Dipole Recoupling at High Spinning Frequencies. and. High Magnetic Fields

Size: px
Start display at page:

Download "Dipole Recoupling at High Spinning Frequencies. and. High Magnetic Fields"

Transcription

1 Dipole Recoupling at High Spinning Frequencies and High Magnetic Fields Stowe, Vermont January 2010 Francis Bitter Magnet Laboratory and Department of Chemistry Massachusetts Institute of Technology

2 Outline Recoupling at High Spinning Frequencies and Fields Dipole recoupling in the 20th century Recoupling sans decoupling Third spin assisted recoupling (TSAR) Applications to proteins ѡr/2π=65 khz Dynamic Nuclear Polarization (DNP) Instrumentation Biradical Polarizing Agents and DNP Mechanisms Uniform polarization of macroscopic samples

3 Dipole Recoupling Sequences DICSY SPC-5 SEDRA DRAMA RIL REDOR CROWN CMR7 C7 DRAWS USEME MELODRAMA TEDOR Rotor synchronized sequences developed for low fields 13 C- 13 C and 13 C- 15 N distance measurements

4 Radio Frequency Driven Recoupling (a.k.a. RFDR) Chemical shift correlation spectroscopy in rotating solids: Radio frequency-driven dipolar recoupling and longitudinal exchange A. E. Bennett, J. H. Ok, and R. G. Griffin Francis Bitter National Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts S. Vega Department of Chemical Physics, Weizmann Institute of Science, Rehovot Israel (Received 26 December 1991; accepted 23 March 1992) Homonuclear recoupling via a train of π pulses RFDR one of the first successful 2D recoupling techniques Bennett, Rienstra, Griffiths, Lansbury, and Griffin, J. Chem. Physics 108, 9463 (1998) Boender, Vega and degroot, J. Chem. Physics 112, 1096 (2000)

5 PI3-SH3 Band Selective (BASE)-RFDR PI3-SH3 protein fibrils - structural model Sequential assignments & long-range contacts alternating labeling with [2-13 C-glycerol] 20 ms low-bandwidth RFDR (12 khz 13 C rf) -./ # + #* ' '% '% $%%& '(! # π τ ), $%%&! " Cα-C0! Cα-Cα±1 BASE-RFDR yields Ca(i) -> Ca(i+1) and Cai -> Ca (i+2) x-peaks (~6 Å) --- only these are present in the spectrum

6 Structural Measurements in Peptides and Proteins Assignments Distances Torsion Angles Measure isotropic chemical shifts and CSA s Measure magnitudes of dipolar couplings Measure relative orientations of dipolar tensors Structural parameters are measured via reintroduction of the 13 C- 15 N and 13 C- 13 C dipolar couplings into MAS spectra

7 13 C=O- 13 C=O Distance Measurements DQ-DRAWS Experimental requirements: ω r /2π = 20 khz ω 1 /2π =100 khz for SPC5 ω 1 /2π =140 khz for C7, POSTC7 ω 1 /2π =170 khz for DRAWS N=8.5! ѡ1( 13 C)=8.5 x ѡr and ѡ1( 1 H)= 3 x ѡ1( 13 C) 1 H decoupling > x3 13 C field, i.e times the MAS frequency ~ khz!

8 TSAR DARR versus spinning frequency High fields requires high spinning frequencies ω r /2π 10 khz ω r /2π 20 khz Cross peaks are missing or attenuated at ω r /2π = 20 khz Lewandowski et al (in preparation)

9 TSAR Methods yielding long distance restraints 13 C- 13 C correlation spectra of [U- 13 C, 15 N]-Crh protein DARR / RAD 20 mg, 21 hours Takegoshi et al. CPL (2001) 344. Morcombe et al. JACS (2004) 126. CHHC 20 mg, 46 hours Lange et al., JACS (2002) 124. Loquet et al. JACS (2008) C- 13 C PAR 6 mg, 21.4 hours De Paëpe et al. (2008) Lewandowski et al. (2008) DARR/RAD and CHHC spectra courtesy of Carole Gardiennet

10 Dipole Recoupling Sequences DICSY SPC-5 SEDRA DRAMA HIGH ѡr/2π and ѡ0/2π RIL CROWN CMR7 C7 REDOR USEME MELODRAMA TEDOR Most of the rotor synchronized sequences developed for low fields < 500 MHz do not function well at high ω r /2π (and high B 0 )

11 Outline Recoupling at High Spinning Frequencies and Fields Dipole recoupling in the 20th century Recoupling sans decoupling Third spin assisted recoupling (TSAR) Applications to proteins ѡr/2π=65 khz Dynamic Nuclear Polarization (DNP) Instrumentation Biradical Polarizing Agents and DNP Mechanisms Uniform polarization of macroscopic samples

12 New Solution: DQ-CMRR Recoupling sans 1 H decoupling Properties/advantages: Single channel irradiation Attenuation of r.f. sample heating Efficient at high B 0, high ω r /2π 13 C chemical shift (ppm) 13 C- 13 C recoupling without 1 H decoupling, 20 khz MAS CM 5 RR* on [U- 13 C, 15 N]-Crh MHz, 15 hours Efficient relayed transfer mechanism 13 C 13 C chemical shift (ppm) *De Paëpe et al., JACS (2006) De Paëpe et al., JCP (2008)

13 13 C- 13 C 2D spectra sans 1 H Decoupling PI3-SH3 fibrils CM 4 RR at 900 MHz

14 PI3-SH3 Linewidths in U- 13 C, 15 N and 2-13 C*,U- 15 N labeled samples MAS NMR on PI3-SH3 fibril samples -- linewidths ~0.5 ppm expression of isotopically labeled proteins manipulation of labeling scheme, by using different sources of 13 C and/ or 15 N isotopes Example: alternating labeling using [1,3-13 C]- or [2-13 C]-glycerol Labeling Pattern for Valine: [1,3-13 C] & [2-13 C]* Maly, Bayro et. al. submitted (2009)

15 PI3-SH3 PI3-SH3 protein fibrils- assignments Sequential assignments RFDR, 750 MHz, ωr/2π= khz 0.8 ms mixing 75/86 residues sequentially assigned 87% assigned! Excellent resolution ppm linewidths Maly, Bayro et. al. submitted (2009)

16 13 C- 13 C 2D spectra sans 1 H decoupling G B1 RFDR in the high frequency MAS/ high field regime Broadband ZQ 13 C- 13 C RFDR recoupling at 750 MHz without 1 H irradiation

17 Homonuclear Recoupling sans Decoupling RFDR 30 khz τ mix = 8 ms At high MAS rates, RFDR can be applies for extended mixing times without decoupling.

18 Outline Recoupling at High Spinning Frequencies and Fields Dipole recoupling in the 20th century Recoupling sans decoupling Third spin assisted recoupling (TSAR) Applications to proteins ѡr/2π=65 khz Dynamic Nuclear Polarization (DNP) Instrumentation Biradical Polarizing Agents and DNP Mechanisms Uniform polarization of macroscopic samples

19 Third Spin Assisted Recoupling Mechanism (TSAR) Pulse sequences Lewandowski, De Paëpe, Griffin JACS (2007) De Paëpe, Lewandowski, Loquet, Bockmann Griffin JCP (in press) (2008) Superficially similar to Hartmann-Hahn cross polarization RF fields satisfy different matching conditions

20 Proton Assisted Recoupling (PAR) [a.k.a. Third Spin Assisted Recoupling(TSAR)] PAR functions via second order cross terms -- not direct 13 C- 13 C terms Hint=ωN1N2(3N1zN2z-N1*N2) +ωn1h2n1zhz+ωhn22hzn2z Polarization transfer driven by... N 1 ± N 2 H z One bond and sequential cross peaks observed in 20 ms of mixing PDSD requires 4 sec of mixing for an equivalent spectrum! (Reif, et. al. 2000) Lewandowski, De Paepe and Griffin JACS 129, (2007); JACS 131, (2009)

21 Homonuclear TSAR Mechanism Second order average Hamiltonian theory ZQ flip-flop cross terms (2 x 3) lead to PAR transfer! Auto cross terms arise from 2 x 2 and 3 x 3 and attenuate PAR De Paëpe, Lewandowski, Loquet, Bockmann, Griffin JCP 129, (2008)

22 PAR Experiment SpinEv Optimization Map rotary resonance Hartmann-Hahn PAR p H =ω 1H /ω r ω r /2π=20 khz ω 0 /2π=750 MHz p C =ω 1C /ω r Appropriate choice of 13 C and 1 H rf leads to PAR recoupling!

23 Long Distance Constraints TSAR versus dipolar truncation Long distance transfer (~4.5 Å) in presence of directly bonded carbon: reduction of the dipolar truncation!

24 High field (750/900 MHz) Protein Structure Determination 33Cγ1/74Cδ1 6.8 Å Long distance transfer in uniformly labeled protein

25 de novo 3D Structure Determination Crh dimer X-ray Crh assignments + 2, 20 ms 13 C- 13 C PAR 15 ms PAIN-CP ARIA C- 13 C constraints (269 long range) N 13 C constraints (130 long range) TALOS XPLOR-NIH NMR RMSD = 0.58 Å

26 Outline Recoupling at High Spinning Frequencies and Fields Dipole recoupling in the 20th century Recoupling sans decoupling Third spin assisted recoupling (TSAR) Applications to proteins ѡr/2π=65 khz Dynamic Nuclear Polarization (DNP) Instrumentation Biradical Polarizing Agents and DNP Mechanisms Uniform polarization of macroscopic samples

27 TSAR High MAS frequency experiments: ѡr / 2π = 65 khz In collaboration with Jochem Struppe and Werner Maas (Bruker-Biospin) Expansion of aromatic region U- 13 C, 15 N GB1 1.3 mm rotor Low power decoupling khz Improved resolution Need for recoupling techniques

28 PAR Optimization ѡr/2π=65 khz 1.3 mm rotor Low power decoupling -- ѡ1/2π=16 khz Two regions that satisfy the matching conditions

29 Proton Assisted ѡr/2π=65 khz 13 C- 13 C PAR -- U( 13 C, 15 N)-GB1 Long distance transfer in uniformly labeled protein Resolved 13 C- 13 C J- couplings C=O to aliphatic Long distance contacts are observed in the aliphatic region SPINEV script for calculating transfer map M. Eddy, J. Struppe and W. Maas J. Phys. Chem. B, 113, (2009)

NIH Public Access Author Manuscript Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 November 17.

NIH Public Access Author Manuscript Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 November 17. NIH Public Access Author Manuscript Published in final edited form as: Angew Chem Int Ed Engl. 2009 ; 48(31): 5708 5710. doi:10.1002/anie.200901520. Long-Range Aliphatic Correlations in Protein MAS NMR

More information

Protein structure determination by solid-state NMR

Protein structure determination by solid-state NMR Protein structure determination by solid-state NMR Birgit Habenstein Supervised by Anja Böckmann Solid state NMR proteinaceous targets Structural studies and structure determination at atomic level Membrane

More information

Cross Polarization 53 53

Cross Polarization 53 53 Cross Polarization 53 Why don t we normally detect protons in the solid-state BPTI Strong couplings between protons ( >20kHz) Homogeneous interaction Not readily averaged at moderate spinning speeds Rhodopsin

More information

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin Journal of Magnetic Resonance 202 (2010) 9-13 Bajaj S. V., Mak-Jurkauskus, A. L., Belenky, M., Herzfeld, J. and Griffin, R. MR Seminar

More information

Bayro, 2011, JACS Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR

Bayro, 2011, JACS Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR Bayro, 2011, JACS Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR Presented by: Daniel Droste 17.10.2013 Seminar Magnetische Resonanz

More information

Proton Assisted Recoupling at High Spinning Frequencies

Proton Assisted Recoupling at High Spinning Frequencies Proton Assisted Recoupling at High Spinning Frequencies The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

Quantification of Dynamics in the Solid-State

Quantification of Dynamics in the Solid-State Bernd Reif Quantification of Dynamics in the Solid-State Technische Universität München Helmholtz-Zentrum München Biomolecular Solid-State NMR Winter School Stowe, VT January 0-5, 206 Motivation. Solid

More information

Author(s) Takegoshi, K; Nakamura, S; Terao, T.

Author(s) Takegoshi, K; Nakamura, S; Terao, T. Title C-13-H-1 dipolar-driven C-13-C-13 r irradiation in nuclear magnetic res Author(s) Takegoshi, K; Nakamura, S; Terao, T Citation JOURNAL OF CHEMICAL PHYSICS (2003), 2341 Issue Date 2003-02-01 URL http://hdl.handle.net/2433/49979

More information

Nature Structural & Molecular Biology: doi: /nsmb.3194

Nature Structural & Molecular Biology: doi: /nsmb.3194 Supplementary Figure 1 Mass spectrometry and solution NMR data for -syn samples used in this study. (a) Matrix-assisted laser-desorption and ionization time-of-flight (MALDI-TOF) mass spectrum of uniformly-

More information

Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins

Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins Chemical Shift Anisotropy & Multidimensional Recoupling for Uniformly Labeled Proteins Chad M. Rienstra University of Illinois at Urbana-Champaign Winter School on Biomolecular Solid State NMR Jan. 20-25,

More information

Efficient band-selective homonuclear CO CA cross-polarization in protonated proteins

Efficient band-selective homonuclear CO CA cross-polarization in protonated proteins J Biomol NMR (2013) 56:303 311 DOI 10.1007/s10858-013-9767-1 COMMUNICATION Efficient band-selective homonuclear CO CA cross-polarization in protonated proteins Veniamin Chevelkov Chaowei Shi Hannes Klaus

More information

ANALYTICAL AND NUMERICAL INVESTIGATIONS *

ANALYTICAL AND NUMERICAL INVESTIGATIONS * Romanian Reports in Physics, Vol. 64, No. 1, P. 127 134, 2012 1 H DOUBLE QUANTUM NMR AT ULTRA FAST MAS: ANALYTICAL AND NUMERICAL INVESTIGATIONS * C. TRIPON 1, X. FILIP 1, M. ALUAS 2, C. FILIP 1 1 National

More information

Heteronuclear Decoupling and Recoupling

Heteronuclear Decoupling and Recoupling Heteronuclear Decoupling and Recoupling Christopher Jaroniec, Ohio State University 1. Brief review of nuclear spin interactions, MAS, etc. 2. Heteronuclear decoupling (average Hamiltonian analysis of

More information

Magic-Angle Spinning (MAS) drive bearing

Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) magic-angle spinning is done pneumatically spinning frequency can be stabilized within a few Hz Magic-Angle Spinning (MAS) drive bearing Magic-Angle Spinning (MAS) Maximum spinning

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1299 Protein fold determined by paramagnetic magic-angle spinning solid-state NMR spectroscopy Ishita Sengupta 1, Philippe S. Nadaud 1, Jonathan J. Helmus 1, Charles D. Schwieters 2

More information

Supplementary Information Access to side- chain carbon information in deuterated solids under ultra- fast MAS through non- rotor- synchronized mixing

Supplementary Information Access to side- chain carbon information in deuterated solids under ultra- fast MAS through non- rotor- synchronized mixing Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry Supplementary Information Access to side- chain carbon information in deuterated solids under ultra-

More information

Solid-State NMR Structural Studies of Proteins Using Paramagnetic Probes

Solid-State NMR Structural Studies of Proteins Using Paramagnetic Probes Solid-State NMR Structural Studies of Proteins Using Paramagnetic Probes Christopher Jaroniec Department of Chemistry & Biochemistry The Ohio State University Protein Structure by MAS Solid-State NMR D

More information

Protein-nucleotide interactions detected by solid-state NMR

Protein-nucleotide interactions detected by solid-state NMR 190 Å Protein-nucleotide interactions detected by solid-state NMR Dr. Thomas Wiegand CCPN Meeting 2017, Stirling 15/07/2017 120 Å HpDnaB ATP or ATP-analogues + ssdna? Laboratory of Physical Chemistry Group

More information

Principles of Nuclear Magnetic Resonance in One and Two Dimensions

Principles of Nuclear Magnetic Resonance in One and Two Dimensions Principles of Nuclear Magnetic Resonance in One and Two Dimensions Richard R. Ernst, Geoffrey Bodenhausen, and Alexander Wokaun Laboratorium für Physikalische Chemie Eidgenössische Technische Hochschule

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends

4 Spin-echo, Spin-echo Double Resonance (SEDOR) and Rotational-echo Double Resonance (REDOR) applied on polymer blends 4 Spin-echo, Spin-echo ouble Resonance (SEOR and Rotational-echo ouble Resonance (REOR applied on polymer blends The next logical step after analyzing and concluding upon the results of proton transversal

More information

SUPPORTING INFORMATION. for. Investigations of dynamic amyloid-like structures of the Wnt signalling pathway by solid-state NMR

SUPPORTING INFORMATION. for. Investigations of dynamic amyloid-like structures of the Wnt signalling pathway by solid-state NMR Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION for Investigations of dynamic amyloid-like structures of the Wnt signalling

More information

Site-Resolved Determination of Peptide Torsion Angle O from the Relative Orientations of Backbone N-H and C-H Bonds by Solid-State NMR

Site-Resolved Determination of Peptide Torsion Angle O from the Relative Orientations of Backbone N-H and C-H Bonds by Solid-State NMR J. Phys. Chem. B 1997, 101, 5869-5874 5869 Site-Resolved Determination of Peptide Torsion Angle O from the Relative Orientations of Backbone N-H and C-H Bonds by Solid-State NMR M. Hong, J. D. Gross, and

More information

NMR of large protein systems: Solid state and dynamic nuclear polarization. Sascha Lange, Leibniz-Institut für Molekulare Pharmakologie (FMP)

NMR of large protein systems: Solid state and dynamic nuclear polarization. Sascha Lange, Leibniz-Institut für Molekulare Pharmakologie (FMP) NMR of large protein systems: Solid state and dynamic nuclear polarization Sascha Lange, Leibniz-Institut für Molekulare Pharmakologie (FMP) The Aim of the Game solution NMR other methods solid state NMR

More information

Triple Resonance Experiments For Proteins

Triple Resonance Experiments For Proteins Triple Resonance Experiments For Proteins Limitations of homonuclear ( 1 H) experiments for proteins -the utility of homonuclear methods drops quickly with mass (~10 kda) -severe spectral degeneracy -decreased

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Dynamic Nuclear Polarization of Deuterated Proteins

Dynamic Nuclear Polarization of Deuterated Proteins Dynamic Nuclear Polarization of Deuterated Proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

D = kt/6 a. d /2D. For sucrose/h 2O, we have D = 0.521X10

D = kt/6 a. d /2D. For sucrose/h 2O, we have D = 0.521X10 600 400 200 0-200 -400 M 0 M 0 D D = kt/6a 2 d /2D a d a For sucrose/h 2O, we have D = 0.521X10-5 cm 2-1 s, then -13 d = 1 nm -11 d = 10 nm NMR frequency ~ 10 8 Hz All spin interactions become isotropic

More information

Deuteration: Structural Studies of Larger Proteins

Deuteration: Structural Studies of Larger Proteins Deuteration: Structural Studies of Larger Proteins Problems with larger proteins Impact of deuteration on relaxation rates Approaches to structure determination Practical aspects of producing deuterated

More information

Progress in 13 C and 1 H solid-state nuclear magnetic resonance for paramagnetic systems under very fast magic angle spinning

Progress in 13 C and 1 H solid-state nuclear magnetic resonance for paramagnetic systems under very fast magic angle spinning THE JOURNAL OF CHEMICAL PHYSICS 128, 052210 2008 Progress in 13 C and 1 H solid-state nuclear magnetic resonance for paramagnetic systems under very fast magic angle spinning Nalinda P. Wickramasinghe,

More information

Labelling strategies in the NMR structure determination of larger proteins

Labelling strategies in the NMR structure determination of larger proteins Labelling strategies in the NMR structure determination of larger proteins - Difficulties of studying larger proteins - The effect of deuteration on spectral complexity and relaxation rates - NMR expts

More information

Dipolar Recoupling: Heteronuclear

Dipolar Recoupling: Heteronuclear Dipolar Recoupling: Heteronuclear Christopher P. Jaroniec Ohio State University, Columbus, OH, USA 1 Introduction 1 MAS Hamiltonian 3 3 Heteronuclear Dipolar Recoupling in Spin Pairs 4 4 Heteronuclear

More information

Introduction solution NMR

Introduction solution NMR 2 NMR journey Introduction solution NMR Alexandre Bonvin Bijvoet Center for Biomolecular Research with thanks to Dr. Klaartje Houben EMBO Global Exchange course, IHEP, Beijing April 28 - May 5, 20 3 Topics

More information

Kay Saalwächter and Hans W. Spiess b) Max-Planck-Institute for Polymer Research, Postfach 3148, D Mainz, Germany

Kay Saalwächter and Hans W. Spiess b) Max-Planck-Institute for Polymer Research, Postfach 3148, D Mainz, Germany JOURNAL OF CHEMICAL PHYSICS VOLUME 114, NUMBER 13 1 APRIL 2001 Heteronuclear 1 H 13 C multiple-spin correlation in solid-state nuclear magnetic resonance: Combining rotational-echo double-resonance recoupling

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

Heteronuclear Decoupling. Distance and Torsion Angle Restraints in

Heteronuclear Decoupling. Distance and Torsion Angle Restraints in Heteronuclear Decoupling and Recoupling: Measurements of Distance and Torsion Angle Restraints in Peptides and Proteins Christopher Jaroniec, Ohio State University 1. Brief review of nuclear spin interactions,

More information

X 1 H rotational-echo double-resonance NMR for torsion angle determination of peptides

X 1 H rotational-echo double-resonance NMR for torsion angle determination of peptides Chemical Physics Letters 380 (2003) 742 748 www.elsevier.com/locate/cplett X 1 H rotational-echo double-resonance NMR for torsion angle determination of peptides Neeraj Sinha, Mei Hong * Department of

More information

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations

Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations Introduction to 1D and 2D NMR Spectroscopy (4) Vector Model and Relaxations Lecturer: Weiguo Hu 7-1428 weiguoh@polysci.umass.edu October 2009 1 Approximate Description 1: Energy level model Magnetic field

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

NMR in Structural Biology

NMR in Structural Biology NMR in Structural Biology Exercise session 2 1. a. List 3 NMR observables that report on structure. b. Also indicate whether the information they give is short/medium or long-range, or perhaps all three?

More information

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange

Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange Topics in SSNMR and Dynamics of Proteins: Consequences of Intermediate Exchange A McDermott, Columbia University Winter School in Biomolecular NMR, Stowe VT January 20-23 2008 Effects on NMR Spectra: Local,

More information

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina

Principios Básicos de RMN en sólidos destinado a usuarios. Gustavo Monti. Fa.M.A.F. Universidad Nacional de Córdoba Argentina Principios Básicos de RMN en sólidos destinado a usuarios Gustavo Monti Fa.M.A.F. Universidad Nacional de Córdoba Argentina CONTENIDOS MODULO 2: Alta resolución en sólidos para espines 1/2 Introducción

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Solid State NMR News. Sebastian Wegner, Bruker BioSpin GmbH, Rheinstetten, Germany 40. Deutsches NMR Meeting

Solid State NMR News. Sebastian Wegner, Bruker BioSpin GmbH, Rheinstetten, Germany 40. Deutsches NMR Meeting Solid State NMR News Sebastian Wegner, Bruker BioSpin GmbH, Rheinstetten, Germany 40. Deutsches NMR Meeting Solid State NMR News Solid State DNP NMR 111 khz MAS NMR Adaptor kit for Varian and Chemagnetics

More information

Published on Web 05/09/2003. Spectroscopy

Published on Web 05/09/2003. Spectroscopy Published on Web 05/09/2003 Measurement of Multiple ψ Torsion Angles in Uniformly 13 C, 15 N-Labeled r-spectrin SH3 Domain Using 3D 15 N- 13 C- 13 C- 15 N MAS Dipolar-Chemical Shift Correlation Spectroscopy

More information

Quantitative Solid-State NMR Study on Ligand Surface Interaction in

Quantitative Solid-State NMR Study on Ligand Surface Interaction in Supporting Information: Quantitative Solid-State NMR Study on Ligand Surface Interaction in Cysteine-capped CdSe Magic-Sized Clusters Takuya Kurihara, Yasuto Noda,* and K. Takegoshi Division of Chemistry,

More information

Structurele Biologie NMR

Structurele Biologie NMR MR journey Structurele Biologie MR 5 /3C 3 /65 MR & Structural biology course setup lectures - Sprangers R & Kay LE ature (27) basics of MR (Klaartje ouben: k.houben@uu.nl; 4/2) from peaks to data (ans

More information

Spin-spin coupling I Ravinder Reddy

Spin-spin coupling I Ravinder Reddy Spin-spin coupling I Ravinder Reddy Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Exchange Chemical shifts J-coupling Spin Diffusion Dipolar

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Supporting information for. Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data

Supporting information for. Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data Supporting information for Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data Shengqi Xiang 1, Veniamin Chevelkov 1,2, Stefan Becker 1, Adam Lange 1,2,3 * 1 Max

More information

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 Flip-flops Bath narrowing Experiment Source Power (dbm) 10.8 10.6 10.4 10.2 0 5

More information

Solid state NMR sequential resonance assignments and conformational analysis of the kda dimeric form of the Bacillus subtilis protein Crh

Solid state NMR sequential resonance assignments and conformational analysis of the kda dimeric form of the Bacillus subtilis protein Crh Journal of Biomolecular NMR 27: 323 339, 2003. KLUWER/ESCOM 2003 Kluwer Academic Publishers. Printed in the Netherlands. 323 Solid state NMR sequential resonance assignments and conformational analysis

More information

Relaxation-compensated difference spin diffusion NMR for detecting 13C 13C long-range correlations in proteins and polysaccharides

Relaxation-compensated difference spin diffusion NMR for detecting 13C 13C long-range correlations in proteins and polysaccharides Relaxation-compensated difference spin diffusion NMR for detecting 13C 13C long-range correlations in proteins and polysaccharides The MIT Faculty has made this article openly available. Please share how

More information

Journal of Magnetic Resonance

Journal of Magnetic Resonance Journal of Magnetic Resonance 202 (2010) 203 210 Contents lists available at ScienceDirect Journal of Magnetic Resonance journal homepage: www.elsevier.com/locate/jmr 3D 13 C 13 C 13 C correlation NMR

More information

Aromatic spectral editing techniques for magic-anglespinning solid-state NMR spectroscopy of uniformly 13Clabeled

Aromatic spectral editing techniques for magic-anglespinning solid-state NMR spectroscopy of uniformly 13Clabeled Aromatic spectral editing techniques for magic-anglespinning solid-state NMR spectroscopy of uniformly 13Clabeled proteins The MIT Faculty has made this article openly available. Please share how this

More information

Supplementary Material

Supplementary Material Supplementary Material 4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins Barbara Krähenbühl 1 Sebastian Hiller 2 Gerhard Wider 1 1 Institute of Molecular

More information

1. 3-hour Open book exam. No discussion among yourselves.

1. 3-hour Open book exam. No discussion among yourselves. Lecture 13 Review 1. 3-hour Open book exam. No discussion among yourselves. 2. Simple calculations. 3. Terminologies. 4. Decriptive questions. 5. Analyze a pulse program using density matrix approach (omonuclear

More information

Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy

Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy pubs.acs.org/jacs Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy Galia T. Debelouchina,, Marvin J. Bayro,, Anthony W. Fitzpatrick,, Vladimir Ladizhansky,, Michael T. Colvin, Marc

More information

assignments for uniformly-labeled proteins 2. Biomolecular solid state NMR at low and ultra-low temperatures

assignments for uniformly-labeled proteins 2. Biomolecular solid state NMR at low and ultra-low temperatures Lecture by R. Tycko at 3 rd Winter School on Biomolecular Solid State t NMR Stowe, Vermont, January 8, 2013 Two topics: 1. Computer-aided NMR resonance assignments for uniformly-labeled proteins 2. Biomolecular

More information

Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR

Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR J. Phys. Chem. B 2010, 114, 13555 13561 13555 Accurate Determination of Interstrand Distances and Alignment in Amyloid Fibrils by Magic Angle Spinning NMR Marc A. Caporini,, Vikram S. Bajaj,, Mikhail Veshtort,,

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

COSY type experiments exploring through-bond homonuclear correlations

COSY type experiments exploring through-bond homonuclear correlations COSY type experiments exploring through-bond homonuclear correlations Assistant Professor Kenneth Kongstad Bioanalytical Chemistry and Metabolomics Research Group Section for Natural Products and Peptides

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Numerical Methods for Pulse Sequence Optimisation

Numerical Methods for Pulse Sequence Optimisation Numerical Methods for Pulse Sequence Optimisation Lyndon Emsley, Laboratoire de Chimie, Ecole Normale Supérieure de Lyon, & Institut Universitaire de France ECOLE NORMALE SUPERIEURE DE LYON IUF Dances

More information

Efficient β-sheet Identification in Proteins by Solid-State NMR Spectroscopy

Efficient β-sheet Identification in Proteins by Solid-State NMR Spectroscopy 11320 J. Am. Chem. Soc. 2000, 122, 11320-11327 Efficient β-sheet Identification in Proteins by Solid-State NMR Spectroscopy Daniel Huster, Satoru Yamaguchi, and Mei Hong* Contribution from the Department

More information

Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance. Andreas Brinkmann

Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance. Andreas Brinkmann Dipolar Recoupling in Magic-Angle-Spinning Nuclear Magnetic Resonance Andreas Brinkmann Division of Physical Chemistry Arrhenius Laboratory Stockholm University 2001 Dipolar Recoupling in Magic-Angle-Spinning

More information

Numerical simulations of spin dynamics

Numerical simulations of spin dynamics Numerical simulations of spin dynamics Charles University in Prague Faculty of Science Institute of Computer Science Spin dynamics behavior of spins nuclear spin magnetic moment in magnetic field quantum

More information

Christopher Pavlik Bioanalytical Chemistry March 2, 2011

Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance of Proteins Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance NMR Application of a magnetic field causes absorption of EM energy that induces

More information

THE JOURNAL OF CHEMICAL PHYSICS 128,

THE JOURNAL OF CHEMICAL PHYSICS 128, THE JOURNAL OF CHEMICAL PHYSICS 128, 052314 2008 Determination of methyl 13 C 15 N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

National Ultrahigh-Field NMR Facility for Solids

National Ultrahigh-Field NMR Facility for Solids National Ultrahigh-Field NMR Facility for Solids www.nmr900.ca Second Annual Solid-State NMR Workshop May 26, 2007, Delta Winnipeg, Albert Room Session 1 Chair I. Moudrakovski (Steacie Institute for Molecular

More information

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. Chapter 13: Nuclear magnetic resonance spectroscopy NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule. 13.2 The nature of

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Summary of 1D Experiment time domain data Fourier Transform (FT) frequency domain data or Transverse Relaxation Ensemble of Nuclear

More information

Probing Hydrogen Bonding by Solid-State NMR. Steven P. Brown

Probing Hydrogen Bonding by Solid-State NMR. Steven P. Brown Probing ydrogen Bonding by Solid-State M Steven P. Brown Solution-State M: Isotropic Interactions Fast isotropic tumbling of the molecules averages to zero all anisotropic broadening Chemical Shift Differentiation

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Yoshitaka Ishii and Robert Tycko* J. Am. Chem. Soc. 2000, 122,

Yoshitaka Ishii and Robert Tycko* J. Am. Chem. Soc. 2000, 122, J. Am. Chem. Soc. 2000, 122, 1443-1455 1443 Multidimensional Heteronuclear Correlation Spectroscopy of a Uniformly N- and C-Labeled Peptide Crystal: Toward Spectral Resolution, Assignment, and Structure

More information

[superscript 15]N-[superscript 15]N Proton Assisted Recoupling in Magic Angle Spinning NMR

[superscript 15]N-[superscript 15]N Proton Assisted Recoupling in Magic Angle Spinning NMR [superscript 15]N-[superscript 15]N Proton Assisted Recoupling in Magic Angle Spinning NMR The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

NMR-spectroscopy. I: basics. Peter Schmieder

NMR-spectroscopy. I: basics. Peter Schmieder NMR-spectroscopy I: basics Why spectroscopy? 2/102 Why spectroscopy It is well established that all biological relevant processes take place via interactions of molecules, either small ones (metall ions,

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Lectures for CCB 538 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu J.A.! 04/21/14! April 21!!!!April 23!! April 28! Outline 1. Introduction / Spectroscopy Overview! 2. NMR

More information

Timescales of Protein Dynamics

Timescales of Protein Dynamics Timescales of Protein Dynamics From Henzler-Wildman and Kern, Nature 2007 Dynamics from NMR Show spies Amide Nitrogen Spies Report On Conformational Dynamics Amide Hydrogen Transverse Relaxation Ensemble

More information

Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy

Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy J Biomol NMR (2010) 46:67 73 DOI 10.1007/s10858-009-9369-0 PERSPECTIVE Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy Ümit Akbey

More information

Chem8028(1314) - Spin Dynamics: Spin Interactions

Chem8028(1314) - Spin Dynamics: Spin Interactions Chem8028(1314) - Spin Dynamics: Spin Interactions Malcolm Levitt see also IK m106 1 Nuclear spin interactions (diamagnetic materials) 2 Chemical Shift 3 Direct dipole-dipole coupling 4 J-coupling 5 Nuclear

More information

Solid-State Dipolar INADEQUATE NMR Spectroscopy with a Large Double-Quantum Spectral Width

Solid-State Dipolar INADEQUATE NMR Spectroscopy with a Large Double-Quantum Spectral Width Journal of Magnetic Resonance 136, 86 91 (1999) Article ID jmre.1998.1631, available online at http://www.idealibrary.com on Solid-State Dipolar INADEUATE NMR Spectroscopy with a Large Double-uantum Spectral

More information

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS

PRACTICAL ASPECTS OF NMR RELAXATION STUDIES OF BIOMOLECULAR DYNAMICS PRACTICAL ASPECTS OF MR RELAXATIO STUDIES OF BIOMOLECULAR DYAMICS Further reading: Can be downloaded from my web page Korzhnev D.E., Billeter M., Arseniev A.S., and Orekhov V. Y., MR Studies of Brownian

More information

Journal of Magnetic Resonance

Journal of Magnetic Resonance Journal of Magnetic Resonance 208 (2011) 225 234 Contents lists available at ScienceDirect Journal of Magnetic Resonance journal homepage: www.elsevier.com/locate/jmr Double-quantum homonuclear correlations

More information

Connecting NMR data to biomolecular structure and dynamics

Connecting NMR data to biomolecular structure and dynamics Connecting NMR data to biomolecular structure and dynamics David A. Case Chem 538, Spring, 2014 Basics of NMR All nuclei are characterized by a spin quantum number I, which can be 0, 1/2, 1, 3/2, 2...

More information

Second-order recoupling of chemical-shielding and dipolar-coupling tensors under spin decoupling in solid-state NMR

Second-order recoupling of chemical-shielding and dipolar-coupling tensors under spin decoupling in solid-state NMR Second-order recoupling of chemical-shielding and dipolar-coupling tensors under spin decoupling in solid-state NMR Matthias Ernst, a) Seth Bush, Andrew C. Kolbert, b) and Alexander Pines Materials Sciences

More information

Double-Resonance Experiments

Double-Resonance Experiments Double-Resonance Eperiments The aim - to simplify complicated spectra by eliminating J-couplings. omonuclear Decoupling A double resonance eperiment is carried out using a second rf source B 2 in addition

More information

Direct dipolar interaction - utilization

Direct dipolar interaction - utilization Direct dipolar interaction - utilization Two main uses: I: magnetization transfer II: probing internuclear distances Direct dipolar interaction - utilization Probing internuclear distances ˆ hetero D d

More information

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy

I690/B680 Structural Bioinformatics Spring Protein Structure Determination by NMR Spectroscopy I690/B680 Structural Bioinformatics Spring 2006 Protein Structure Determination by NMR Spectroscopy Suggested Reading (1) Van Holde, Johnson, Ho. Principles of Physical Biochemistry, 2 nd Ed., Prentice

More information

NMR in Medicine and Biology

NMR in Medicine and Biology NMR in Medicine and Biology http://en.wikipedia.org/wiki/nmr_spectroscopy MRI- Magnetic Resonance Imaging (water) In-vivo spectroscopy (metabolites) Solid-state t NMR (large structures) t Solution NMR

More information

Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks

Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks pubs.acs.org/jacs Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks Ramzy M. Shayib, Nathan C. George, Ram Seshadri, Allen W. Burton,,# Stacey I.

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Two Dimensional (2D) NMR Spectroscopy

Two Dimensional (2D) NMR Spectroscopy The two important parameters obtained from NMR spectra are; Two Dimensional (2D) NMR Spectroscopy py Correlation NMR a. Chemical shift b. Spin-spin coupling constant Large molecules with numerous atoms

More information

Magnetic Resonance Lectures for Chem 341 James Aramini, PhD. CABM 014A

Magnetic Resonance Lectures for Chem 341 James Aramini, PhD. CABM 014A Magnetic Resonance Lectures for Chem 341 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu " J.A. 12/11/13 Dec. 4 Dec. 9 Dec. 11" " Outline" " 1. Introduction / Spectroscopy Overview 2. NMR Spectroscopy

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information