thomas Diehl, Huisheng Bian, Valentina Aquila, Qian

More information

Kinetic Studies of the Oxidation Pathways of Gaseous Elemental Mercury

Kinetic Studies of the Oxidation Pathways of Gaseous Elemental Mercury University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2008-06-11 Kinetic Studies of the Oxidation Pathways of Gaseous Elemental Mercury Deanna L. Donohoue

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version E of the exam. Please fill in (E). A) This

More information

On the importance of aqueous-phase chemistry on the oxidative capacity of the troposphere: A 3-dimensional global modeling study

On the importance of aqueous-phase chemistry on the oxidative capacity of the troposphere: A 3-dimensional global modeling study C O M E C A P 2 0 1 4 e - b o o k o f p r o c e e d i n g s v o l. 2 P a g e 282 On the importance of aqueous-phase chemistry on the oxidative capacity of the troposphere: A 3-dimensional global modeling

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. ASTRO 102/104 Prelim 2 Name Section MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) This is version B of the exam. Please fill in (B). A) This

More information

Practice Final CH142, Spring 2012

Practice Final CH142, Spring 2012 Practice Final CH142, Spring 2012 First here are a group of practice problems on Latimer Diagrams: 1. The Latimer diagram for nitrogen oxides in given below. Is NO stable with respect to disproportionation

More information

Water Vapor in the Stratospheric Overworld

Water Vapor in the Stratospheric Overworld Water Vapor in the Stratospheric Overworld Jonathon S. Wright Tsinghua University Center for Earth System Science March 12, 2012 Overview 1 What is the stratospheric overworld? 2 The importance of stratospheric

More information

A numerical modelling study on regional mercury budget for eastern North America

A numerical modelling study on regional mercury budget for eastern North America Atmos. Chem. Phys., 3, 535 548, 2003 Atmospheric Chemistry and Physics A numerical modelling study on regional mercury budget for eastern North America X. Lin and Y. Tao Kinectrics, 800 Kipling Avenue,

More information

Atmospheric Chemistry III

Atmospheric Chemistry III Atmospheric Chemistry III Chapman chemistry, catalytic cycles: reminder Source of catalysts, transport to stratosphere: reminder Effect of major (O 2 ) and minor (N 2 O, CH 4 ) biogenic gases on [O 3 ]:

More information

Global Carbon Cycle - I

Global Carbon Cycle - I Global Carbon Cycle - I OCN 401 - Biogeochemical Systems Reading: Schlesinger, Chapter 11 1. Overview of global C cycle 2. Global C reservoirs Outline 3. The contemporary global C cycle 4. Fluxes and residence

More information

Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern U.S. and the Atlantic Ocean

Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern U.S. and the Atlantic Ocean Submitted to J. Geophys. Res. Revised version,//0 Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern U.S. and the Atlantic Ocean SANFORD SILLMAN, FRANK J. MARSIK,

More information

Evalua&on, applica&on and development of ESM in China

Evalua&on, applica&on and development of ESM in China Evalua&on, applica&on and development of ESM in China Contributors: Bin Wang 1,2 1. LASG, Ins&tute of Atmospheric Physics, CAS 2. CESS, Tsinghua University 3. Beijing Normal University 4. Beijing Climate

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Energy Technology & Innovation Initiative FACULTY OF ENGINEERING. Mercury oxidation. Alastair Clements 13/06/2012

Energy Technology & Innovation Initiative FACULTY OF ENGINEERING. Mercury oxidation. Alastair Clements 13/06/2012 Energy Technology & Innovation Initiative FACULTY OF ENGINEERING Mercury oxidation Alastair Clements 13/06/2012 Outline Introduction to mercury Mercury oxidation Oxidation modelling Summary Further work

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Reference M atm -1 H / R,

Reference M atm -1 H / R, Table 1a: Henry's Law Constants of halogen containing compounds Species K H 298, M atm 1 H / R, K 1 BrO 48 K H 1 =K H 4 2 ClO 926 K H 2 =K H 5 3 HBr 0.72 6077 Sander and Crutzen, 1996 4 HOBr 48 Sander

More information

TM4-ECPL model : Oceanic Sources for Oxygenated VOC and Aerosols

TM4-ECPL model : Oceanic Sources for Oxygenated VOC and Aerosols TM4-ECPL model : Oceanic Sources for Oxygenated VOC and Aerosols Stelios Myriokefalitakis 1,2, Nikos Daskalakis 1,2 and Maria Kanakidou 1 1 Environmental Chemical Processes Laboratory, Department of Chemistry,

More information

Radiative forcing from tropospheric and stratospheric ozone

Radiative forcing from tropospheric and stratospheric ozone Radiative forcing from tropospheric and stratospheric ozone 1850-2100 David Stevenson (The University of Edinburgh) I. Cionni, V. Eyring, J. F. Lamarque, W. J. Randel, F. Wu, G. E. Bodeker, T. G. Shepherd,

More information

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere

Chapman Cycle. The cycle describes reactions of O 2 and O 3 in stratosphere Chapman Cycle The cycle describes reactions of O 2 and O 3 in stratosphere Even though reactions are happening, the concentration of O 3 remains constant This is an example of a dynamic equilibrium or

More information

Physiology Unit 1 CHEMISTRY REVIEW

Physiology Unit 1 CHEMISTRY REVIEW Physiology Unit 1 CHEMISTRY REVIEW Defini7ons Types of energy Kine7c vs. poten7al Forms of energy Chemical Ex: ATP Ma0er and Energy Electrical Ex: Ac7on poten7al of an neuron Mechanical Ex: Ac7on of muscles

More information

Interpre'ng Model Results

Interpre'ng Model Results Interpre'ng Model Results Clara Deser Na'onal Center for Atmospheric Research Boulder, CO CESM Tutorial, 12 August 2016 Interpre'ng Model Results 1) What kind of model? 2) What kind of simula'on? 3) What

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? About 10 km thick Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds What is an atmosphere? Sources of Gas Losses of Gas Thermal Escape Earth s Atmosphere About 10 km thick Consists mostly of molecular

More information

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece

Maria Kanakidou. Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece Maria Kanakidou Environmental Chemistry and Processes Laboratory, Chemistry Department, University of Crete, Heraklion, Greece mariak@chemistry.uoc.gr Why ocean should care for atmospheric chemistry? Impact

More information

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen

More information