Topic 3: Periodic Trends and Atomic Spectroscopy

Size: px
Start display at page:

Download "Topic 3: Periodic Trends and Atomic Spectroscopy"

Transcription

1 Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core Electrons are the other electrons of an element and generally play no part in the reactivity and bonding of the element. 1. Write the electron configuration of the following elements and ions and identify which electrons are core electrons and which are valence electrons. Electron configuration Core electrons Valence electrons C 1s 2 2s 2 2p 2 1s 2 2s 2 2p 2 O O 2 1s 2 2s 2 2p 6 1s 2 2s 2 2p 6 Na Ca Ca 2+ Fe 3+ Se 2 Periodic Trends First Ionisation Energy increases across a period and decreases down a group. The first ionisation energy is: M (g) M + (g) + e - The trend reflects the effective nuclear charge experienced by the electron being removed. Blackman Figure

2 2. For each of the following pairs, predict which will have the largest ionisation energy. a. H or He b. He or Ne c. K or Ca d. Br or Kr e. N or P 3. Order these elements in terms of increasing first ionisation energy: As, Cs, N, Ne, Pb 4. The first ionisation energies of Mg, Al and Si are shown below. Element Atomic number E i (kj mol - 1 ) Atom configuration Mg Al Si Cation configuration a. Fill in the electronic configurations for the atoms and the 1+ cations. b. Which ionisation energy does not fit in with the trends we have learnt? c. Provide an explanation for this anomaly. The detail can often provide valuable information about orbital energies I.E. (kj/mol) H He Li Be B C N O F Ne Na Mg Al Si P Si Cl Ar 23

3 Electron Affinity is the energy associated with X (g) + e - X - (g). It is usually exothermic but the trends are complex. What can be said is that the electron affinity generally becomes more negative across a period. Blackman Figure 4.51 Atomic Radius decreases across a period and increases down a group. It is difficult to determine the exact size of an isolated atom, so the atomic radius is defined as half the distance between two atoms of the same element. Cations are always smaller, and anions larger, than the neutral atoms from which they are formed. Radius in nanometres: Li C Li C F C F For each of the following pairs, predict which atom is larger. Blackman Figure 4.47 a. Si or Cl b. S or Se 6. Predict whether the following atoms will be smaller or larger than As. a. P b. Ge c. Se d. Sb 7. For each of the following pairs, predict which is larger. a. Li or Li + b. F or F c. Na + or F - d. Ca 2+ or S 2 8. Order these elements in terms of increasing atomic radius: Bi, Ca, F, S, Se 24

4 9. Complete the following table: Element N 3 O 2 F Ne Na + Mg 2+ Al 3+ Atomic No No of electrons Relative size Electronegativity increases across a period and decreases down a group. Electronegativity is an empirical scale that represents the ability of an atom, when in a compound, to attract the electrons of a chemical bond towards itself. It was introduced by Linus Pauling who assigned values to the elements on an arbitrary scale from 0-4. Blackman Figure Order these elements in terms of increasing electronegativity: Co, F, Ge, Rb, S 11. Explain why Cl has a higher electron affinity than Al. 12. Why are there no values of electronegativity assigned to the Noble gases? 13. Why are anions always larger than the neutral atom from which they are derived? 25

5 14. Identify the elements based on the following clues. a. Has a smaller atomic radius than hydrogen. b. Not a noble gas. Has a first ionisation energy larger than both nitrogen and oxygen. c. Has the smallest atomic radius of the metalloids. d. Has a partially filled 3p orbital and prefers to exist as the 2- anion. e. Has one electron in its valence s orbital. Has a lower first ionisation energy than rubidium. Spectroscopy and Electronic Transitions When an electron changes from one energy level to another light is either absorbed (electron moves from a low energy to higher energy orbital) or emitted. The energies of the orbitals are unique to each element (it depends on the number of electrons present and the number of protons in the nucleus). Studying these transitions is called spectroscopy. UV-Visible versus X-ray Spectrometry The visible and UV wavelength range corresponds to changes in outer electron configurations for most atoms. The energies involved are similar to or less than the ionization energy of the element. When an atom bonds to form a compound, the valence electrons are involved and this may change the energy of the electrons involved. Consequently molecules also display a unique spectrum. Emission spectroscopy records the energy change when an electron of an excited state atom falls to a lower energy orbital. This gives rise to the colours seen in fireworks or the flame tests for certain elements. Absorption spectroscopy records the absorption of energy by an atom when an electron is promoted to a higher energy orbital. Atomic absorption spectroscopy (AAS) is more sensitive than emission spectroscopy as there are a vastly greater number of atoms with electrons in the ground state (the starting point for AAS) than in the excited state (the starting point for emission spectroscopy). The colour Blackman Figures 41.5 and

6 observed is the complimentary colour to that absorbed and appear in the opposite side of the colour wheel. X- rays probe much higher energy changes in core electron configurations. These are insensitive to bonding (which mainly effects outer shell electrons), so elaborate preparations are not required. Other restrictions arise when working with x- ray and higher energies. 15. The absorbance spectrum of methyl orange in acidic and basic forms is shown below. Basic form Acidic form Absorbance Wavelength / nm 400 nm nm Violet Blue Green Yellow Orange Red a) Predict the colour of methyl orange in acidic and basic forms. b) What do you observe when a green laser pointer is pointed at the two solutions? 27

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus.

Periods: horizontal rows (# 1-7) 2. Periodicity the of the elements in the same group is explained by the arrangement of the around the nucleus. The Modern Periodic Table 1. An arrangement of the elements in order of their numbers so that elements with properties fall in the same column (or group). Groups: vertical columns (#1-18) Periods: horizontal

More information

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes

Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes Electron Configuration and Periodic Trends - Chapter 5 section 3 Guided Notes There are several important atomic characteristics that show predictable that you should know. Atomic Radius The first and

More information

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements

6.3 Periodic Trends > Chapter 6 The Periodic Table. 6.3 Periodic Trends. 6.1 Organizing the Elements. 6.2 Classifying the Elements 1 63 Periodic Trends > Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends 2 63 Periodic Trends > CHEMISTRY & YOU How are trends in the weather similar

More information

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small.

Trends in Atomic Size. What are the trends among the elements for atomic size? The distances between atoms in a molecule are extremely small. 63 Periodic Trends > 63 Periodic Trends > CHEMISTRY & YOU Chapter 6 The Periodic Table 61 Organizing the Elements 62 Classifying the Elements 63 Periodic Trends How are trends in the weather similar to

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table Effective nuclear charge: < effective nuclear charge is the attraction felt by the valence electrons from the nucleus < increases across a period : increases across because

More information

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A

CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A CHEMISTRY 110 EXAM 1 SEPTEMBER 20, 2010 FORM A 1. What are the correct numbers of protons, neutrons and electrons in a 39 K + ion? p n e A. 20 19 18 B. 20 19 19 C. 19 20 18 D. 19 20 19 E. 20 19 20 2. Which

More information

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca

SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca SAMPLE PROBLEMS! 1. From which of the following is it easiest to remove an electron? a. Mg b. Na c. K d. Ca 2. Which of the following influenced your answer to number one the most? a. effective nuclear

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 8 Atomic Theory Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 25 minutes to finish this portion of the test. No calculator should

More information

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02

Topic 3 Periodicity 3.2 Physical Properties. IB Chemistry T03D02 Topic 3 Periodicity 3.2 Physical Properties IB Chemistry T03D02 3.1 Physical Properties hrs 3.2.1 Define the terms first ionization energy and electronegativity. (1) 3.2.2 Describe and explain the trends

More information

Periodic Table trends

Periodic Table trends 2017/2018 Periodic Table trends Mohamed Ahmed Abdelbari Atomic Radius The size of an atom is defined by the edge of its orbital. However, orbital boundaries are fuzzy and in fact are variable under different

More information

Li or Na Li or Be Ar or Kr Al or Si

Li or Na Li or Be Ar or Kr Al or Si Pre- AP Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius/Size 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Effective Nuclear Charge (Z eff) Ø Net positive

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8th element had similar properties

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance CHEMICAL BONDING Chemical bonds are strong attractive force that exists between the atoms of a substance Chemical Bonds are commonly classified into 3 types: 1. IONIC BONDING Ionic bonds usually form between

More information

Chapter 1. I- Fill the following table. Element symbol and the mass no. n p n n n e. number. II - Choose the correct answer for the following: Ca-40

Chapter 1. I- Fill the following table. Element symbol and the mass no. n p n n n e. number. II - Choose the correct answer for the following: Ca-40 Chapter 1 I- Fill the following table. Element symbol and the mass no. Ca-40 Ca 2+ -40 O-17 O 2- -16 C-12 C-13 Atomic number n p n n n e II - Choose the correct answer for the following: 1. Consider the

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Electronic Structure and Bonding Review

Electronic Structure and Bonding Review Name: Band: Date: Electronic Structure and Bonding Review 1. For electrons: a. What is the relative charge? b. What is the relative mass? c. What is the symbol? d. Where are they located in the modern

More information

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy?

Atomic Structure. 1. For a hydrogen atom which electron transition requires the largest amount of energy? Atomic Structure 1. For a hydrogen atom which electron transition requires the largest amount of energy? A. n = 4 to n = 10 B. n = 3 to n = 2 C. n = 3 to n = 4 D. n = 1 to n = 3 E. n = 2 to n = 4 2. Which

More information

Chapter 7 Electron Configuration and the Periodic Table

Chapter 7 Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table 1864 - John Newlands - Law of Octaves- every 8 th element had similar properties

More information

Professor K. Section 8 Electron Configuration Periodic Table

Professor K. Section 8 Electron Configuration Periodic Table Professor K Section 8 Electron Configuration Periodic Table Schrödinger Cannot be solved for multielectron atoms We must assume the orbitals are all hydrogen-like Differences In the H atom, all subshells

More information

Chapter 7. Electron Configuration and the Periodic Table

Chapter 7. Electron Configuration and the Periodic Table Chapter 7 Electron Configuration and the Periodic Table Topics Development of the periodic table The modern periodic table Effective nuclear charge Periodic trends in properties of elements Electron configuration

More information

s or Hz J atom J mol or -274 kj mol CHAPTER 4. Practice Exercises ΔE atom = ΔE mol =

s or Hz J atom J mol or -274 kj mol CHAPTER 4. Practice Exercises ΔE atom = ΔE mol = CHAPTER 4 Practice Exercises 4.1 10 1 2.1410 s or Hz 4.3 ΔE atom = ΔE mol = 4.5610 J atom 19 1 2.7410 J mol or -274 kj mol 5 1-1 4.5 excitation energy = 471 kj mol 1 + 275 kj mol 1 = 746 kj mol 1 Hg 4.7

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity Atomic Structure and Periodicity Atoms and isotopes: Isotopes-#p + same for all but mass number is different b/c of # n o Average atomic mass is weighted average of all the isotopes for an element Average

More information

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium

Ø Draw the Bohr Diagrams for the following atoms: Sodium Potassium Rubidium Chemistry 11 Atomic Theory V Name: Date: Block: 1. Atomic Radius 2. Ionization Energy 3. Electronegativity 4. Chemical Bonding Atomic Radius Periodic Trends Ø As we move across a period or down a chemical

More information

Honors Chemistry: Chapter 4- Problem Set (with some 6)

Honors Chemistry: Chapter 4- Problem Set (with some 6) Honors Chemistry: Chapter 4- Problem Set (with some 6) All answers and work on a separate sheet of paper! Classify the following as always true (AT), sometimes true (ST), or never true (NT) 1. Atoms of

More information

Electron Configurations and the Periodic Table

Electron Configurations and the Periodic Table Electron Configurations and the Periodic Table The periodic table can be used as a guide for electron configurations. The period number is the value of n. Groups 1A and 2A have the s-orbital filled. Groups

More information

1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC.

1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC. Name: Date: 1. Given the following data, calculate the standard enthalpy of formation of tungsten carbide, WC. 2W(s) + 3O 2 (g) 2WO 3 (s); ΔH rxn = - 1685.8 kj C(graphite) + O 2 (g) CO 2 (g); ΔH rxn =

More information

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties

Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties Getting to know the Periodic Table: Recall: Elements are organized based on atomic number and similar properties 1. Find your staircase on the right side of the periodic table. Feel free to make the lines

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

Part A. Answer all questions in this part.

Part A. Answer all questions in this part. Part A Directions (1-20): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

More information

2. gamma, x-ray, U.V., Visible Light, I.R., Microwaves, radio waves.

2. gamma, x-ray, U.V., Visible Light, I.R., Microwaves, radio waves. CH40S 1. See notes. Atomic Structure Review Key 2. gamma, x-ray, U.V., Visible Light, I.R., Microwaves, radio waves. 3. Violet, indigo, blue, green, yellow, orange, red. 4. Inverse as wavelength increases,

More information

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period

Regan & Johnston Chemistry Unit 3 Exam: The Periodic Table Class Period Regan & Johnston Name Chemistry Unit 3 Exam: The Periodic Table Class Period 1. An atom of which element has the largest atomic radius? (1) Si (2) Fe (3) Zn (4) Mg 2. Which characteristics both generally

More information

2011 CHEM 120: CHEMICAL REACTIVITY

2011 CHEM 120: CHEMICAL REACTIVITY 2011 CHEM 120: CHEMICAL REACTIVITY INORGANIC CHEMISTRY SECTION Lecturer: Dr. M.D. Bala Textbook by Petrucci, Harwood, Herring and Madura 15 Lectures (4/10-29/10) 3 Tutorials 1 Quiz 1 Take-home test https://chemintra.ukzn.ac.za/

More information

Name Date Period. Can the properties of an element be predicted using a periodic table?

Name Date Period. Can the properties of an element be predicted using a periodic table? Name Date Period Periodic Trends Can the properties of an element be predicted using a periodic table? Why? Coleman; Chemistry The periodic table is often considered to be the best friend of chemists and

More information

Lesson 14: Periodic Trends

Lesson 14: Periodic Trends Lesson 14: Periodic Trends Review: Cations and Anions negative positive electrons n anion cation Metals lose electrons when they undergo chemical reactions. Na will always lose one electron. Nonmetals

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry

Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Name Objectives: Per. Electrons and Periodic Table (Ch. 4 & 5) OTHS Academic Chemistry Express the arrangement of electrons in atoms through electron configurations Understand the electromagnetic spectrum

More information

Shapes of the orbitals

Shapes of the orbitals Electrons Review and Periodic Table Trends Unit 7 Electrons Shapes of the orbitals Electron Configuration Electrons spin in opposite direction Background Electrons can jump between shells (Bohr s model

More information

Trends in the Periodic Table

Trends in the Periodic Table Trends in the Periodic Table A trend is a predictable change in a particular direction. Example: There is a trend in the alkali metals to increase in reactivity as you move down a group. Atomic Radius

More information

Slide 1 / Put the following elements in order of increasing atomic size: P, Cs, Sn, F, Sr, Tl

Slide 1 / Put the following elements in order of increasing atomic size: P, Cs, Sn, F, Sr, Tl Slide 1 / 54 1 Put the following elements in order of increasing atomic size: P, Cs, Sn, F, Sr, Tl Slide 2 / 54 2 Put the following elements in order of increasing atomic size: Ca, Rb, K, O, Al, As Slide

More information

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements PowerPoint to accompany Chapter 6 Periodic Properties of the Elements Development of the Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical,

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter 7 The Structure of Atoms and Periodic Trends

Chapter 7 The Structure of Atoms and Periodic Trends Chapter 7 The Structure of Atoms and Periodic Trends Jeffrey Mack California State University, Sacramento Arrangement of Electrons in Atoms Electrons in atoms are arranged as SHELLS (n) SUBSHELLS (l) ORBITALS

More information

List how many protons, neutrons, and electrons in the following isotopes

List how many protons, neutrons, and electrons in the following isotopes List how many protons, neutrons, and electrons in the following isotopes Silver 109 47 p + and e ; 62 n 0 Molybdenum 96 42 p + and e ; 54 n 0 Scandium 45 21 p + and e ; 24 n 0 1of 26 2of 26 Review: Which

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

The Electronic Theory of Chemistry

The Electronic Theory of Chemistry JF Chemistry CH1101 The Electronic Theory of Chemistry Dr. Baker bakerrj@tcd.ie Module Aims: To provide an introduction to the fundamental concepts of theoretical and practical chemistry, including concepts

More information

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding

Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding Chemistry 11 Review Package #3 Atomic Models and Subatomic Particles The Periodic Table Chemical Bonding 1. Atomic Models and Subatomic Particles: A. Subatomic Particles and Average Atomic Mass: - Subatomic

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME:

SCH3U- R. H. KING ACADEMY ATOMIC STRUCTURE HANDOUT NAME: Particle Theory of Matter Matter is anything that has and takes up. All matter is made up of very small. Each pure substance has its of particle, from the particles of other pure substances. Particles

More information

1) Which electron would be most likely to emit x-ray electromagnetic energy?

1) Which electron would be most likely to emit x-ray electromagnetic energy? AP Chemistry Test (Chapter 7) Multiple Choice (40%) 1) Which electron would be most likely to emit x-ray electromagnetic energy? A) n = 1 n = 6 B) n = 2 n = 3 C) n = 6 n = 1 D) n = 3 n = 2 2) Which statement

More information

Chapter 3: Elements and Compounds. 3.1 Elements

Chapter 3: Elements and Compounds. 3.1 Elements Chapter 3: Elements and Compounds 3.1 Elements An element is a fundamental substance that cannot be broken down by chemical or physical methods to simpler substances. The 118 known elements are nature

More information

Quantitative chemistry Atomic structure Periodicity

Quantitative chemistry Atomic structure Periodicity IB chemistry Units 1-3 review Quantitative chemistry Significant figures The mole- be able to convert to number of particles and mass Finding empirical and molecular formulas from mass percentage States

More information

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity

A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity A.P. Chemistry Practice Test - Ch. 7, Atomic Structure and Periodicity 1) Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation is MHz. A) 50 B) 20 C)

More information

Worksheet 5 - Chemical Bonding

Worksheet 5 - Chemical Bonding Worksheet 5 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Summation of Periodic Trends

Summation of Periodic Trends Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key

Supplemental Activities. Module: Atomic Theory. Section: Periodic Properties and Trends - Key Supplemental Activities Module: Atomic Theory Section: Periodic Properties and Trends - Key Periodic Table and Reactivity Activity 1 1. Consider lithium metal. a. Why don t we find lithium metal in its

More information

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5

Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Accelerated Chemistry Study Guide The Periodic Table, Chapter 5 Terms, definitions, and people Dobereiner Newlands Mendeleev Moseley Periodic table Periodic Law group family period Page 1 of 38 alkali

More information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information

Discovery of Elements. Dmitri Mendeleev Stanislao Canizzaro (1860) Modern Periodic Table. Henry Moseley. PT Background Information Discovery of Elements Development of the Periodic Table Chapter 5 Honors Chemistry 412 At the end of the 1700 s, only 30 elements had been isolated Included most currency metals and some nonmetals New

More information

Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals

Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Electron Configuration in Ionic Bonding Ionic Bonds Bonding in Metals Valence Electrons Electrons in the highest occupied energy level of an element s atoms Examples Mg: 1s 2 2s 2 2p 6 3s 2 2 valence e

More information

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm)

Chemistry 1A Midterm Exam 1 February 12, Potentially Useful Information. Violet Blue Green Yellow Orange Red Wavelength (nm) Chemistry 1A Midterm Exam 1 February 12, 2013 Professor Pines 5 pages total Student Name: Student ID#: Potentially Useful Information Violet Blue Green Yellow Orange Red 400 500 600 700 Wavelength (nm)

More information

POGIL 6 Key Periodic Table Trends (Part 2)

POGIL 6 Key Periodic Table Trends (Part 2) Honors Chem Block Name POGIL 6 Key Periodic Table Trends (Part 2) is a measure of the ability of an atom s nucleus to attract electrons from a different atom within a covalent bond. A higher electronegativity

More information

8.6,8.7 Periodic Properties of the Elements

8.6,8.7 Periodic Properties of the Elements Pre -AP Chemistry 8.6,8.7 Periodic Properties of the Elements READ p. 305 315, 294-296 Practice Problems Pg 315 -Exercise 8.9 Pg 318-321 #36, 55, 64, 66, 67, 69, 72, 80 Periodic Trends are predictable

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies Summation of Periodic Trends Factors Affecting Atomic Orbital Energies The Effect of Nuclear Charge (Z effective ) Higher nuclear charge lowers orbital energy (stabilizes the system) by increasing nucleus-electron

More information

Periodic Properties of the Elements

Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements DEVELOPMENT OF THE PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. Brown, LeMay,

More information

CDO AP Chemistry Unit 5

CDO AP Chemistry Unit 5 1. a. Calculate the wavelength of electromagnetic radiation that has a frequency of 5.56 MHz. b. Calculate the frequency of electromagnetic radiation that has a wavelength equal to 667 nm. 2. Electromagnetic

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

Electron configurations follow the order of sublevels on the periodic table.

Electron configurations follow the order of sublevels on the periodic table. Electron configurations follow the order of sublevels on the periodic table. 1 The periodic table consists of sublevel blocks arranged in order of increasing energy. Groups 1A(1)-2A(2) = s level Groups

More information

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies & electronegativity The Periodic Table What is the periodic

More information

Periodic Trends. Can the properties of an element be predicted using a periodic table?

Periodic Trends. Can the properties of an element be predicted using a periodic table? Why? Periodic Trends Can the properties of an element be predicted using a periodic table? The periodic table is often considered to be the best friend of chemists and chemistry students alike. It includes

More information

I. The Periodic Law and the Periodic Table. Electronic Configuration and Periodicity. Announcements Newland Law of Octaves

I. The Periodic Law and the Periodic Table. Electronic Configuration and Periodicity. Announcements Newland Law of Octaves Announcements EM radiation --Exam 3 Oct 3...Includes chapters 7/8/9/10 The excluded items include: 1. Classical distinction between energy and matter (p. 217) 2. Numerical problems involving the Rydberg

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

Atomic Radius. Half of the distance between two bonding atoms nuclei

Atomic Radius. Half of the distance between two bonding atoms nuclei Periodic Trends Atomic Radius Half of the distance between two bonding atoms nuclei Increases Atomic Radius Trend Increases Atomic Radius Across a Period Atomic radius generally decreases in size as you

More information

2.Ionization Energies

2.Ionization Energies 2.Ionization Energies Ionization energy, IE, is the energy required to remove one electron from an atom or ion; an endothermic process that is, A A + + 1 e - H = +ve The energy, in kj mol -1, required

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

Hydrogen (H) Nonmetal (none)

Hydrogen (H) Nonmetal (none) Honors Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Metal, Nonmetal or Group/Family Name Semi-metal (Metalloid)? Group 1, Period 1 Hydrogen

More information

Chapter #2 The Periodic Table

Chapter #2 The Periodic Table Chapter #2 The Periodic Table Mendeleeve (1834 1907), arranged the elements within a group in order of their atomic mass. He noted repeating patterns in their physical and chemical properties Periodic

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct.

Unit Two Test Review. Click to get a new slide. Choose your answer, then click to see if you were correct. Unit Two Test Review Click to get a new slide. Choose your answer, then click to see if you were correct. According to the law of definite proportions, any two samples of water, H2O, A. will be made up

More information

HSVD Ms. Chang Page 1

HSVD Ms. Chang Page 1 Name: Chemistry, PERIODIC TABLE 1. A solid element that is malleable, a good conductor of electricity, and reacts with oxygen is classified as a (1) noble gas (2) metalloid (3) metal (4) nonmetal 2. Which

More information

Trends of the Periodic Table Notes

Trends of the Periodic Table Notes Trends of the Periodic Table Notes 1. A salute to who invented the modern Table. 2. There are trends that go up and down in on the table. 3. There are other trends that go left and right in on the table.

More information

Chapter 11 Prep Test CLASS SET!!!! Matching

Chapter 11 Prep Test CLASS SET!!!! Matching CLASS SET!!!! ID: A Chapter 11 Prep Test Matching Match each item with the correct statement below. A electronegativity D period B ionization energy E transition metal C atomic radius F group 1 type of

More information

Development of the Periodic Table

Development of the Periodic Table Development of the Periodic Table John Newlands - Law of Octaves 1864 When arranged in order of atomic mass, every eighth element had similar properties. Dimitri Mendeleev / Lothar Meyer 1869 organized

More information

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table

8.1 Early Periodic Tables CHAPTER 8. Modern Periodic Table. Mendeleev s 1871 Table 8.1 Early Periodic Tables CHAPTER 8 Periodic Relationships Among the Elements 1772: de Morveau table of chemically simple substances 1803: Dalton atomic theory, simple table of atomic masses 1817: Döbreiner's

More information

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom.

Name: Block: Date: Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Name: Block: Date: Chemistry 11 Trends Activity Assignment Atomic Radius: the distance from the center of the nucleus to the outer most electrons in an atom. Ionic Radius: the distance from the center

More information

Periodic Table Workbook

Periodic Table Workbook Key Ideas: The placement or location of elements on the Periodic Table gives an indication of physical and chemical properties of that element. The elements on the Periodic Table are arranged in order

More information

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table?

CHAPTER 5 THE PERIODIC LAW. What types of useful information can you find on the Periodic Table? CHAPTER 5 THE PERIODIC LAW What types of useful information can you find on the Periodic Table? I. History of the Periodic Table A. Before the Periodic Table was invented, about 63 elements were known.

More information

Test Review # 4. Chemistry: Form TR4-5A 6 S S S

Test Review # 4. Chemistry: Form TR4-5A 6 S S S Chemistry: Form TR4-5A REVIEW Name Date Period Test Review # 4 Development of the Periodic Table. Dmitri Mendeleev (1869) prepared a card for each of the known elements listing the symbol, the atomic mass,

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

Ch 7: Periodic Properties of the Elements

Ch 7: Periodic Properties of the Elements AP Chemistry: Periodic Properties of the Elements Lecture Outline 7.1 Development of the Periodic Table The majority of the elements were discovered between 1735 and 1843. Discovery of new elements in

More information

Unit 1. Electronic Structure page 1

Unit 1. Electronic Structure page 1 Unit 1 Electronic Structure Section 1. Learning Outcomes Practice Questions Answers Electronic Structure Electromagnetic spectrum / calculations Electron configuration / Periodic Table Electronic Structure

More information

Chapter 2: Atoms and the Periodic Table

Chapter 2: Atoms and the Periodic Table 1. Which element is a nonmetal? A) K B) Co C) Br D) Al Ans: C Difficulty: Easy 2. Which element is a metal? A) Li B) Si C) Cl D) Ar E) More than one of the elements above are metals. 3. Which element is

More information

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity

Periodic Table Trends. Atomic Radius Ionic Radius Ionization Energy Electronegativity Periodic Table Trends Atomic Radius Ionic Radius Ionization Energy Electronegativity 1. Atomic Radius Atomic Radius - distance from nucleus to outermost atom Measured by dividing the distance between 2

More information

POGIL 5 KEY Periodic Table Trends (Part 1)

POGIL 5 KEY Periodic Table Trends (Part 1) Honors Chem Block Name POGIL 5 KEY Periodic Table Trends (Part 1) The periodic table is often considered to be the best friend of chemists and chemistry students alike. It includes information about atomic

More information

Periodic Variations in Element Properties

Periodic Variations in Element Properties OpenStax-CNX module: m51042 1 Periodic Variations in Element Properties OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end

More information

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass

1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass 1. The elements on the Periodic Table are arranged in order of increasing A atomic mass C molar mass A Br, Ga, Hg C O, S, Se B atomic number D oxidation number 2. Which list includes elements with the

More information

CHEMGGURU.ORG YOUTUBE: CHEMGGURU

CHEMGGURU.ORG YOUTUBE: CHEMGGURU Modern Periodic Law: Properties of elements are the periodic function to their atomic numbers. The periodicity in properties is due to repetition of similar outer shell electronic configuration at a certain

More information