Lecture 5 January 11, 2012 CC Bonds

Size: px
Start display at page:

Download "Lecture 5 January 11, 2012 CC Bonds"

Transcription

1 Lecture 5 January 11, 2012 CC Bonds Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William A. Goddard, III, wag@wag.caltech.edu 316 Beckman Institute, x3093 Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics, California Institute of Technology Teaching Assistants: Caitlin Scott <cescott@caltech.edu> 1

2 Now combine Carbon fragments to form larger molecules (old chapter 7) Starting with the ground state of CH 3 (planar), we bring two together to form ethane, H 3 C-CH 3. As they come together to bond, the CH bonds bend back from the CC bond to reduce overlap (Pauli repulsion or steric interactions between the CH bonds on opposite C). At the same time the 2pp radical orbital on each C mixes with 2s character, pooching it toward the corresponding hybrid orbital on the other C 120.0º 1.086A 107.7º 1.095A 1.526A 111.2º 2

3 Bonding (GVB) orbitals of ethane (staggered) Note nodal planes from orthogonalization to CH bonds on right C 3

4 There are two extreme cases for the orientation about the CC axis of the two methyl groups Staggered vs. Eclipsed The salient difference between these is the overlap of the CH bonding orbitals on opposite carbons. To whatever extent they overlap, S CH-CH Pauli requires that they be orthogonalized, which leads to a repulsion that increases exponentially with decreasing distance R CH-CH. The result is that the staggered conformation is favored over eclipsed by 3.0 kcal/mol 4

5 Alternative interpretation The bonding electrons are distributed over the molecule, but it is useful to decompose the wavefunction to obtain the net charge on each atom. This leads to q H ~ and q C ~ q C ~ q H ~ These charges do NOT indicate the electrostatic energies within the molecule, but rather the electrostatic energy for interacting with an external field. Even so, one could expect that electrostatics would favor staggered. The counter example is CH 3 -C=C-CH 3, which has a rotational barrier of 0.03 kcal/mol (favoring eclipsed). Here the CH bonds are ~ 3 times that in CH3-CH3 so that electrostatic effects would decrease by only 1/3. However copyright 2011 overlap William A. Goddard decreases III, all rights reserved exponentially. 5

6 Propane Replacing an H of ethane with CH 3, leads to propane Keeping both CH 3 groups staggered leads to the unique structure Details are as shown. Thus the bond angles are HCH = and on the CH3 HCH =106.1 on the secondary C CCH=110.6 and CCC=112.4, Reflecting the steric effects 6

7 Trends: geometries of alkanes CH bond length = ± 0.001A CC bond length = ± 0.001A CCC bond angles HCH bond angles 7

8 Bond energies D e = E AB (R= ) - E AB (R e ) e for equilibrium) Get from QM calculations. Re is distance at minimum energy. 8

9 Bond energies D e = E AB (R= ) - E AB (R e ) Get from QM calculations. Re is distance at minimum energy D 0 = H 0AB (R= ) - H 0AB (R e ) H 0 =Ee + ZPE is enthalpy at T=0K ZPE = Σ(½Ћω) This is spectroscopic bond energy from ground vibrational state (0K) Including ZPE changes bond distance slightly to R 0 9

10 Bond energies D e = E AB (R= ) - E AB (R e ) Get from QM calculations. Re is distance at minimum energy D 0 = H 0AB (R= ) - H 0AB (R e ) H 0 =Ee + ZPE is enthalpy at T=0K ZPE = Σ(½Ћω) This is spectroscopic bond energy from ground vibrational state (0K) Including ZPE changes bond distance slightly to R 0 Experimental bond enthalpies at 298K and atmospheric pressure D 298 (A-B) = H 298 (A) H 298 (B) H 298 (A-B) D 298 D 0 = [C p (A) +C p (B) C p (A-B)] dt =2.4 kcal/mol if A and B are nonlinear molecules (C p (A) = 4R). {If A and B are atoms D 298 D 0 = 0.9 kcal/mol (C p (A) = 5R/2)}. (H = E + pv assuming an ideal gas) 10

11 Bond energies, temperature corrections Experimental measurements of bond energies, say at 298K, require an additional correction from QM or from spectroscopy. The experiments measure the energy changes at constant pressure and hence they measure the enthalpy, H = E + pv (assuming an ideal gas) Thus at 298K, the bond energy is D 298 (A-B) = H 298 (A) H 298 (B) H 298 (A-B) D 298 D 0 = [C p (A) +C p (B) C p (A-B)] dt =2.4 kcal/mol if A and B are nonlinear molecules (C p (A) = 4R). {If A and B are atoms D 298 D 0 = 0.9 kcal/mol (C p (A) = 5R/2)}. 11

12 Snap Bond Energy: Break bond without relaxing the fragments Snap E relax = 2*7.3 kcal/mol Adiabatic D snap De snap (109.6 kcal/mol) D e (95.0kcal/mol) 12

13 Bond energies for ethane D 0 = 87.5 kcal/mol ZPE (CH 3 ) = 18.2 kcal/mol, ZPE (C 2 H 6 ) = 43.9 kcal/mol, D e = D = 95.0 kcal/mol (this is calculated from QM) D 298 = = 89.9 kcal/mol This is the quantity we will quote in discussing bond breaking processes 13

14 The snap Bond energy In breaking the CC bond of ethane the geometry changes from CC=1.526A, HCH=107.7º, CH=1.095A To CC=, HCH=120º, CH=1.079A Thus the net bond energy involves both breaking the CC bond and relaxing the CH 3 fragments. We find it useful to separate the bond energy into The snap bond energy (only the CC bond changes, all other bonds and angles of the fragments are kept fixed) The fragment relaxation energy. This is useful in considering systems with differing substituents. For CH3 this relation energy is 7.3 kcal/mol so that D e,snap (CH 3 -CH 3 ) = *7.3 = kcal/mol 14

15 Substituent effects on Bond energies The strength of a CC bond changes from 89.9 to 70 kcal/mol as the various H are replace with methyls.explanations given include: Ligand CC pair-pair repulsions Fragment relaxation Inductive effects 15

16 Ligand CC pair-pair repulsions: Each H to Me substitution leads to 2 new CH bonds gauche to the original CC bond, which would weaken the CC bond. Thus C 2 H 6 has 6 CH-CH interactions lost upon breaking the bond, But breaking a CC bond of propane loses also two addition CC-CH interactions. This would lead to linear changes in the bond energies in the table, which is approximately true. However it would suggest that the snap bond energies would decrease, which is not correct. 16

17 Fragment relaxation Because of the larger size of Me compared to H, there will be larger ligand-ligand interaction energies and hence a bigger relaxation energy in the fragment upon relaxing form tetrahedral to planar geometries. In this model the snap bond enegies are all the same. All the differences lie in the relaxation of the fragments. This is observed to be approximately correct Inductive effect A change in the character of the CC bond orbital due to replacement of an H by the Me. Goddard believes that fragment relaxation is the correct explanation PUT IN ACTUAL RELAXATION ENERGIES 17

18 Bond energies: Compare to CF 3 -CF 3 For CH 3 -CH 3 we found a snap bond energy of D e = *7.3 = kcal/mol Because the relaxation of tetrahedral CH 3 to planar gains 7.3 kcal/mol For CF 3 -CF 3, there is no such relaxation since CF3 wants to be pyramidal, FCF~111º Thus we might estimate that for CF 3 -CF 3 the bond energy would be D e = kcal/mol, hence D 298 ~ 110-5=105 Indeed the experimental value is D 298 =98.7±2.5 kcal/mol suggesting that the main effect in substituent effects is relaxation (the remaining effects might be induction and steric) 18

19 Stopped L4, January 11,

20 CH2 +CH2 ethene Starting with two methylene radicals (CH 2 ) in the ground state ( 3 B 1 ) we can form ethene (H2C=CH2) with both a σ bond and a π bond. The HCH angle in CH2 was 132.3º, but Pauli Repulsion with the new σ bond, decreases this angle to 117.6º (cf with 120º for CH 3 ) 20

21 Comparison of The GVB bonding orbitals of ethene and methylene 21

22 Twisted ethene Consider now the case where the plane of one CH 2 is rotated by 90º with respect to the other (about the CC axis) This leads only to a σ bond. The nonbonding π l and π r orbitals can be combined into singlet and triplet states Here the singlet state is referred to as N (for Normal) and the triplet state as T. Since these orbitals are orthogonal, Hund s rule suggests that T is lower than N (for 90º). The K lr ~ 0.7 kcal/mol so that the splitting should be ~1.4 kcal/mol. Voter, Goodgame, and Goddard [Chem. Phys. 98, 7 (1985)] showed that N is below T by 1.2 kcal/mol, due to Intraatomic Exchange (σ,π on same center) 22

23 Twisting potential surface for ethene The twisting potential surface for ethene is shown below. The N state prefers θ=0º to obtain the highest overlap while the T state prefers θ=90º to obtain the lowest overlap 23

24 geometries For the N state (planar) the CC bond distance is 1.339A, but this increases to 1.47A for the twisted form with just a single σ bond. This compares with for the CC bond of ethane. Probably the main effect is that twisted ethene has very little CH Pauli Repulsion between CH bonds on opposite C, whereas ethane has substantial interactions. This suggests that the intrinsic CC single bond may be closer to 1.47A For the T state the CC bond for twisted is also 1.47A, but increases to 1.57 for planar due to Orthogonalization of the triple coupled pπ orbitals. 24

25 CC double bond energies The bond energies for ethene are D e =180.0, D 0 = 169.9, D 298K = kcal/mol Breaking the double bond of ethene, the HCH bond angle changes from 117.6º to 132.xº, leading to an increase of 2.35 kcal/mol in the energy of each CH 2 so that D esnap = = kcal/mol Since the D esnap = kcal/mol, for H3C-CH3, The π bond adds 75.1 kcal/mol to the bonding. Indeed this is close to the 65kcal/mol rotational barrier. For the twisted ethylene, the CC bond is De = =115 Desnap = =120. This increase of 10 kcal/mol compared to ethane might indicate the effect of CH repulsions 25

26 bond energy of F 2 C=CF 2 The snap bond energy for the double bond of ethene od D esnap = = kcal/mol As an example of how to use this consider the bond energy of F 2 C=CF 2, Here the 3 B 1 state is 57 kcal/higher than 1 A 1 so that the fragment relaxation is 2*57 = 114 kcal/mol, suggesting that the F 2 C=CF 2 bond energy is D snap ~ = 70 kcal/mol. The experimental value is D298 ~ 75 kcal/mol, close to the prediction 26

27 Bond energies double bonds Although the ground state of CH2 is 3 B 1 by 9.3 kcal/mol, substitution of one or both H with CH3 leads to singlet ground states. Thus the CC bonds of these systems are weakened because of this promotion energy. 27

28 C=C bond energies 28

29 CC triple bonds Starting with two CH radicals in the 4 Σ - state we can form ethyne (acetylene) with two π bonds and a σ bond. This leads to a CC bond length of 1.208A compared to for ethene and for ethane. The bond energy is D e = 235.7, D 0 = 227.7, D 298K = kcal/mol Which can be compared to De of for H2C=CH2 and 95.0 for H3C-CH3. 29

30 GVB orbitals of HCCH 30

31 GVB orbitals of CH 2Π and 4Σ- state 31

32 CC triple bonds Since the first CCσ bond is D e =95 kcal/mol and the first CCπ bond adds 85 to get a total of 180, one might wonder why the CC triple bond is only 236, just 55 stronger. The reason is that forming the triple bond requires promoting the CH from 2 Π to 4 Σ -, which costs 17 kcal each, weakening the bond by 34 kcal/mol. Adding this to the 55 would lead to a total 2 nd π bond of 89 kcal/mol comparable to the first 2 Π 4 Σ - 32

33 Bond energies 33

34 34

35 Diamond Replacing all H atoms of ethane and with methyls, leads to with a staggered conformation Continuing to replace H with methyl groups forever, leads to the diamond crystal structure, where all C are bonded tetrahedrally to four C and all bonds on adjacent C are staggered A side view is This leads to the diamond crystal structure. An expanded view is on the next slide 35

36 Infinite structure from tetrahedral bonding plus staggered bonds on adjacent centers 2 nd layer st layer nd layer c 1 1st layer nd layer Chair configuration 1st layer of cylcohexane Not shown: zero layer just like 2 nd layer but above layer 1 3 rd layer just like the 1 st layer but below layer 2 36

37 The unit cell of diamond crystal An alternative view of the diamond structure is in terms of cubes of side a, that can be translated in the x, y, and z directions to fill all space. Note the zig-zag chains c-i-f-i-c and cyclohexane rings (f-i-f)-(i-f-i) There are atoms at all 8 corners (but only 1/8 inside the cube): (0,0,0) all 6 faces (each with ½ in the cube): (a/2,a/2,0), (a/2,0,a/2), (0,a/2,a/2) plus 4 internal to the cube: (a/4,a/4,a/4), (3a/4,3a/4,a/4), (a/4,3a/4,3a/4), (3a/4,a/4,3a/4), Thus each cube represents 8 atoms. All other atoms of the infinite crystal are obtained by translating this cube by multiples of copyright a in 2011 the William x,y,z A. Goddard directions III, all rights reserved c c f i c f c i f f i c f c i f c c 37

38 4 b 2 b Diamond Structure 5 a 3 a 1 a b 4 a 2 a 5 b 3 b 1 c 7 Start with C1 and make 4 bonds to form a tetrahedron. Now bond one of these atoms, C2, to 3 new C so that the bond are staggered with respect to those of C1. Continue this process. Get unique structure: diamond Note: Zig-zag chain 1 b Chair cyclohexane ring: b -7-1 c 38

39 Properties of diamond crystals 39

40 Properties of group IV molecules (IUPAC group 14) There are 4 bonds to each atom, but each bond connects two atoms. Thus to obtain the energy per bond we take the total heat of vaporization and divide by two. 40 Note for Si, that the average bond is much different than for Si H

41 Comparisons of successive bond energies SiH n and CH n p lobe lobe p lobe lobe p p 41

42 Redo the next sections Talk about heats formation first Then group additivity Then resonance etc 42

43 Benzene and Resonance referred to as Kekule or VB structures 43

44 Resonance 44

45 Benzene wavefunction is a superposition of the VB structures in (2) benzene as + 45

46 More on resonance That benzene would have a regular 6-fold symmetry is not obvious. Each VB spin coupling would prefer to have the double bonds at ~1.34A and the single bond at ~1.47 A (as the central bond in butadiene) Thus there is a cost to distorting the structure to have equal bond distances of 1.40A. However for the equal bond distances, there is a resonance stabilization that exceeds the cost of distorting the structure, leading to D 6h symmetry. 46

47 Cyclobutadiene For cyclobutadiene, we have the same situation, but here the rectangular structure is more stable than the square. That is, the resonance energy does not balance the cost of making the bond distances equal A 1.5x A The reason is that the pi bonds must be orthogonalized, forcing a nodal plane through the adjacent C atoms, causing the energy to increase dramatically as the 1.54 distance is reduced to 1.40A. For benzene only one nodal plane makes the pi bond orthogonal to both other bonds, leading to lower cost 47

48 graphene Graphene: CC=1.4210A Bond order = 4/3 Benzene: CC=1.40 BO=3/2 Ethylene: CC=1.34 BO = 2 CCC=120 Unit cell has 2 carbon atoms 1x1 Unit cell This is referred to as graphene 48

49 Graphene band structure 1x1 Unit cell Unit cell has 2 carbon atoms Bands: 2pπ orbitals per cell 2 bands of states each with N states where N is the number of unit cells 2 π electrons per cell 2N electrons for N unit cells The lowest N MOs are doubly occupied, leaving N empty orbitals. The filled 1 st band touches the empty 2 nd band at the Fermi energy Get semi metal 2 nd band 1 st band 49

50 Graphite Stack graphene layers as ABABAB Can also get ABCABC Rhombohedral AAAA stacking much higher in energy Distance between layers = A CC bond = Only weak London dispersion attraction between layers D e = 1.0 kcal/mol C Easy to slide layers, good lubricant Graphite: D 0K =169.6 kcal/mol, in plane bond = Thus average in-plane bond = (2/3)168.6 = kcal/mol = sp 2 σ + 1/3 π Diamond: average CCs = 85 kcal/mol π = 3*27=81 kcal/mol 50

51 energetics 51

52 Allyl Radical 52

53 Allyl wavefunctions It is about 12 kcal/mol 53

54 Cn What is the structure of C 3? 54

55 Cn 55

56 Energetics Cn Note extra stability of odd C n by 33 kcal/mol, this is because odd C n has an empty p x orbital at one terminus and an empty p y on the other, allowing stabilization of both π systems 56

57 Stability of odd Cn 57

58 58

59 Bond energies and thermochemical calculations 59

60 Bond energies and thermochemical calculations 60

61 Heats of Formation 61

62 Heats of Formation 62

63 Heats of Formation 63

64 Heats of Formation 64

65 Bond energies 65

66 Bond energies 66

67 Bond energies Both secondary 67

68 68

69 Average bond energies 69

70 Average bond energies 70

71 Real bond energies Average bond energies of little use in predicting mechanism 71

72 Group values 72

73 Group functions of propane 73

74 Examples of using group values 74

75 Group values 75

76 Strain 76

77 Strain energy cyclopropane from Group values 77

78 Strain energy c-c3h6 using real bond energies 78

79 Stained GVB orbitals of cyclopropane 79

80 Benson Strain energies 80

81 Resonance in thermochemical Calculations 81

82 Resonance in thermochemical Calculations 82

83 Resonance energy butadiene 83

84 Allyl radical 84

85 Benzene resonance 85

86 Benzene resonance 86

87 Benzene resonance 87

88 Benzene resonance 88

89 Benzene resonance 89

90 Graphene: generalize benzene in all directions 90

91 Have to terminate graphene: two simple cases Armchair edge For each edge atom break two sp2 sigma bonds but form bent pi bond in plane = 92 kcal/mol Length = 3*1.4=4.2A 22 kcal/mola Thus both graphene ribbon surfaces (edges) have similar energies Zig-zag edge For each edge atom break sp2 sigma bond, maybe not break pi bond? 111.7/2 = 56 kcal/mol per dangling bond Length = 1.4*sqrt(3)= 2.42A 23 kcal/mol/a 91

92 C 60 flat sheet Cut from graphene 6 arm chair 5 zig-zag Total cost 832 kcal/mol! 92

93 C 60 fullerene No broken bonds Just ~11.3 kcal/mol strain at each atom 678 kcal/mol Compare with 832 kcal/mol for flat sheet Lower in energy than flat sheet by 154 kcal/mol! 93

94 First observation Heath, Smalley, Krotos Laser evaporation of carbon + supersonic nozzle Observe various sized clusters in mass spect Change various conditions found peak at C60! Smalley and Krotos each independently postulated futball (soccer ball structure) ~1986 ^ H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley (1985). "C60: Buckminsterfullerene". Nature 318: doi: /318162a0. 94

95 Nature 1985: discovery of C 60 95

96 10 torr He Evidence for C60, Nature 1985 maximize clustercluster reactions in integration cup 760 torr He 96

97 Many papers on C60, no definitive proof that it had fullerene structure, lots of skepticism 97

98 Many papers on C60, no definitive proof that it had fullerene structure, lots of skepticism In 1990 physicists W. Krätschmer and D.R. Huffman for the first time produced isolable quantities of C60 by causing an arc between two graphite rods to burn in a helium atmosphere and extracting the carbon condensate so formed using an organic solvent. Then, Nature 347, (27 September 1990) W. Krätschmer, Lowell D. Lamb, K. Fostiropoulos & Donald R. Huffman; Solid C60: a new form of carbon A new form of pure, solid carbon has been synthesized consisting of a somewhat disordered hexagonal close packing of soccer-ball-shaped C60 molecules. Infrared spectra and X-ray diffraction studies of the molecular packing confirm that the molecules have the anticipated 'fullerene' structure. Mass spectroscopy shows that the C70 molecule is present 98 at levels of a few per cent.

99 Nature 1990, Krätschmer, Lamb, Fostiropoulos, Huffman Sears arc welder with flowing He, get soot of C60. grams per hour 100

100 Carbon 13 NMR spectrum of C60 1 peak NMR the key experiment Definitive proof that C60 is fullerene Carbon 13 NMR spectrum of C70 5 peaks, definitive proof of fullerene structure 101

101 C 540 All fullerens have 12 pentagonal rings 102

102 Polyyne chain precursors fullerenes, all even 103

103 104

104 Mechanism for formation of fullerenes Heath 1991: Fullerene road. Smaller fullerenes and C3 etc add on to pentagonal sites to grow C60 Contradicted by He chromatography and high yield of endohedrals Smalley 1992: Pentagonal road. Graphtic sheets grow and curl into fullerenes by incorporating pentagonal C3 etc add on to pentagonal sites to grow C60 Contradicted by He chromatography Arc environment: mechanism goes through atomic species (isotope scrambling) He chromatography Go through carbon rings and form fullerenes Has high temperature gradients Ring growth road. Jarrold based on He chromatography 105

105 He chromatography (Jarrold) Relative abundance of the isomers and fragments as a function of injection energy in ion drifting experiments Conversion of bicyclic ring to fullerene when heated 106

106 Energies from QM 107

107 Force Field for sp1 and sp2 carbon clusters 108

108 4n vs 4n+2 for Cn Rings 109

109 Population of various ring and fullerene species with Temperature Based on free energies from QM and FF 110

110 Bring two C30 rings together 111

111 Energetics (ev) for isomerizations converting bicyclic ring to monocyclic or Jarrold intermediates for n = 30, 40, 50 2 rings TS to form tricyclic E tricyclic TS convert E tricyclic C 34 C 60 C 40 TS to Bergman cyclization singlet (leads to Jarrold ring mechanism) 112

112 Energetics (ev) for initial steps of Jarrold Jarrold pathway If get here, then get fullerene Modified Jarrold Number pi bonds 113

113 Downhill race from tricyclic to bucky ball energetics (ev) 30 ev of energy gain as form Fullerene Number sp2 bonded centers 114

114 Structures in Downhill race from tricyclic to bucky ball 115

115 energetics (ev) Energy contributions to downhill race to fullerene Number sp2 bonded centers 116

116 C60 dimer Prefers packing of 6 fold face De = 7.2 kcal/mol Face-face=3.38A 117

117 Crystal structure C60 Expect closest packing: 6 neighbors in plane 3 neighbors above the plane and 3 below But two ways ABCABC face centered cubic ABABAB hexagonal closet packed Predicted crystal structure 3 months before experiment Prediction of Fullerene Packing in C60 and C70 Crystals Y. Guo, N. Karasawa, and W. A. Goddard III Nature 351, 464 (1991) 118

118 C60 is face centered cubic 119

119 C70 is hexagonal closest packed 120

120 Vapor phase grown Carbon fiber, R. T. K. Baker and P. S. Harris, in Chemistry and Physics of Carbon, edited by P. L. Walker, Jr. and A. Thrower (Marcel Dekker, New York, 1978), Vol. 14, pp ; G. G. Tibbetts, Carbon 27, (1989); R. T. K.Baker, Carbon 27, (1989). M. Endo, Chemtech 18, (1988). Formed carbon fiber from 0.1 micron up Xray showed that graphene planes are oriented along axis but perpendicular to the cylindrical normal 121

121 Multiwall nanotubes "Helical microtubules of graphitic carbon". S. Iijima, Nature (London) 354, (1991). Ebbesen, T. W.; Ajayan, P. M. (1992). "Large-scale synthesis of carbon nanotubes". Nature 358: Outer diameter of MW NT inner diameter of MW NT 122

122 Single wall carbon nanotubes, grown catalytically S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter".nature (London) 363, (1993) used Ni D. S. Bethune, C.-H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalyzed growth of carbon nanotubes with singleatomic-layer walls".nature (London) 363, (1993). used Co Ching-Hwa Kiang grad student with wag on leave at IBM san Jose 123

123 Single wall carbon nanotubes, grown catalytically S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter".nature (London) 363, (1993) used Ni D. S. Bethune, C.-H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalyzed growth of carbon nanotubes with singleatomic-layer walls".nature (London) 363, (1993). used Co Ching-Hwa Kiang grad student with wag on leave at IBM san Jose Catalytic Synthesis of Single-Layer Carbon Nanotubes with a Wide Range of Diameters C.- H. Kiang, W. A. Goddard III, R. Beyers, J. R. Salem, D. S. Bethune, J. Phys. Chem. 98, (1994). Catalytic Effects on Heavy Metals on the Growth of Carbon Nanotubes and Nanoparticles C.-H. Kiang, W. A. Goddard III, R. Beyers, J. R. Salem, and D. S. Bethune, J. Phys. Chem. Solids 57, 35 (1995). Effects of Catalyst Promoters on the Growth of Single-Layer Carbon Nanotubes; C.-H. Kiang, W. A. Goddard III, R. Beyers, J. R. Salem, and D. S. Bethune, Mat. Res. Soc. Symp. Proc. 359, 69 (1995) Carbon Nanotubes With Single-Layer Walls," Ching-Hwa Kiang, William A. Goddard III, Robert Beyers and Donald S. Bethune, " Carbon 33, (1995). "Novel structures from arc-vaporized carbon and metals: Single-layer carbon nanotubes and metallofullerenes," Kiang, C-H, van Loosdrecht, P.H.M., Beyers, R., Salem, J.R., and Bethune, D.S., Goddard, W.A. III, Dorn, H.C., Burbank, P., and Stevenson, S., Surf. Rev. Lett. 3, (1996). 124

124 Kiang CNT form

125 Kiang CNT form

126 Distribution of diameters for carbon SWNT, Kiang

127 128

128 Examples Single wall carbon nanotubes 129

129 Some bucky tubes (8,8) armchair (14,0) zig-zag (6,10) chiral 130

130 Contsruction for (6,10) edge

131 13.46A diameter (10,10) armchair carbon SWNT 40 atoms/repeat distance 132

132 (14,0) zig-zag Bucky tube 133

133 13.5A Crystal packing of (10,10) carbon SWNT Density SWNT: 1.33 g/cc Graphite 2.27 g/cc Heat formation Graphite 0 C (10,10) CNT ,7A Ec Young s modulus SWNT 640 GPa Graphite 1093 GPa Ea Young s modulus SWNT 5.2 GPa Graphite 4.1 GPa 134

134 Vibrations in (10,10) armchair CNT 135

135 Carbon fibers and tubes 136

136 Vibrations in (10,10) armchair CNT 137

137 Vibrations in (10,10) armchair CNT 138

138 Mechanism for gas phase CNT formation Polyyne Ring Nucleus Growth Model for Single-Layer Carbon Nanotubes C-H. Kiang and W. A. Goddard III Phys. Rev. Lett. 76, 2515 (1996) 139

139 Mechanism for gas phase CNT formation A two-stage mechanism of bimetallic catalyzed growth of singlewalled carbon nanotubes Deng WQ, Xu X, Goddard WA Nano Letters 4 (12): (2004) 140

140 But mechanism of gas phase C SWNT, no longer important The formation of Carbon SWNT by CVD growth on a metal nanodot on a support is now the preferred mechanism for forming SWNT 141

141 Mechanisms Proposed for Nanotube Growth Stepwise Process Adsorption Dehydrogenation Saturation Diffusion Nucleation Growth 142

142 Vapor-Liquid-Solid (Carbon Filament) Mechanism Vapor carbon feed stock adsorbs unto liquid catalyst particle and dissolves. Dissolved carbon diffuses to a region of lower solubility resulting in supersaturation and precipitation of the solid product. Originally developed to explain the growth of carbon whiskers/filaments. Temperature, concentration or free energy gradient is implicated as the driving force responsible for diffusion. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. Bolton, et al. J. Nanosci. Nanotechnol. 2006, 6,

143 Yarmulke Mechanism Dai, et al. Chem. Phys. Lett. 1996, 260, 471. Raty, et al. Phys. Rev. Lett , Carbon-carbon bonds form on the surface (either before or as a result of super-saturation). Diffusion of carbon to graphene coating can be an important rate limiting step. Coating of more than a complete hemisphere results in poisoning of catalyst. New layers can start beneath the original layer after/as it lifts off the surface resulting in MWNT. 144

144 Experimental Confirmation of a Yarmulke Mechanism Atomic-scale, video-rate environmental transmission microscopy has been used to monitor the nucleation and growth of single walled nanotubes. Hofmann, S. et al. Nano Lett. 2007, 7,

145 Role of the Catalyst Particle in Nanotube Formation Size of catalyst particles is related to the diameter of the nanotubes formed. Catalyst nanoparticles are known to deform (elongate) during nanotube growth. Structural properties of select catalyst surfaces (Ni111, Co111, Fe1-10) exhibit appropriate symmetry and distances to overlap with graphene and allow thermally forbidden C 2 addition reaction. Graphene is believed to stabilize the high energy nanoparticle surface. MWNT have been observed growing out of steps, which they stabilize. Hong, S.; et al. Jpn J. Appl. Phys. 2002, 41, Vinciguerra, V.; et al. Nanotechnol. 2003, 14, 655. Hofmann, S. et al. Nano Lett. 2007, 7,

146 Tip vs. Base Growth Mechanisms Huang, S.; et al. Nano Lett , Kong, J.; et al. Chem. Phys. Lett. 1998, 292, 567. Same initial reaction step: absorbtion, diffusion and precipitation of carbon species. Strength of interaction between catalyst particle and catalyst support determines whether particles remains on surface or is lifted with growing nanotube. Images of nanotubes show catalyst particles trapped at the ends of nanotubes in the case of tip growth, or nanotubes bound to catalysts on support in the case of base growth. Alternatively capped nanotube tops show base growth. A kite (tip) growth mechanism has been used to explain the growth of long (order of mm), well ordered SWNTs. 147

147 Limiting Steps for Growth Rates Diffusion of reactive species either through the catalyst particle bulk or across its surface can play an important role in determining the rate of nanotube growth. In the case of carbon species which dissociate less readily the rate of carbon supply to the particle can act as the rate limiting step. The rate of growth must also take into account a force balance between the friction of the nanotube moving through the surrounding feedstock gas and the driving force for/from the reaction. Vinciguerra, V.; et al. Nanotechnol. 2003, 14, 655. Hofmann, S. et al. Nano Lett. 2007, 7, 602. Hafner, J. H.; et al. Chem. Phys. Lett. 1998, 296,

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 22, November 16, 2016 Graphite, graphene, bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes

Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Lecture 12 February 3, 2014 Formation bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes

Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Lecture 18, March 2, 2015 graphene, bucky balls, bucky tubes Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI

More information

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity

Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Lecture 6 January 18, 2012 CC Bonds diamond, ΔHf, Group additivity Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lecture February 4-6, 2012 Graphite, graphene, bucky balls, bucky tubes

Lecture February 4-6, 2012 Graphite, graphene, bucky balls, bucky tubes Lecture 10-11 February 4-6, 2012 Graphite, graphene, bucky balls, bucky tubes Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Lecture February 8-10, NiCHx

Lecture February 8-10, NiCHx Lecture 16-17 February 8-10, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture February 13-15, Silicon crystal surfaces

Lecture February 13-15, Silicon crystal surfaces Lecture 18-19 February 13-15, 2012 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a

More information

Lecture 7,8 January 24, 2011 CC Bonds

Lecture 7,8 January 24, 2011 CC Bonds Lecture 7,8 January 24, 2011 CC Bonds Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William A. Goddard,

More information

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann

Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Lecture 14 February 7, 2011 Reactions O2, Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Lecture 9 January 26, 2011 Si, GaAs surfaces

Lecture 9 January 26, 2011 Si, GaAs surfaces Lecture 9 January 26, 20 Si, GaAs surfaces Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy William A.

More information

Lecture 16, February 25, 2015 Metallic bonding

Lecture 16, February 25, 2015 Metallic bonding Lecture 16, February 25, 2015 Metallic bonding Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 115 BI Hours: 11-11:50am

More information

Lecture 11 January 30, Transition metals, Pd and Pt

Lecture 11 January 30, Transition metals, Pd and Pt Lecture 11 January 30, 2011 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch120a Hours:

More information

Lecture 8 January 28, Silicon crystal surfaces

Lecture 8 January 28, Silicon crystal surfaces Lecture 8 January 28, 203 Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course number: Ch20a Hours:

More information

Lecture 16 February 20 Transition metals, Pd and Pt

Lecture 16 February 20 Transition metals, Pd and Pt Lecture 16 February 20 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 13, October 31, 2016 Transition metals, Pd and Pt Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Section 5.2.1 Nature of the Carbon Bond

More information

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111)

Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) 20028 J. Phys. Chem. C 2010, 114, 20028 20041 Competing, Coverage-Dependent Decomposition Pathways for C 2 H y Species on Nickel (111) Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard III*,

More information

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si

Lecture 8 January 24, 2013 GaAs crystal surfaces, n-p dopants Si Lecture 8 January 24, 2013 Ga crystal surfaces, n-p dopants Si Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinornic chemistry, and

More information

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and

More information

SIR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3]

SIR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3] SR - Single-walled carbon nanotubes (SWNT) have been produced in a carbon arc [1-3] and in amazingly high yield by laser vaporization [4] where, in both cases, a small amount of transition metal has been

More information

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved

Ch125a-1. copyright 2015 William A. Goddard III, all rights reserved Lecture, October 28, 205: Si, Ga crystal surfaces Ch 25a: Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Ch 20a:Nature of the Chemical bond Room

More information

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES

COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES COMPUTATIONAL STUDIES ON FORMATION AND PROPERTIES OF CARBON NANOTUBES Weiqiao Deng, Jianwei Che, Xin Xu, Tahir Çagin, and William A Goddard, III Materials and Process Simulation Center, Beckman Institute,

More information

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS 1 CONFORMATIONAL ISOMERS Stereochemistry concerned with the 3-D aspects of molecules Rotation is possible around C-C bonds in openchain

More information

Lecture 15 February 15, 2013 Transition metals

Lecture 15 February 15, 2013 Transition metals Lecture 15 February 15, 2013 Transition metals Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Organic Chemistry 1 Lecture 5

Organic Chemistry 1 Lecture 5 CEM 232 Organic Chemistry I Illinois at Chicago Organic Chemistry 1 Lecture 5 Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 26, 2010 1 Self Test Question Which of the following

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012141 TITLE: Transformation of Active Carbon to Onion-like Fullerenes Under Electron Beam Irradiation DISTRIBUTION: Approved

More information

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1

Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 Introduction to Nanotechnology Chapter 5 Carbon Nanostructures Lecture 1 ChiiDong Chen Institute of Physics, Academia Sinica chiidong@phys.sinica.edu.tw 02 27896766 Carbon contains 6 electrons: (1s) 2,

More information

4. Stereochemistry of Alkanes and Cycloalkanes

4. Stereochemistry of Alkanes and Cycloalkanes 4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 4 2003 Ronald Kluger Department of Chemistry University of Toronto The Shapes of Molecules! The

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 12, October 21, 2016 Transition metals Heme-Fe Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

Chapter 1 Carbon Compounds and Chemical Bonds

Chapter 1 Carbon Compounds and Chemical Bonds Chapter 1 Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Conformational Isomers Isomers that differ as a result of sigma bond Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Bond Rotation and Newman Projections As carbon-carbon

More information

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order.

The Study of Chemical Reactions. Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. The Study of Chemical Reactions Mechanism: The complete, step by step description of exactly which bonds are broken, formed, and in which order. Thermodynamics: The study of the energy changes that accompany

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

Carbon Compounds and Chemical Bonds

Carbon Compounds and Chemical Bonds Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central role

More information

Observation and modeling of single-wall carbon nanotube bend junctions

Observation and modeling of single-wall carbon nanotube bend junctions PHYSICAL REVIEW B VOLUME 57, NUMBER 23 15 JUNE 1998-I Observation and modeling of single-wall carbon nanotube bend junctions Jie Han, M. P. Anantram, and R. L. Jaffe NASA Ames Research Center, Moffett

More information

Calculate a rate given a species concentration change.

Calculate a rate given a species concentration change. Kinetics Define a rate for a given process. Change in concentration of a reagent with time. A rate is always positive, and is usually referred to with only magnitude (i.e. no sign) Reaction rates can be

More information

A Molecular Dynamics Simulation for the Formation Mechanism of Fullerene *

A Molecular Dynamics Simulation for the Formation Mechanism of Fullerene * Thermal Science & Engineering Vol.3 No.3 (99) A Molecular Dynamics Simulation for the Formation Mechanism of Fullerene * Shigeo MARUYAMA and Yasutaka YAMAGUCHI Abstract The formation mechanism of fullerene,

More information

Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM

Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM The 5 th Workshop on Nucleation and Growth Mechanisms of SWCNTs Investigation on the growth of CNTs from SiO x and Fe 2 O 3 nanoparticles by in situ TEM Chang Liu Shenyang National Laboratory for Materials

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Lecture 6: September 7, 2018

Lecture 6: September 7, 2018 CM 223 Organic Chemistry I Prof. Chad Landrie Lecture 6: September 7, 2018 Ch. 4: Nomenclature of Cylcoalkanes and their Physical and Chemical Properties (4.1-4.3) Conformational Isomers of Cycloalkanes

More information

(10,10,200) 4,000 Carbon Atoms R= (A) (10,10,2000) 40,000 Carbon Atoms R = (A)

(10,10,200) 4,000 Carbon Atoms R= (A) (10,10,2000) 40,000 Carbon Atoms R = (A) 27 Chapter 3 Energetics and Structures of Single-Walled Carbon Nano Toroids 3.1 Introduction Carbon has diverse forms of structure, 1,2 both in nature and by lab synthesize. Three dimensional diamond and

More information

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract Bond Lengths of Single-Walled Carbon Nanotubes Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah-6004, India. Abstract Results of the bond lengths for various chiralities

More information

1.1. Discovery of carbon nanotubes

1.1. Discovery of carbon nanotubes Appendix 276 Appendix 277.. Discovery of carbon nanotubes Table.5. Progress in carbon allotropes until the discovery of carbon nanotubes [, 2]. 890 Schützenberger and Schützenberger studied the vapor grown

More information

Lecture 17 February 14, 2013 MH + bonding, metathesis

Lecture 17 February 14, 2013 MH + bonding, metathesis Lecture 17 February 14, 2013 MH + bonding, metathesis Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation Wright State University CORE Scholar Special Session 5: Carbon and Oxide Based Nanostructured Materials (2011) Special Session 5 6-2011 Understanding Irreducible and Reducible Oxides as Catalysts for Carbon

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy

Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Lecture 9 October 1, 016 nd Homonuclear diatomics Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry, and energy Course

More information

Carbon nanomaterials. Gavin Lawes Wayne State University.

Carbon nanomaterials. Gavin Lawes Wayne State University. Carbon nanomaterials Gavin Lawes Wayne State University glawes@wayne.edu Outline 1. Carbon structures 2. Carbon nanostructures 3. Potential applications for Carbon nanostructures Periodic table from bpc.edu

More information

Chapter 12: Structures & Properties of Ceramics

Chapter 12: Structures & Properties of Ceramics Chapter 12: Structures & Properties of Ceramics ISSUES TO ADDRESS... How do the crystal structures of ceramic materials differ from those for metals? How do point defects in ceramics differ from those

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Chapter 27: Structure and Bonding

Chapter 27: Structure and Bonding Chapter 27: Structure and Bonding 1 Atomic Orbitals: Wave functions that represent the probability of finding electrons in a specific region of space s, p, d, f orbitals In organic chemistry, need to concentrate

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Introduction to Alkenes and Alkynes

Introduction to Alkenes and Alkynes Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene,

More information

CHAPTER 3. Crystallography

CHAPTER 3. Crystallography CHAPTER 3 Crystallography Atomic Structure Atoms are made of Protons: mass 1.00728 amu, +1 positive charge Neutrons: mass of 1.00867 amu, neutral Electrons: mass of 0.00055 amu, -1 negative charge (1 amu

More information

Carbon Nanotube: The Inside Story

Carbon Nanotube: The Inside Story Krasnoyarsk: 24 th August, 2009 Carbon Nanotube: The Inside Story Review written for Journal of Nanoscience and Nanotechnology Yoshinori ANDO Dean of Faculty of Science and Technology, Meijo University

More information

Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons

Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons Chapter 2 Alkanes and Cycloalkanes: Introduction to Hydrocarbons 2.1 Classes of Hydrocarbons Classes of Hydrocarbons Hydrocarbons only contain carbon and hydrogen atoms. Hydrocarbons are either classed

More information

5 The effect of steric bulk on C C bond activation

5 The effect of steric bulk on C C bond activation 5 The effect of steric bulk on C C bond activation Inspired by: Willem-Jan van Zeist, Joost N. P. van Stralen, Daan P. Geerke, F. Matthias Bickelhaupt To be submitted Abstract We have studied the effect

More information

3. Carbon nanostructures

3. Carbon nanostructures 3. Carbon nanostructures [Poole-Owens 5, Wolf 6, own knowledge, Springer handbook ch. 3] Introduction to Nanoscience, 2005 1 3.1. Background: carbon bonding To understand the basic C nanostructures we

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Chemistry Lecture Notes

Chemistry Lecture Notes Molecular orbital theory Valence bond theory gave us a qualitative picture of chemical bonding. Useful for predicting shapes of molecules, bond strengths, etc. It fails to describe some bonding situations

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Topic 1: Mechanisms and Curved Arrows etc Reactions of Alkenes:.Similar functional groups react the same way. Why? Winter 2009 Page 73 Topic 1: Mechanisms and Curved Arrows etc Reactivity:.Electrostatic

More information

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding

8.3 Bonding Theories > Chapter 8 Covalent Bonding. 8.3 Bonding Theories. 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates.

More information

CHEM Lecture 4

CHEM Lecture 4 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Prof. Duncan Wardrop October 1, 2012 Course Website http://www.chem.uic.edu/chem494 Syllabus Course Policies Other handouts Announcements

More information

Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition

Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition J. Phys. Chem. C 2010, 114, 5675 5685 5675 Application of the ReaxFF Reactive Force Field to Reactive Dynamics of Hydrocarbon Chemisorption and Decomposition Jonathan E. Mueller, Adri C. T. van Duin, and

More information

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era

Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala. Carbon Nanotubes A New Era Low Dimensional System & Nanostructures Angel Rubio & Nerea Zabala Carbon Nanotubes A New Era By Afaf El-Sayed 2009 Outline World of Carbon - Graphite - Diamond - Fullerene Carbon Nanotubes CNTs - Discovery

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chemistry 2000 Lecture 8: Valence bond theory

Chemistry 2000 Lecture 8: Valence bond theory Chemistry 000 Lecture 8: Valence bond theory Marc R. Roussel January 9, 08 Marc R. Roussel Valence bond theory January 9, 08 / 5 MO theory: a recap A molecular orbital is a one-electron wavefunction which,

More information

Chapter 16. Aromatic Compounds

Chapter 16. Aromatic Compounds Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral

7. Carbon Nanotubes. 1. Overview: Global status market price 2. Types. 3. Properties. 4. Synthesis. MWNT / SWNT zig-zag / armchair / chiral 7. Carbon Nanotubes 1. Overview: Global status market price 2. Types MWNT / SWNT zig-zag / armchair / chiral 3. Properties electrical others 4. Synthesis arc discharge / laser ablation / CVD 5. Applications

More information

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes Cycloalkanes Open-chain The carbon atoms are attached to one another to form chains Ex: CH 3 -CH 2 -CH 2 -CH 3 n-butane Cyclic compounds the carbon atoms are arranged to form rings called: cyclic compounds,

More information

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes.

OCR A GCSE Chemistry. Topic 2: Elements, compounds and mixtures. Properties of materials. Notes. OCR A GCSE Chemistry Topic 2: Elements, compounds and mixtures Properties of materials Notes C2.3a recall that carbon can form four covalent bonds C2.3b explain that the vast array of natural and synthetic

More information

Introduction to Alkenes. Structure and Reactivity

Introduction to Alkenes. Structure and Reactivity 4 4 Introduction to Alkenes. Structure and Reactivity Alkenes are hydrocarbons that contain one or more carbon carbon double bonds. Alkenes are sometimes called olefins, particularly in the chemical industry.

More information

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process

Index. C 60 buckminsterfullerene 87 C 60 buckminsterfullerene formation process Index acetone 64 aluminum 64 65 arc-discharged carbon 25 argon ion laser 43 aromaticity 2D 99 3D 89 90, 98 planar 89 spherical 90 astronomy 113, 125, 127, 131 atoms chlorine 107 108 titanium 161 162 benzene

More information

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw.

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw. Andrew Rosen Chapter 1: The Basics - Bonding and Molecular Structure 1.1 - We Are Stardust - Organic chemistry is simply the study of carbon-based compounds, hydrocarbons, and their derivatives, which

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES

MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES MOLECULAR DYNAMICS SIMULATION OF HYDROGEN STORAGE IN SINGLE-WALLED CARBON NANOTUBES Shigeo MARUYAMA Engineering Research Institute The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan

More information

Carbon Nanotubes. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree of Mechanical.

Carbon Nanotubes. Seminar report. Submitted in partial fulfillment of the requirement for the award of degree of Mechanical. A Seminar report On Carbon Nanotubes Submitted in partial fulfillment of the requirement for the award of degree of Mechanical SUBMITTED TO: SUBMITTED BY: www.studymafia.org www.studymafia.org Preface

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Thermodynamic calculations on the catalytic growth of carbon nanotubes

Thermodynamic calculations on the catalytic growth of carbon nanotubes Thermodynamic calculations on the catalytic growth of carbon nanotubes Christian Klinke, Jean-Marc Bonard and Klaus Kern Ecole Polytechnique Federale de Lausanne, CH-05 Lausanne, Switzerland Max-Planck-Institut

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

Functionalized Carbon Nanotubes a key to nanotechnology?

Functionalized Carbon Nanotubes a key to nanotechnology? 1 27th Max Born Symposium Multiscale Modeling of Real Materials Wroclaw, Sep 19, 2010 Functionalized Carbon Nanotubes a key to nanotechnology? Karolina Milowska, Magda Birowska & Jacek A. Majewski Faculty

More information