Atomic Bonding & Material Properties

Size: px
Start display at page:

Download "Atomic Bonding & Material Properties"

Transcription

1 Lecture 1 cont.. Atomic Bonding & Material Properties Bonding Forces and Energies Consider two isolated atoms separated by inter-atomic dist r r At large r, atoms do not interact. As r gets smaller, an attractive force F A starts to act pulling atoms closer. As R 0, a repulsive force F R begin to act preventing atoms from getting too close.. Page 1

2 Resultant force is F F F N A R Force (F) Repulsive force At r = r o, F R = F A and F N = 0 O r o Resultant force r Attractive force r o is the equilibrium inter-atomic separation dist (r o 0.3 nm) at which atoms enter into bonding. 3 F R gives rise to a +ve Potential Energy (V Rep ) while F A gives rise to a ve P.E (V Att ) where V Rep r F dr R r Z Z e o r 2 2 dr and V Att r F dr A V Rep 1 m r B m r and V Att 1 n r A n r 2 Z Z e 1 2 A o Where 4, Z 1 & Z 2 are the Atomic Numbers. o o e = 1.6 x C, o = 8.85 x F/m o A, B, and n are constants. n 8. Page 2

3 The net potential V N V Att V Re p A n R B R m The NET Force F N dv dr na r n 1 mb m 1 r Fig shows variation of V N and F N with r called the Condon-Morse curves NB. At r = r o, V N = E 0 = Bonding energy E 0 = (Potential Energy Well) or min energy required to separate two atoms to an infinite separation. 5 V N Repulsive 0 r 0 r Potential Energy well E o Attractive r R r > r 0 ; V N increases gradually to 0 as R. The force is attractive r < r 0 ; V N increases rapidly to at small separation. The force is repulsive Page 3

4 Force vs. Separation Distance Energy vs. Separation Distance 7 Bonding Energies & Material properties Material properties depend on Depth of Energy well, E 0 Shape of the P.E well Type of bonding The deeper the well, the higher the bonding energy E 0, and the stronger the bonding High MP and material exists as solid Shallow well Low MP and material is gaseous e.g., H 2 8 Page 4

5 Energy r o smaller MP r larger MP MP is larger if E o is larger. 9 (a) Mechanical properties Elastic Modulus (E) = measure of resistance to separation of atoms i.e., inter-atomic bonding forces E Stress Strain df slope dr of Force vs dist curve at r o 10 Page 5

6 df the steeper the slope of dr, the deeper the well, higher the E stronger material Smaller E (Weaker material Large E (Stronger material) 11 (b) Thermal properties Linear thermal expansion coefficient ( ) L T T L o The trough at E o corresponds to equilibrium inter-atomic spacing at OK. 2 1 When a material is heated from T 1 to T 5, vibrational energy increases thereby increasing the width of the curve. 12 Page 6

7 length, L o unheated, T 1 heated, T 2 L Energy E o E o r o larger smaller r is larger if E o is smaller. ~ symmetric at r o 13 Curve is asymmetric Page 7

8 When E o is small (shallow well), and the curvature is very assymmetric, then, the interatomic spacing increase with temp rise indicating high. is small when E o is large & the well is deep and narrow is due to the asymmetric curvature of the P.E trough, rather than the increased atomic vibration amplitudes with rising temp. 15 If P.E curve were symmetric, there would be no net change in inter-atomic separation with rise in temp and consequently, no thermal expansion Metals >> Ceramics >> Polymers Because in metals, the vibrational transfer is through atoms and in ceramics it is through atoms and in polymers, it is due to the rotation and vibration of long chain molecules. 16 Page 8

9 Activity Question 1: a) Explain the thermal expansion of a material on the basis of the P.E -interatomic distance curve. b) On the same plot sketch the P.E-distance curve of a material with i) higher thermal expansion. Give example ii) lower thermal expansion. Give example c) How can the Young s modulus be determined from the energy-distance curve? 17 Activity -2 Question 2: Why do ceramics exhibit much lower strength than their theoretically expected strength of E/10? 18 Page 9

10 Atomic Bonding When atoms combine they form compounds that are unique both chemically & physically from its parent atoms. E.g., Na is a metal that reacts violently with water while Cl is a very poisonous greenishcolored gas BUT Na + Cl = Salt + = Bonding between the atoms is due to electrostatic interaction between nuclei and electrons. Atoms enter into bonding to achieve atomic stability determined by Hund s rule which favours closed electron shelf or half-shells in the atom. Type of bonding is influenced by the atom s position in the periodic table 20 Page 10

11 inert gases 7 horizontal rows are called periods. Elements Periodic in a Table given column or group have similar valence electron structures, as well as chemical and physical properties. give up 1e - give up 2e - H Li Be Na Mg give up 3e - accept 2e - accept 1e - O F S Cl He Ne Ar K Ca Sc Se Br Kr Rb Sr Y Te I Xe Cs Ba Po At Rn Fr Ra 22 Page 11

12 inert gases The Periodic Table Columns: Similar Valence Structure give up 1e - give up 2e - H Li Be Na Mg give up 3e - K Ca Sc Rb Sr Cs Ba Fr Ra Y accept 2e - accept 1e - O Se Br Kr Te He F Ne S Cl Ar I Xe Po At Rn Adapted from Fig. 2.6, Callister & Rethwisch 8e. Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions. 23 Electronegativity Ranges from 0.7 to 4.0, Large values: tendency to acquire electron Smaller electronegativity Larger electronegativity Adapted from Fig. 2.7, Callister & Rethwisch 8e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. 24 Page 12

13 Types of Atomic & Molecular Bonds Primary Atomic Bonds Ionic Bonds Covalent Metallic Secondary Atomic & Molecular Bonds Permanent Dipole (Van der Waals) bonds Fluctuating Dipole Bonds (a) Ionic Bonding Occurs between atoms lying at the two extreme ends of the periodic table. Atoms tend to lose or gain valency electrons to achieve complete outer shells thereby forming ions +ve ions (cations) or -ve ions (anions) Ionic Bonding results from the electrostatic attractions between +ve and ve ions Predominant bonding in Ceramics 26 Page 13

14 Examples: Ionic Bonding NaCl MgO CaF 2 CsCl Give up electrons Acquire electrons Adapted from Fig. 2.7, Callister & Rethwisch 8e. (Fig. 2.7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University. 27 Ionic Bonding in NaCl Page 14

15 Properties of ionic bonding Nondirectional - has same strength in all directions ST cations sorround themselves with as many anions as possible forming a giant molecule Low electrical & thermal conductivity No free electrons. Entire ion must move to conduct electricity Transparent Hard and Brittle - because the ions are bound strongly to the lattice and aren't easily displaced. High MP and BP - large amt of thermal energy is required to separate the ions which are bound by strong electrical forces. 29 (b) Covalent Bonding Takes place between atoms with small differences in electronegativity which are close to each other in periodic table (i.e., between non-metals and non-metals lying in the central column of the periodic table ). Bonding results from sharing of outer s and p electrons so that each atom attains the noble-gas electron configuration. 30 Page 15

16 column IVA H 2.1 Li 1.0 Na 0.9 K 0.8 Rb 0.8 Cs 0.7 Fr 0.7 Be 1.5 Mg 1.2 Ca 1.0 Sr 1.0 Ba 0.9 Ra 0.9 H2 Ti 1.5 Cr 1.6 Fe 1.8 H2O C(diamond) SiC Ni 1.8 Zn 1.8 Ga 1.6 C 2.5 Si 1.8 Ge 1.8 Sn 1.8 Pb 1.8 As 2.0 GaAs O 2.0 F 4.0 Cl 3.0 Br 2.8 I 2.5 At 2.2 He - Ne - Ar - Kr - Xe - Rn - F2 Cl2 Number of ē -pair bonds that an atom can form is determined by the 8-N rule where N = No of the column in the periodic table containing the atom. Thus, F can form 1 bond, O can form 2 bonds etc 31 Properties of Covalent bonding Directional strength of bond not equal in all directions Low electrical & thermal conductivity Since electrons cannot move through the lattice. Very strong (diamond) or very weak (bismuth). High MP and BP -because each atom is bound by strong covalent bonds. E.g., Diamond, silicon, CH 4, H 2 O, HNO 3, H 2, Cl 2, F 2, etc., 32 Page 16

17 (c ) Metallic Bonding In metals, all valence electrons in a metal combine to form a sea of electrons that move freely between the atom cores. A metallic bond results from the electrostatic force of attraction between +ve ions and delocalized outer electrons. The free electrons act as the bond (or as a glue ) between the +ve ions. As a result we have a high ductility (plastic deformation) of metals - the bonds do not break when atoms are rearranged. The more electrons, the stronger the attraction. High MP and BP and the metal is stronger and harder. 34 Page 17

18 Properties of Metallic bonding Non-directional bond High Thermal & electrical conductivity Due to free electrons Ductile, opaque The metallic bond is weaker than the ionic and the covalent bonds. E.g., Na, Cu, Al, Au, Ag, etc. 35 NB. Transition metals (Fe, Ni, etc.) form mixed bonds, comprising of metallic and covalent bonds in-volving their 3d-electrons. As a result the transition met-als are more brittle (less ductile) than Au or Cu 36 Page 18

19 increases Bond type Example Bond Energy Optical Property Electrical Property Thermal Property Mechanical Property Ionic NaCl, ZnS Transparent Semiconductor High MP Hard & Brittle Covalent Diamond, Graphite Transparent & Coloured Insulators V. High MP & BP V. Hard Metallic Na, Fe, Cu, Ag Opaque & Reflecting Conductors Good heat conductors Tough & Ductile Molecular ( Van der Waals) Ne, Ar, Xe, Phenol, Transparent Insulators Low MP Soft and brittle Hydrogen Bonding Ice, Organic solids, H2, CH4 Transparent Insulators Low MP Soft and brittle 37 Activity Explain the general properties of ionic, covalent and metallic bonding giving examples in each case 38 Page 19

20 Secondary Bonds (Van der Waal) They are physical bonds involving no electron movement Secondary bonds are as a result of the interaction of the electric dipoles contained in atoms or molecules A dipole exists in a molecule if there is asymmetry in its electron density distribution due to large difference in electronegativities between atoms, S.T. there is some separation of positive and negative portions of an atom or molecule. Special case: Hydrogen bonding. 39 Can be divided by: (1) Fluctuating Dipoles (2) Permanent Dipoles Fluctuating dipoles are due asymmetrical electron charge distribution within the atoms that changes in both direction and magnitude with time. symmetric asymmetric 40 Page 20

21 E.g Electron charge cloud distribution in a noble-gas atom Idealized symmetrical electron charge cloud distribution Real case with asymmetrical electron charge cloud distribution that changes with time, creating a Fluctuating electric dipoles Permanent Dipoles Polar Molecules have Permanent dipole and can induce dipoles in adjacent non-polar molecules and bonding can take place between the permanent and induced dipoles. E.g. Hydrogen bonding Page 21

22 Examples of Hydrogen Bonding: o HF, o HCl o H 2 O, o Polymers 43 In hydrogen bonding, the H end of the molecule is positively charged and can bond to the negative side of another H 2 O molecule (the O side of the H 2 O dipole) Hydrogen bond secondary bond formed between two permanent dipoles in adjacent water molecules. 44 Page 22

23 The bigger a molecule is, the easier it is to polarise (to form a dipole), and so the van der Waal's forces get stronger, so bigger molecules exist as liquids or solids rather than gases. Physical Bonds (no electron involvement). 45 The ability of geckos to hang on vertical or upside down on flat surface has been attributed to the van der Waals forces between these surfaces and the spatulae on their toes. 46 Page 23

24 Questions How can the high electrical and thermal conductivities of metals be explained by the electron gas model of metallic bonding? Ductility? SOLUTION The high electrical and thermal conductivities of metals are explained by the mobility of their outer valence electrons in the presence of an electrical potential or thermal gradient. The ductility of metals is explained by the bonding electron gas which enables atoms to pass over each other during deformation, without severing their bonds. 48 Page 24

25 Summary A deep and narrow trough in the curve indicates large bond energy, high MP, large elastic modulus and small 49 Lecture -Evaluation 1. Explain ionic, covalent and metallic bonding 2. Explain secondary bonding and differentiate between permanent and fluctuating induced dipole bonds giving examples of each FWN_UoN 50 Page 25

26 General Properties of Materials Metals Composed of one or more metallic elements e.g., Iron, Copper, Aluminum. Have crystalline structure with metallic bonding Valence electrons are detached from atoms, and spread in an 'electron sea' that "glues" the ions together. Metals and Alloys Ferrous Eg: Steel, Cast Iron Nonferrous Eg:Copper Aluminum FWN_UoN 52 Page 26

27 General Properties Strong in Tension & ductile with high fracture toughness Good conductors of electricity & heat Reflective (Shinny if polished) and Opaque to light FWN_UoN 53 Ceramics Properties & applications Classification Page 27

28 Ceramics means burnt stuff properties achieved through high-temperature heat treatment (firing). Ceramics are inorganic, non-metallic materials i.e., a combinations of metals or semiconductors with oxygen, nitrogen or carbon (e.g., Al 2 O 3, NaCl, SiC, SiO 2 ) Typically produced using clays and other minerals or chemically processed powders FWN_UoN 55 Bonding and structure bonds are mixture of ionic & covalent i.e., atoms behave like +ve or ve ions, and are bound by Coulomb forces. Type of bonding results in either crystalline (with atoms arranged in regular repetitive pattern) or amorphous (non-crystalline) e.g., glass FWN_UoN 56 Page 28

29 crystalline SEM of ceramic showing mullite crystals Amorphous 57 Diversity in properties ( Mechanical, Optical, Thermal, Electrical and Magnetic properties) stems from type internal structure and bonding Material properties are influenced by microstructural features viz: grain size Porosity & secondary phases grain boundaries Imperfections such as micro-cracks, defects FWN_UoN 58 Page 29

30 Flexural Strength (MPa) e.g. Elastic modulus of ceramics decreases with increase in Porosity Volume Porosity (%) Depence of Flexural strength (MOR) on porosity 60 Page 30

31 General Properties Brittle with low fracture Toughness Extreme hardness & wear resistant - Everlasting!!! Corrosion resistant Heat resistance Low Thermal Conductivity Low Electrical Conductivity Wide range of applications High heat capacity (high MP upto 1,600 C ) FWN_UoN 61 Applications Thermal insulator Abrasives Construction materials Cookery Examples - Porcelain, Glass, Silicon nitride. Insulation in brick walls Thermal insulators 62 Page 31

32 Classification of Ceramics Classified according to major functions i.e. Bonded Clay ( Traditional ) ceramics & Advanced ceramics FWN_UoN 63 Classification of Ceramics (a) Bonded Traditional ceramics Are Clay-based porous ceramics They include These include: (a) Structural Clay Products pottery, porcelain, tiles & Whitewares (Wall tiles, Electrical porcelain & Decorative ceramics) Bricks FWN_UoN 64 Page 32

33 (b) Refractory Ceramics High temp applications (d) Cement, glass FWN_UoN 65 Advanced Ceramics Exhibits superior mechanical, electrical, optical, properties and corrosion or oxidation resistance. Classified according to: Oxides: alumina, zirconia, Have low thermal conductivity & Used as thermal barriers to protect metals surfaces from wearing out Non-oxide ceramics: carbides and nitrides -SiC, Si3N4 etc. Extremly hard & used as polishing tools Composites: reinforced materials for high toughness e.g., bioceramics FWN_UoN 66 Page 33

34 SiC polishing tools zirconia Ceramic Matrix Composite (CMC) rotor FWN_UoN 67 Bioceramic implants Silicon carbide is used for inner plates of ballistic vests FWN_UoN 68 Page 34

35 Lecture -Evaluation 1. Explain bonding and structure in ceramics 2. Explain general properties of ceramics & their applications FWN_UoN 69 Page 35

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2-1 Atomic Structure (Freshman Chem.) atom

More information

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons Atomic Structure Neutrons: neutral Protons: positive charge (1.6x10 19 C, 1.67x10 27 kg) Electrons: negative charge (1.6x10 19 C, 9.11x10 31 kg) Atomic weight = m protons + m neutrons Atomic number (Z)

More information

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr.

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. : Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior

More information

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2 1 Fundamental concepts Proton and electron,

More information

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding CHAPTER 1 Atoms and bonding The periodic table Ionic bonding Covalent bonding Metallic bonding van der Waals bonding Atoms and bonding In order to understand the physics of semiconductor (s/c) devices,

More information

Chapter 2: Atomic structure and interatomic bonding

Chapter 2: Atomic structure and interatomic bonding Chapter 2: Atomic structure and interatomic bonding Fundamental concepts Electrons in atoms Periodic table Bonding forces and energies Chapter 2 - Chapter 2: Atomic structure and interatomic bonding Fundamental

More information

Chapter 2: Atomic structure and interatomic bonding. Chapter 2: Atomic structure and interatomic bonding

Chapter 2: Atomic structure and interatomic bonding. Chapter 2: Atomic structure and interatomic bonding Chapter 2: Atomic structure and interatomic bonding Fundamental concepts Electrons in atoms Periodic table Bonding forces and energies Chapter 2: Atomic structure and interatomic bonding Fundamental concepts

More information

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

Interatomic bonding 1

Interatomic bonding 1 Interatomic bonding 1 Bonding forces of atoms All forces playing role in bonding are electrostatic Coulomb forces. Nuclei attract electrons, but nuclei repulse each other as well as electrons do. So, bonding

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Structure-Property Correlation [2] Atomic bonding and material properties

Structure-Property Correlation [2] Atomic bonding and material properties MME 297: Lecture 05 Structure-Property Correlation [2] Atomic bonding and material properties Dr. A. K. M. Bazlur Rashid Professor, Department of MME BUET, Dhaka Topics to discuss today... Review of atomic

More information

Materials Science and Engineering I

Materials Science and Engineering I Materials Science and Engineering I Chapter Outline Review of Atomic Structure Electrons, Protons, Neutrons, Quantum number of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding

More information

Lecture Outline: Atomic Structure

Lecture Outline: Atomic Structure Lecture Outline: Atomic Structure Electronic Structure of the Atom Periodic Table Types of Atomic Bonding, primary/secondary bonds Coordination and next neighbors Binding Energy, Interatomic Spacing, &

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

Honors Chemistry - Unit 4 Bonding Part I

Honors Chemistry - Unit 4 Bonding Part I Honors Chemistry - Unit 4 Bonding Part I Unit 4 Packet - Page 1 of 8 Vocab Due: Quiz Date(s): Test Date: UT Quest Due: Bonding Vocabulary: see separate handout assignment OBJECTIVES: Chapters 4-8 Be able

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Chapter 2. Atomic Structure

Chapter 2. Atomic Structure Chapter 2 Atomic Structure 2 6 (a) Aluminum foil used for storing food weighs about 0. g per square cm. How many atoms of aluminum are contained in one 6.25 cm 2 size of foil? (b) Using the densities and

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Chapter 2: INTERMOLECULAR BONDING (4rd session)

Chapter 2: INTERMOLECULAR BONDING (4rd session) Chapter 2: INTERMOLECULAR BONDING (4rd session) ISSUES TO ADDRESS... Secondary bonding The structure of crystalline solids 1 REVIEW OF PREVIOUS SESSION Bonding forces & energies Interatomic vs. intermolecular

More information

Outlines. Types of bonds: - Ionic - Covalent - Metallic - Secondary bonding. Examples: - relation between bond energy and properties.

Outlines. Types of bonds: - Ionic - Covalent - Metallic - Secondary bonding. Examples: - relation between bond energy and properties. Outlines Types of bonds: - Ionic - Covalent - Metallic - Secondary bonding Examples: - relation between bond energy and properties Summary IONIC BONDING Electrostatic attraction between oppositely charged

More information

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER Intermolecular forces (IMFs) CONDENSED STATES OF MATTER States of Matter: - composed of particles packed closely together with little space between them. Solids maintain a. - any substance that flows.

More information

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC)

Metal Structure. Chromium, Iron, Molybdenum, Tungsten Face-centered cubic (FCC) Metal Structure Atoms held together by metallic bonding Crystalline structures in the solid state, almost without exception BCC, FCC, or HCP unit cells Bodycentered cubic (BCC) Chromium, Iron, Molybdenum,

More information

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the outermost, or highest energy level The number of Valence

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure Atom: Nucleus: protons and neutrons (neutral in charge) Electrons Electrons and protons are charged: e=1.6x10-19 Mass of protons and neutrons = 1.67x10-27 kg Mass of electron

More information

Stone Age (40,000 to 100,000 yrs ago): Stone tools, clay pots, skin

Stone Age (40,000 to 100,000 yrs ago): Stone tools, clay pots, skin UTM UNIVERSITI TEKNOLOGI MALAYSIA COURSE LEARNING OBJECTIVES Introduce the field of Materials Science and Engineering 1. INTRODUCTION & ATOMIC STRUCTURE Provide introduction to the classification of materials

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds Involves valence electrons. PE is lower in bonded atoms. Attractive force that develops

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure 2-1 What is meant by the term composition of a material? The chemical make-up of the material. 2-2 What is meant by the term structure of a material? The spatial arrangement

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

ENGINEERING MATERIALS SCIENCE (ME 370)

ENGINEERING MATERIALS SCIENCE (ME 370) ENGINEERING MATERIALS SCIENCE (ME 370) Chapter 1 Why Materials? Well, everything that surrounds us is made of some type of materials. After all, we live in a Materialistic Society. This synonym with Capitalistic

More information

-Atomic Bonding in Solids

-Atomic Bonding in Solids -Atomic Bonding in Solids Three different types of primary or chemical bond are found in solids ionic, covalent, and metallic. For each type, the bonding necessarily involves the valence electrons; furthermore,

More information

CHAPTER 2. Atomic Structure And Bonding 2-1

CHAPTER 2. Atomic Structure And Bonding 2-1 CHAPTER 2 Atomic Structure And Bonding 2-1 Structure of Atoms ATOM Basic Unit of an Element Diameter : 10 10 m. Neutrally Charged Nucleus Diameter : 10 14 m Accounts for almost all mass Positive Charge

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 186 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Review: Comparison of ionic and molecular compounds Molecular compounds Ionic

More information

PROPERTIES OF SOLIDS SCH4U1

PROPERTIES OF SOLIDS SCH4U1 PROPERTIES OF SOLIDS SCH4U1 Intra vs. Intermolecular Bonds The properties of a substance are influenced by the force of attraction within and between the molecules. Intra vs. Intermolecular Bonds Intramolecular

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

Everything starts with atomic structure and bonding

Everything starts with atomic structure and bonding Everything starts with atomic structure and bonding not all energy values can be possessed by electrons; e- have discrete energy values we call energy levels or states. The energy values are quantized

More information

Introduction to Engineering Materials ENGR2000 Chapter 12: Structures and Properties of Ceramics. Dr. Coates

Introduction to Engineering Materials ENGR2000 Chapter 12: Structures and Properties of Ceramics. Dr. Coates Introduction to Engineering Materials ENGR2000 Chapter 12: Structures and Properties of Ceramics Dr. Coates 12.1 Introduction Ceramics Compounds between metallic & non-metallic elements Predominantly ionic

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

The Fundamentals of Materials Science

The Fundamentals of Materials Science The Fundamentals of Materials Science An Introduction to Materials Science Chapter 2: Atomic Structure & Interatomic Bonding Shengjuan Li Email:usstshenli@usst.edu.cn Office: Room 201 in School of MSE

More information

PART CHAPTER2. Atomic Bonding

PART CHAPTER2. Atomic Bonding PART O N E APTER2 Atomic Bonding The scanning tunneling microscope (Section 4.7) allows the imaging of individual atoms bonded to a material surface. In this case, the microscope was also used to manipulate

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

(FIRST) IONIZATION ENERGY

(FIRST) IONIZATION ENERGY 181 (FIRST) IONIZATION ENERGY - The amount of energy required to remove a single electron from the outer shell of an atom. - Relates to reactivity for metals. The easier it is to remove an electron, the

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 1 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Chap 10 Part 3a.notebook December 12, 2017

Chap 10 Part 3a.notebook December 12, 2017 Metallic Bonding and Semiconductors Chapter 10 Sect 4 Metallic Bonding positive metal ions surrounded by a "sea of electrons" Bonding is strong and nondirectional Iron, Silver, alloys, Brass, Bronze Forces

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br

VIIIA He IIA IIIA IVA VA VIA VIIA. Li Be B C N O F Ne. Na Mg VIB VIIB VIIIB IB IIB S. K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br 188 THE FIRST TWO PERIODIC TRENDS IN A NUTSHELL LARGER IONIZATION ENERGY SMALLER RADIUS IA H IIA IIIA IVA VA VIA VIIA VIIIA He Li Be B C N O F Ne Na Mg IIIB IVB VB Al Si P VIB VIIB VIIIB IB IIB S Cl Ar

More information

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2 ATOMIC STRUCTURE AND BONDING IE-114 Materials Science and General Chemistry Lecture-2 Outline Atomic Structure (Fundamental concepts, Atomic models (Bohr and Wave-Mechanical Atomic Model), Electron configurations)

More information

Chapter 7. Periodic Properties of the Elements

Chapter 7. Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements periodic table the most significant tool that chemist use for organizing and remembering chemical facts 7.1 Development of the periodic table discovery of

More information

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table 8.1 Early Periodic Tables CHAPTER 8 Periodic Relationships Among the Elements 1772: de Morveau table of chemically simple substances 1803: Dalton atomic theory, simple table of atomic masses 1817: Döbreiner's

More information

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE PART 2 INTRODUCTION TO THE PERIODIC TABLE Contents 1. The Structure of the Periodic Table 2. Trends in the Periodic Table Key words: group, period, block,

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Name: Period: Due Date: 1-18-2019 / 100 Formative pts. Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Topic-1: Review: 1. Valence electrons: The electrons in the outermost of an atom Valence

More information

ATOMIC BONDING Atomic Bonding

ATOMIC BONDING Atomic Bonding ATOMIC BONDING Atomic Bonding Primary Bonds Secondary Bonds Ionic Covalent Metallic van der Waals 1. IONIC BONDING q 11 Na & 17 Cl These two ions are attracted to eachother by the electrostatic force developed

More information

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur

Solid Type of solid Type of particle Al(s) aluminium MgCl2 Magnesium chloride S8(s) sulfur QUESTION (2017:1) (iii) Sodium chloride, NaCl, is another compound that is excreted from the body in sweat. Use your knowledge of structure and bonding to explain the dissolving process of sodium chloride,

More information

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 180 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Chapter 2: Atomic Structure. Atomic structure, short- and long-range atomic arrangements, nanostructure, microstructure, and macrostructure.

Chapter 2: Atomic Structure. Atomic structure, short- and long-range atomic arrangements, nanostructure, microstructure, and macrostructure. Science and Engineering of Materials 7th Edition Askeland SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/science-engineering-materials-7thedition-askeland-solutions-manual/

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics

Chapter Outline: Ceramics. Chapter 13: Structure and Properties of Ceramics Chapter Outline: Ceramics Chapter 13: Structure and Properties of Ceramics Crystal Structures Silicate Ceramics Carbon Imperfections in Ceramics Optional reading: 13.6 13.10 University of Virginia, Dept.

More information

CHAPTER 8 Ionic and Metallic Bonds

CHAPTER 8 Ionic and Metallic Bonds CHAPTER 8 Ionic and Metallic Bonds Shows the kind of atoms and number of atoms in a compound. MgCl 2 NaCl CaCO 3 Al 2 O 3 Ca 3 (PO 4 ) 2 Chemical Formulas Al: Cl: counting atoms AlCl 3 Pb: N: O: Pb(NO

More information

- Some properties of elements can be related to their positions on the periodic table.

- Some properties of elements can be related to their positions on the periodic table. 179 PERIODIC TRENDS - Some properties of elements can be related to their positions on the periodic table. ATOMIC RADIUS - The distance between the nucleus of the atoms and the outermost shell of the electron

More information

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2 Chemical Bonding Ionic Bonding Unit 1 Chapter 2 Valence Electrons The electrons responsible for the chemical properties of atoms are those in the outer energy level. Valence electrons - The s and p electrons

More information

Chapter 6 - The Periodic Table and Periodic Law

Chapter 6 - The Periodic Table and Periodic Law Chapter 6 - The Periodic Table and Periodic Law Objectives: Identify different key features of the periodic table. Explain why elements in a group have similar properties. Relate the group and period trends

More information

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that

1. Following Dalton s Atomic Theory, 2. In 1869 Russian chemist published a method. of organizing the elements. Mendeleev showed that 20 CHEMISTRY 11 D. Organizing the Elements The Periodic Table 1. Following Dalton s Atomic Theory, By 1817, chemists had discovered 52 elements and by 1863 that number had risen to 62. 2. In 1869 Russian

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials

Materials for Civil and Construction Engineers CHAPTER 2. Nature of Materials Materials for Civil and Construction Engineers CHAPTER 2 Nature of Materials Bonds 1. Primary Bond: forms when atoms interchange or share electrons in order to fill the outer (valence) shells like noble

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

Chapter 7 Ionic and Metallic Bonding

Chapter 7 Ionic and Metallic Bonding Chapter 7 Ionic and Metallic Bonding Section 7.1 - Ions OBJECTIVES: Determine the number of valence electrons in an atom of a representative element. Section 7.1 - Ions OBJECTIVES: Explain how the octet

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts

Electrochemistry. Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts Part One: Introduction to Electrolysis and the Electrolysis of Molten Salts What do I need to know about electrochemistry? Electrochemistry Learning Outcomes: Candidates should be able to: a) Describe

More information

Section 2.5 Atomic Bonding

Section 2.5 Atomic Bonding Section 2.5 Atomic Bonding Metallic bond, Covalent bond, Ionic bond, van der Waals bond are the different types of bonds. Van der Waals interactions: London forces, Debye interaction, Keesom interaction

More information

Atomic Bonding and Materials Properties

Atomic Bonding and Materials Properties MME131: Lecture 5 Atomic Bonding and Materials Properties A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics What promote bonding? Classification and characteristics of atomic bond

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance CHEMICAL BONDING Chemical bonds are strong attractive force that exists between the atoms of a substance Chemical Bonds are commonly classified into 3 types: 1. IONIC BONDING Ionic bonds usually form between

More information

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions

- A CHEMICAL BOND is a strong attractive force between the atoms in a compound. attractive forces between oppositely charged ions 191 CHEMICAL BONDS - A CHEMICAL BOND is a strong attractive force between the atoms in a compound. 3 TYPES OF CHEMICAL BOND Ionic bonds attractive forces between oppositely charged ions sodium chloride

More information

UNIT 5.1. Types of bonds

UNIT 5.1. Types of bonds UNIT 5.1 Types of bonds REVIEW OF VALENCE ELECTRONS Valence electrons are electrons in the outmost shell (energy level). They are the electrons available for bonding. Group 1 (alkali metals) have 1 valence

More information

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING

ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING ENGR 151: Materials of Engineering LECTURE #2: ATOMIC STRUCTURE AND ATOMIC BONDING CHAPTER 1: INTRO Four components of MS field Processing, Structure, Properties, Performance Example: Aluminum Oxide different

More information

Electrons and Molecular Forces

Electrons and Molecular Forces Electrons and Molecular Forces Chemistry 30 Ms. Hayduk Electron Configuration Atomic Structure Atomic Number Number of protons in the nucleus Defines the element Used to organize the periodic table 1 Bohr

More information

Chapter 4. The Structure of Matter How atoms form compounds

Chapter 4. The Structure of Matter How atoms form compounds Chapter 4 The Structure of Matter How atoms form compounds Compounds Formed when two or more elements combine Must make a chemical change New properties Atoms from the different elements form bonds Chemical

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Periodic Table. Modern periodic table

Periodic Table. Modern periodic table 41 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

ORBITAL DIAGRAM - A graphical representation of the quantum number map of electrons around an atom. 160 ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom. 4p 3d 4s 3p 3s 2p 2s 1s Each blank represents an ORBITAL, and can hold two electrons. The 4s subshell

More information

Periodic Table & Families

Periodic Table & Families Periodic Table & Families Mendeleev s Table (1871) While it was the first periodic table, Mendeleev had very different elements, such as the very reactive potassium and the very stable copper, in the same

More information

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1

Nihal İKİZOĞLU. MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 MOSELEY and MODERN PERIODIC TABLE (designed by atomic numbers of elements) kimyaakademi.com 1 PERIODS: Period number = Number of basic energy levels = The principal quantum number The horizontal lines

More information

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS 48 CHEMICAL COMPOUNDS - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds! - There are TWO common kinds of chemical compound, classified

More information

Periodic Table. Modern periodic table

Periodic Table. Modern periodic table 41 Periodic Table - Mendeleev (1869): --- When atoms are arranged in order of their atomic weight, some of their chemical and physical properties repeat at regular intervals (periods) --- Some of the physical

More information

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e - Types of Bondings Primary bonding: e- are transferred or shared Strong (100-1000 KJ/mol or 1-10 ev/atom) Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information