CHAPTER 2. Atomic Structure And Bonding 2-1

Size: px
Start display at page:

Download "CHAPTER 2. Atomic Structure And Bonding 2-1"

Transcription

1 CHAPTER 2 Atomic Structure And Bonding 2-1

2 Structure of Atoms ATOM Basic Unit of an Element Diameter : m. Neutrally Charged Nucleus Diameter : m Accounts for almost all mass Positive Charge Electron Cloud Mass : x g Charge : x 10 9 C Accounts for all volume Proton Mass : x g Charge : x C Neutron Mass : x g Neutral Charge 2-2

3 Atomic Number and Atomic Mass Atomic Number = Number of Protons in the nucleus Unique to an element Example :- Hydrogen = 1, Uranium = 92 Relative atomic mass = Mass in grams of x ( Avagadro Number) Atoms. Example :- Carbon has 6 Protons and 6 Neutrons. Atomic Mass = 12. One Atomic Mass unit is 1/12 th of mass of carbon atom. One gram mole = Gram atomic mass of an element. Example :- One gram Mole of Carbon 12 Grams Of Carbon x Carbon Atoms 2-3

4 Periodic Table 2-4 Source: Davis, M. and Davis, R., Fundamentals of Chemical Reaction Engineering, McGraw-Hill, 2003.

5 Example Problem A 100 gram alloy of nickel and copper consists of 75 wt% Cu and 25 wt% Ni. What are percentage of Cu and Ni Atoms in this alloy? Given:- 75g Cu Atomic Weight g Ni Atomic Weight Number of gram moles of Cu = Number of gram moles of Ni = Atomic Percentage of Cu = Atomic Percentage of Ni = 75 g = mol g/mol 25 g = mol g/mol = 73.5% ( ) ( ) = 25.5% 2-5

6 Electron Structure of Atoms Electron rotates at definite energy levels. Energy is absorbed to move to higher energy level. Energy is emitted during transition to lower level. Energy change due to transition = E = Absorb Energy (Photon) Emit Energy (Photon) hc λ h=planks Constant = 6.63 x J.s c= Speed of light λ = Wavelength of light Energy levels 2-6

7 Energy in Hydrogen Atom Hydrogen atom has one proton and one electron Energy of hydrogen atoms for different energy levels is given by (n=1,2..) principal quantum E = ev n 2 numbers Example:- If an electron undergoes transition from n=3 state to n=2 state, the energy of photon emitted is E = 1. 89ev 3 = 2 2 Energy required to completely remove an electron from hydrogen atom is known as ionization energy 2 2-7

8 Quantum Numbers of Electrons of Atoms Principal Quantum Number (n) Represents main energy levels. Range 1 to 7. Larger the n higher the energy. n=1 n=2 n=3 Subsidiary Quantum Number l Represents sub energy levels (orbital). Range 0 n-1. Represented by letters s,p,d and f. n=1 n=2 s orbital (l=0) p Orbital (l=1) 2-8

9 Quantum Numbers of Electrons of Atoms (Cont..) Magnetic Quantum Number m l. Represents spatial orientation of single atomic orbital. Permissible values are l to +l. Example:- if l=1, m l = -1,0,+1. I.e. 2l+1 allowed values. No effect on energy. Electron spin quantum number m s. Specifies two directions of electron spin. Directions are clockwise or anticlockwise. Values are +1/2 or 1/2. Two electrons on same orbital have opposite spins. No effect on energy. 2-9

10 Electron Structure of Multielectron Atom Maximum number of electrons in each atomic shell is given by 2n 2. Atomic size (radius) increases with addition of shells. Electron Configuration lists the arrangement of electrons in orbitals. Example :- Orbital letters Number of Electrons 1s 2 2s 2 2p 6 3s 2 Principal Quantum Numbers For Iron, (Z=26), Electronic configuration is 1s 2 2s 2 sp 6 3s 2 3p 6 3d 6 4s

11 Electron Structure and Chemical Activity Except Helium, most noble gasses (Ne, Ar, Kr, Xe, Rn) are chemically very stable All have s 2 p 6 configuration for outermost shell. Helium has 1s 2 configuration Electropositive elements give electrons during chemical reactions to form cations. Cations are indicated by positive oxidation numbers Example:- Fe : 1s 2 2s 2 sp 6 3s 2 3p 6 3d 6 4s 2 Fe 2+ : 1s 2 2s 2 sp 6 3s 2 3p 6 3d 6 Fe 3+ : 1s 2 2s 2 sp 6 3s 2 3p 6 3d

12 Electron Structure and Chemical Activity (Cont..) Electronegative elements accept electrons during chemical reaction. Some elements behave as both electronegative and electropositive. Electronegativity is the degree to which the atom attracts electrons to itself Measured on a scale of 0 to 4.1 Example :- Electronegativity of Fluorine is 4.1 Electronegativity of Sodium is 1. Na Te N O Fl 0 K 1 W 2H Se 3 4 Electropositive Electronegative 2-12

13 Atomic and Molecular Bonds Ionic bonds :- Strong atomic bonds due to transfer of electrons Covalent bonds :- Large interactive force due to sharing of electrons Metallic bonds :- Non-directional bonds formed by sharing of electrons Permanent Dipole bonds :- Weak intermolecular bonds due to attraction between the ends of permanent dipoles. Fluctuating Dipole bonds :- Very weak electric dipole bonds due to asymmetric distribution of electron densities. 2-12

14 Ionic Bonding Ionic bonding is due to electrostatic force of attraction between cations and anions. It can form between metallic and nonmetallic elements. Electrons are transferred from electropositive to electronegative atoms Electropositive Element Electron Transfer Electronegative Atom Cation +ve charge Electrostatic Attraction Anion -ve charge IONIC BOND 2-14

15 Ionic Bonding - Example Ionic bonding in NaCl Sodium Atom Na 3s 1 3p 6 Chlorine Atom Cl 2-15 Sodium Ion Na + I O N I C B O N D Chlorine Ion Cl - Figure 2.10

16 Ionic Force for Ion Pair Nucleus of one ion attracts electron of another ion. The electron clouds of ion repulse each other when they are sufficiently close. Force versus separation Distance for a pair of oppositely charged ions Figure

17 Ion Force for Ion Pair (Cont..) F ( Z )( Z ) Z e e = = attractive ( 4 ) ( ) 2 2 π ε a 4π ε 0 0a Z1,Z2 = Number of electrons removed or added during ion formation e = Electron Charge a = Interionic seperation distance ε = Permeability of free space (8.85 x c 2 /Nm 2 ) F F net repulsive = Z 1 = Z e nb a n+1 nb ( ) 2 4 0a a π ε 2 2 n+ 1 Z e 2 (n and b are constants) 2-17

18 Interionic Force - Example Force of attraction between Na+ and Cl - ions Z 1 = +1 for Na +, Z 2 = -1 for Cl - e = 1.60 x C, ε 0 = 8.85 x C 2 /Nm 2 a 0 = Sum of Radii of Na + and Cl - ions = nm nm = 2.76 x m Na + Cla 0 F attraction = Z 1 Z 2e 0a 2 2 ( 4 ) π ε = 4π (8.85 x 10 ( + 1)( 1)( C 2 19 C) /Nm2)(2.76 x m) = N 2-18

19 Interionic Energies for Ion Pairs Net potential energy for a pair of oppositely charged ions = E net = Z 1 Z 2 e + b ( ) 2 4π ε 0a a 2 Attraction Repulsion Energy Energy n Energy Released Energy Absorbed E net is minimum when ions are at equilibrium seperation distance a

20 Ion Arrangements in Ionic Solids Ionic bonds are Non Directional Geometric arrangements are present in solids to maintain electric neutrality. Example:- in NaCl, six Cl- ions pack around central Na+ Ions Ionic packing In NaCl and CsCl Figure 2.13 CsCl NaCl As the ratio of cation to anion radius decreases, fewer anion surround central cation. 2-20

21 Bonding Energies Lattice energies and melting points of ionically bonded solids are high. Lattice energy decreases when size of ion increases. Multiple bonding electrons increase lattice energy. Example :- NaCl Lattice energy = 766 KJ/mol Melting point = 801 o C CsCl Lattice energy = 649 KJ/mol Melting Point = 646 o C BaO Lattice energy = 3127 KJ/mol Melting point = 1923 o C 2-21

22 Covalent Bonding In Covalent bonding, outer s and p electrons are shared between two atoms to obtain noble gas configuration. Takes place between elements with small differences in electronegativity and close by in periodic table. In Hydrogen, a bond is formed between 2 atoms by sharing their 1s 1 electrons H + H H H Electron Pair Overlapping Electron Clouds H H s 1 Electrons Hydrogen Molecule

23 Covalent Bonding - Examples In case of F 2, O 2 and N 2, covalent bonding is formed by sharing p electrons Fluorine gas (Outer orbital 2s 2 2p 5 ) share one p electron to attain noble gas configuration. F + F H F F F F Bond Energy=160KJ/mol Oxygen (Outer orbital - 2s 2 2p 4 ) atoms share two p electrons O + O O O O = O Bond Energy=28KJ/mol 2-23 Nitrogen (Outer orbital - 2s 2 2p 3 ) atoms share three p electrons H H N + N N N N N Bond Energy=54KJ/mol

24 Covalent Bonding in Carbon Carbon has electronic configuration 1s 2 2s 2 2p 2 Ground State arrangement 1s 2s 2p Two ½ filed 2p orbitals Indicates carbon Forms two Covalent bonds 2-24 Hybridization causes one of the 2s orbitals promoted to 2p orbital. Result four sp3 orbitals. 1s 2p Four ½ filled sp 3 orbitals Indicates four covalent bonds are formed

25 Structure of Diamond Four sp 3 orbitals are directed symmetrically toward corners of regular tetrahedron. This structure gives high hardness, high bonding strength (711KJ/mol) and high melting temperature (3550 o C). Carbon Atom Figure 2.18 Tetrahedral arrangement in diamond Figure

26 Carbon Containing Molecules In Methane, Carbon forms four covalent bonds with Hydrogen. Molecules are very weekly bonded together resulting in low melting temperature (-183 o C). Carbon also forms bonds with itself. Molecules with multiple carbon bonds are more reactive. Examples:- H C H C H H Ethylene H C C Acetylene H Methane molecule Figure

27 Covalent Bonding in Benzene Chemical composition of Benzene is C 6 H 6. The Carbon atoms are arranged in hexagonal ring. Single and double bonds alternate between the atoms. H H C C C H H C C C H H Structure of Benzene Figure 2.23 Simplified Notations 2-27

28 Metallic Bonding 2-28 Atoms in metals are closely packed in crystal structure. Loosely bounded valence electrons are attracted towards nucleus of other atoms. Electrons spread out among atoms forming electron clouds. Positive Ion These free electrons are reason for electric conductivity and ductility Since outer electrons are shared by many atoms, metallic bonds are Non-directional Valence electron charge cloud Figure 2.24

29 Metallic Bonds (Cont..) Overall energy of individual atoms are lowered by metallic bonds Minimum energy between atoms exist at equilibrium distance a 0 Fewer the number of valence electrons involved, more metallic the bond is. Example:- Na Bonding energy 108KJ/mol, Melting temperature 97.7 o C Higher the number of valence electrons involved, higher is the bonding energy. Example:- Ca Bonding energy 177KJ/mol, Melting temperature 851 o C 2-29

30 Secondary Bonding Secondary bonds are due to attractions of electric dipoles in atoms or molecules. Dipoles are created when positive and negative charge centers exist. +q -q Dipole moment=µ =q.d q= Electric charge d = separation distance Figure 2.26 d There two types of bonds permanent and fluctuating. 2-30

31 Fluctuating Dipoles Weak secondary bonds in noble gasses. Dipoles are created due to asymmetrical distribution of electron charges. Electron cloud charge changes with time. Symmetrical distribution of electron charge Figure 2.27 Asymmetrical Distribution (Changes with time) 2-31

32 Permanent Dipoles Dipoles that do not fluctuate with time are called Permanent dipoles. Examples:- CH 4 Symmetrical Arrangement Of 4 C-H bonds No Dipole moment CH 3 Cl Asymmetrical Tetrahedral arrangement Creates Dipole 2-32

33 Hydrogen Bonds Hydrogen bonds are Dipole-Dipole interaction between polar bonds containing hydrogen atom. Example :- In water, dipole is created due to asymmetrical arrangement of hydrogen atoms. Attraction between positive oxygen pole and negative hydrogen pole. H O H Figure 2.28 Hydrogen Bond 2-33

Lecture 2: Atom and Bonding Semester /2013

Lecture 2: Atom and Bonding Semester /2013 EMT 110 Engineering Materials Lecture 2: Atom and Bonding Semester 1 2012/2013 Atomic Structure Fundamental Concept Atoms are the structural unit of all engineering materials! Each atoms consist of nucleus

More information

Materials Science and Engineering I

Materials Science and Engineering I Materials Science and Engineering I Chapter Outline Review of Atomic Structure Electrons, Protons, Neutrons, Quantum number of atoms, Electron states, The Periodic Table Atomic Bonding in Solids Bonding

More information

CHAPTER 2 1/1/2016. Atomic Structure. The Periodic Table Columns: Similar Valence Structure. Atomic Structure and Bonding

CHAPTER 2 1/1/2016. Atomic Structure. The Periodic Table Columns: Similar Valence Structure. Atomic Structure and Bonding inert gases 1/1/016 APTER Periodic Table Atomic Structure and Bonding 1 Source: Davis, M. and Davis, R., Fundamentals of hemical Reaction Engineering, McGraw-ill, 003. The Periodic Table olumns: Similar

More information

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm)

Ionic Bonding. Example: Atomic Radius: Na (r = 0.192nm) Cl (r = 0.099nm) Ionic Radius : Na (r = 0.095nm) Cl (r = 0.181nm) Ionic Bonding Ion: an atom or molecule that gains or loses electrons (acquires an electrical charge). Atoms form cations (+charge), when they lose electrons, or anions (- charge), when they gain electrons.

More information

CHAPTER 2: BONDING AND PROPERTIES

CHAPTER 2: BONDING AND PROPERTIES CHAPTER 2: BONDING AND PROPERTIES ISSUES TO ADDRESS... What promotes bonding? What types of bonds are there? What properties are inferred from bonding? Chapter 2-1 Atomic Structure (Freshman Chem.) atom

More information

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Structure: Electrons, Protons, Neutrons, Quantum mechanics

More information

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic

Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Chapter Outline Understanding of interatomic bonding is the first step towards understanding/explaining materials properties Review of Atomic Structure: Electrons, Protons, Neutrons, Quantum mechanics

More information

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons

Atomic Structure. Atomic weight = m protons + m neutrons Atomic number (Z) = # of protons Isotope corresponds to # of neutrons Atomic Structure Neutrons: neutral Protons: positive charge (1.6x10 19 C, 1.67x10 27 kg) Electrons: negative charge (1.6x10 19 C, 9.11x10 31 kg) Atomic weight = m protons + m neutrons Atomic number (Z)

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Electron Arrangement - Part 2

Electron Arrangement - Part 2 Brad Collins Electron Arrangement - Part 2 Chapter 9 Some images Copyright The McGraw-Hill Companies, Inc. Review Energy Levels Multi-electron 4d 4d 4d 4d 4d n = 4 4s 4p 4p 4p 3d 3d 3d 3d 3d n=3, l = 2

More information

Chemical bonding in solids from ab-initio Calculations

Chemical bonding in solids from ab-initio Calculations Chemical bonding in solids from ab-initio Calculations 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University

More information

Chemical bonds. In some minerals, other (less important) bond types include:

Chemical bonds. In some minerals, other (less important) bond types include: Chemical bonds Chemical bond: force of attraction between two or more atoms/ions Types of bonds in crystals: Ionic bond: electrostatic attraction between two oppositely charged ions. This type of bond

More information

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e - Types of Bondings Primary bonding: e- are transferred or shared Strong (100-1000 KJ/mol or 1-10 ev/atom) Ionic: Strong Coulomb interaction among negative atoms (have an extra electron each) and positive

More information

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2

ATOMIC STRUCTURE AND BONDING. IE-114 Materials Science and General Chemistry Lecture-2 ATOMIC STRUCTURE AND BONDING IE-114 Materials Science and General Chemistry Lecture-2 Outline Atomic Structure (Fundamental concepts, Atomic models (Bohr and Wave-Mechanical Atomic Model), Electron configurations)

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Atomic Structure & Interatomic Bonding

Atomic Structure & Interatomic Bonding Atomic Structure & Interatomic Bonding Chapter Outline Review of Atomic Structure Atomic Bonding Atomic Structure Atoms are the smallest structural units of all solids, liquids & gases. Atom: The smallest

More information

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules

Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Chapter 2. Atomic structure and interatomic bonding 2.1. Atomic structure 2.1.1.Fundamental concepts 2.1.2. Electrons in atoms 2.1.3. The periodic table 2.2. Atomic bonding in solids 2.2.1. Bonding forces

More information

PROPERTIES OF SOLIDS SCH4U1

PROPERTIES OF SOLIDS SCH4U1 PROPERTIES OF SOLIDS SCH4U1 Intra vs. Intermolecular Bonds The properties of a substance are influenced by the force of attraction within and between the molecules. Intra vs. Intermolecular Bonds Intramolecular

More information

Chapter 2: Atomic structure and interatomic bonding

Chapter 2: Atomic structure and interatomic bonding Chapter 2: Atomic structure and interatomic bonding Fundamental concepts Electrons in atoms Periodic table Bonding forces and energies Chapter 2 - Chapter 2: Atomic structure and interatomic bonding Fundamental

More information

Essential Organic Chemistry. Chapter 1

Essential Organic Chemistry. Chapter 1 Essential Organic Chemistry Paula Yurkanis Bruice Chapter 1 Electronic Structure and Covalent Bonding Periodic Table of the Elements 1.1 The Structure of an Atom Atoms have an internal structure consisting

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

Biotech 2: Atoms and Molecules OS Text Reading pp Electron cloud Atoms & Nucleus 2e Subatomic Particles Helium Electron cloud

Biotech 2: Atoms and Molecules OS Text Reading pp Electron cloud Atoms & Nucleus 2e Subatomic Particles Helium Electron cloud 9/4/017 Biotech : Atoms and Molecules OS Text Reading pp. 34-4 Atoms & Subatomic Particles Nucleus Helium e cloud cloud e Protons Neutrons Mass number = 4 s Nucleus Carbon atomic number = # of protons

More information

ATOMIC BONDING Atomic Bonding

ATOMIC BONDING Atomic Bonding ATOMIC BONDING Atomic Bonding Primary Bonds Secondary Bonds Ionic Covalent Metallic van der Waals 1. IONIC BONDING q 11 Na & 17 Cl These two ions are attracted to eachother by the electrostatic force developed

More information

Chapter 1 Chemical Bonding

Chapter 1 Chemical Bonding Chapter 1 Chemical Bonding 1.1 Atoms, Electrons, and Orbitals Atoms are composed of + Protons positively charged mass = 1.6726 X 10-27 kg Neutrons neutral mass = 1.6750 X 10-27 kg Electrons negatively

More information

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light)

3/30/2015. Third energy level. Second energy level. Energy absorbed. First energy level. Atomic nucleus. Energy released (as light) Chapter 2 An Introduction Chemistry Lecture 2: Energy Levels and Chemical Bonding Electrons are always moving Outside the nucleus in atomic orbitals Maybe usually Average distance from nucleus (size of

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on

1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on 1. The arrangement of the elements from left to right in Period 4 on the Periodic Table is based on A) atomic mass B) atomic number C) the number of electron shells D) the number of oxidation states 2.

More information

Atomic structure & interatomic bonding. Chapter two

Atomic structure & interatomic bonding. Chapter two Atomic structure & interatomic bonding Chapter two 1 Atomic Structure Mass Charge Proton 1.67 х 10-27 kg + 1.60 х 10-19 C Neutron 1.67 х 10-27 kg Neutral Electron 9.11 х 10-31 kg - 1.60 х 10-19 C Electron

More information

Test Review # 4. Chemistry: Form TR4-9A

Test Review # 4. Chemistry: Form TR4-9A Chemistry: Form TR4-9A REVIEW Name Date Period Test Review # 4 Location of electrons. Electrons are in regions of the atom known as orbitals, which are found in subdivisions of the principal energy levels

More information

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr.

Physics of Materials: Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. : Bonding and Material Properties On The basis of Geometry and Bonding (Intermolecular forces) Dr. Anurag Srivastava Atal Bihari Vajpayee Indian Institute of Information Technology and Manegement, Gwalior

More information

Chapter 9 Ionic and Covalent Bonding

Chapter 9 Ionic and Covalent Bonding Chem 1045 Prof George W.J. Kenney, Jr General Chemistry by Ebbing and Gammon, 8th Edition Last Update: 06-April-2009 Chapter 9 Ionic and Covalent Bonding These Notes are to SUPPLIMENT the Text, They do

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

Quantitative chemistry Atomic structure Periodicity

Quantitative chemistry Atomic structure Periodicity IB chemistry Units 1-3 review Quantitative chemistry Significant figures The mole- be able to convert to number of particles and mass Finding empirical and molecular formulas from mass percentage States

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Interatomic bonding 1

Interatomic bonding 1 Interatomic bonding 1 Bonding forces of atoms All forces playing role in bonding are electrostatic Coulomb forces. Nuclei attract electrons, but nuclei repulse each other as well as electrons do. So, bonding

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Bonding Practice Exam

Bonding Practice Exam Bonding Practice Exam Matching Match each item with the correct statement below. a. halide ion e. valence electron b. octet rule f. coordination number c. ionic bond g. metallic bond d. electron dot structure

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

1) Configurations of ions 2) Trends in atom size (atomic radius) 3) Trends in ion size 4) Ionization Potential

1) Configurations of ions 2) Trends in atom size (atomic radius) 3) Trends in ion size 4) Ionization Potential Chem 105 Friday 6 Nov 2009 1) Configurations of ions 2) Trends in atom size (atomic radius) 3) Trends in ion size 4) Ionization Potential 11/6/2009 1 Atomic Radius Measured in picometers (pm) 1 pm = 10

More information

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding

CHAPTER 1 Atoms and bonding. Ionic bonding Covalent bonding Metallic bonding van der Waals bonding CHAPTER 1 Atoms and bonding The periodic table Ionic bonding Covalent bonding Metallic bonding van der Waals bonding Atoms and bonding In order to understand the physics of semiconductor (s/c) devices,

More information

Electron configurations follow the order of sublevels on the periodic table.

Electron configurations follow the order of sublevels on the periodic table. Electron configurations follow the order of sublevels on the periodic table. 1 The periodic table consists of sublevel blocks arranged in order of increasing energy. Groups 1A(1)-2A(2) = s level Groups

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE The Ionic Bond Formation of Ions The

More information

Chapter 2: Atomic structure and interatomic bonding. Chapter 2: Atomic structure and interatomic bonding

Chapter 2: Atomic structure and interatomic bonding. Chapter 2: Atomic structure and interatomic bonding Chapter 2: Atomic structure and interatomic bonding Fundamental concepts Electrons in atoms Periodic table Bonding forces and energies Chapter 2: Atomic structure and interatomic bonding Fundamental concepts

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

The Periodic Table and Chemical Reactivity

The Periodic Table and Chemical Reactivity The and Chemical Reactivity Noble gases Less electronegative elements More electronegative elements Then what is electronegativity? The tendency of an atom to attract an electron (or electron density)

More information

-Atomic Bonding in Solids

-Atomic Bonding in Solids -Atomic Bonding in Solids Three different types of primary or chemical bond are found in solids ionic, covalent, and metallic. For each type, the bonding necessarily involves the valence electrons; furthermore,

More information

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed. CHEMICAL BONDS Atoms or ions are held together in molecules or compounds by chemical bonds. The type and number of electrons in the outer electronic shells of atoms or ions are instrumental in how atoms

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chemical Bond Concept Recall that an atom has core and valence electrons. Core electrons are found close to the nucleus. Valence electrons are found in the most distant s and

More information

PART CHAPTER2. Atomic Bonding

PART CHAPTER2. Atomic Bonding PART O N E APTER2 Atomic Bonding The scanning tunneling microscope (Section 4.7) allows the imaging of individual atoms bonded to a material surface. In this case, the microscope was also used to manipulate

More information

7. How many unpaired electrons are there in an atom of tin in its ground state? 2

7. How many unpaired electrons are there in an atom of tin in its ground state? 2 Name period AP chemistry Unit 2 worksheet 1. List in order of increasing energy: 4f, 6s, 3d,1s,2p 1s, 2p, 6s, 4f 2. Explain why the effective nuclear charge experienced by a 2s electron in boron is greater

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Compounds Bonded Elements Made up of two or more Types of atoms bonded together In a fixed ratio NEW SUBSTANCE Different Properties

Compounds Bonded Elements Made up of two or more Types of atoms bonded together In a fixed ratio NEW SUBSTANCE Different Properties Lecture 2 8/31/05 The Chemical Context of Life Atoms, Bonding, Molecules Before we start Website to get LECTURE NOTES http://www.uvm.edu/~dstratto/bcor011_handouts/ Questions from last time? Elements Pure

More information

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid?

CHAPTER 2 INTERATOMIC FORCES. atoms together in a solid? CHAPTER 2 INTERATOMIC FORCES What kind of force holds the atoms together in a solid? Interatomic Binding All of the mechanisms which cause bonding between the atoms derive from electrostatic interaction

More information

Chapter 8 The Concept of the Chemical Bond

Chapter 8 The Concept of the Chemical Bond Chapter 8 The Concept of the Chemical Bond Three basic types of bonds: Ionic - Electrostatic attraction between ions (NaCl) Metallic - Metal atoms bonded to each other Covalent - Sharing of electrons Ionic

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Li or Na Li or Be Ar or Kr Al or Si

Li or Na Li or Be Ar or Kr Al or Si Pre- AP Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius/Size 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Effective Nuclear Charge (Z eff) Ø Net positive

More information

CHEM 103 Quantum Mechanics and Periodic Trends

CHEM 103 Quantum Mechanics and Periodic Trends CHEM 103 Quantum Mechanics and Periodic Trends Lecture Notes April 11, 2006 Prof. Sevian Agenda Predicting electronic configurations using the QM model Group similarities Interpreting measured properties

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms.

4/4/2013. Covalent Bonds a bond that results in the sharing of electron pairs between two atoms. A chemical bond is a mutual electrical attraction between the nucleus and valence electrons of different atoms that binds the atoms together. Why bond? As independent particles, atoms have a high potential

More information

Shapes of the orbitals

Shapes of the orbitals Electrons Review and Periodic Table Trends Unit 7 Electrons Shapes of the orbitals Electron Configuration Electrons spin in opposite direction Background Electrons can jump between shells (Bohr s model

More information

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Unit 3: Chemical Bonding and Molecular Structure Bonds Forces that hold groups of atoms together and make them function as a unit. Ionic bonds transfer of electrons

More information

Chapter 3 Classification of Elements and Periodicity in Properties

Chapter 3 Classification of Elements and Periodicity in Properties Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles.

Test Review # 5. Chemistry: Form TR5-8A. Average Atomic Mass. Subatomic particles. Chemistry: Form TR5-8A REVIEW Name Date Period Test Review # 5 Subatomic particles. Type of Particle Location Mass Relative Mass Charge Proton Center 1.67 10-27 kg 1 +1 Electron Outside 9.11 10-31 kg 0-1

More information

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes

Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Name: Period: Due Date: 1-18-2019 / 100 Formative pts. Chemistry Unit: Chemical Bonding (chapter 7 and 8) Notes Topic-1: Review: 1. Valence electrons: The electrons in the outermost of an atom Valence

More information

1st Semester Review Worth 10% of Exam Score

1st Semester Review Worth 10% of Exam Score 1st Semester Review 2014-2015 Worth 10% of Exam Score Name: P: 1. Which of the following is the correct electron configuration for a neutral atom of oxygen in the ground state? A) 1s 2 2p 4 B) 1s 2 2s

More information

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

Chapter 6: Chemical Bonding

Chapter 6: Chemical Bonding Chapter 6: Chemical Bonding Learning Objectives Describe the formation of ions by electron loss/gain to obtain the electronic configuration of a noble gas. Describe the formation of ionic bonds between

More information

Chapter 2: Atomic Structure

Chapter 2: Atomic Structure Chapter 2: Atomic Structure Atom: Nucleus: protons and neutrons (neutral in charge) Electrons Electrons and protons are charged: e=1.6x10-19 Mass of protons and neutrons = 1.67x10-27 kg Mass of electron

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING CHAPTER 12 CHEMICAL BONDING Core electrons are found close to the nucleus, whereas valence electrons are found in the most distant s and p energy subshells. The valence electrons are responsible for holding

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 12 Chemical Bonding by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 12 1 Chemical Bond Concept

More information

Topic 3: Periodic Trends and Atomic Spectroscopy

Topic 3: Periodic Trends and Atomic Spectroscopy Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core

More information

CHAPTER 8 Ionic and Metallic Bonds

CHAPTER 8 Ionic and Metallic Bonds CHAPTER 8 Ionic and Metallic Bonds Shows the kind of atoms and number of atoms in a compound. MgCl 2 NaCl CaCO 3 Al 2 O 3 Ca 3 (PO 4 ) 2 Chemical Formulas Al: Cl: counting atoms AlCl 3 Pb: N: O: Pb(NO

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 3.1: What is the basic theme of organisation in the periodic table? Answer 1.1: The basic theme of organisation of elements in the periodic table is to classify the elements in periods and

More information

Chemistry Semester Test (a): 1. Low electrical conductivity is a property of: A. ions in solutions B. metals C. molten salts D. molecular compounds

Chemistry Semester Test (a): 1. Low electrical conductivity is a property of: A. ions in solutions B. metals C. molten salts D. molecular compounds Chemistry Semester Test (a): Name Chapters 1-6 Period: Write the letter of the best answer in the space provided. 1. Low electrical conductivity is a property of: A. ions in solutions B. metals C. molten

More information

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

There are two types of bonding that exist between particles interparticle and intraparticle bonding. There are two types of bonding that exist between particles interparticle and intraparticle bonding. Intraparticle bonding describes the forces that exist within a particle such as a molecule or ionic

More information

CHEM 1305 Introductory Chemistry

CHEM 1305 Introductory Chemistry CHEM 1305 Introductory Chemistry Introductory Chemistry: Concepts and Critical Thinking 7 th Edition, Charles H. Corwin Chapter 12. Chemical Bonding Modified by: Dr. Violeta F. Coarfa 1 Chemical Bond Concept

More information

Chapter 6 PRETEST: Chemical Bonding

Chapter 6 PRETEST: Chemical Bonding Chapter 6 PRETEST: Chemical In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.The charge on an ion is a. always positive.

More information

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that?

Question 3.2: Which important property did Mendeleev use to classify the elements in his periodic table and did he stick to that? Question 3.1: What is the basic theme of organisation in the periodic table? The basic theme of organisation of elements in the periodic table is to classify the elements in periods and groups according

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5.

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5. CHEM 121 Introduction to Fundamental Chemistry Summer Quarter 2008 SCCC Lecture 5 http://seattlecentral.edu/faculty/lcwest/che121 Forces Between Particles Noble Gas Configurations Ionic Bonding Ionic Compounds

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative

Helpful Hints Lewis Structures Octet Rule For Lewis structures of covalent compounds least electronegative Helpful Hints Lewis Structures Octet Rule Lewis structures are a basic representation of how atoms are arranged in compounds based on bond formation by the valence electrons. A Lewis dot symbol of an atom

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols Chapter 8: Bonding Section 8.1: Lewis Dot Symbols The Lewis electron dot symbol is named after Gilbert Lewis. In the Lewis dot symbol, the element symbol represents the nucleus and the inner electrons.

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

Name: Hr: 8 Basic Concepts of Chemical Bonding

Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1-8.2 8.3-8.5 8.5-8.7 8.8 Name: Hr: 8 Basic Concepts of Chemical Bonding 8.1 Chemical Bonds, Lewis Symbols, and the Octet Rule State the type of bond (ionic, covalent, or metallic) formed between any

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information