CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES

Size: px
Start display at page:

Download "CHEMISTRY - MCQUARRIE 4E CH.21 - BUFFERS & THE TITRATION OF ACIDS & BASES"

Transcription

1 !!

2 CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist drastic changes in ph by keeping and constant. Adding a small amount of STRONG BASE and, the ph, but not by much because the neutralizes the STRONG BASE added. Adding a small amount of STRONG ACID and, the ph, but not by much because the neutralizes the STRONG ACID added. PRACTICE 1: Which one of the following combinations does not create a buffer? a) HC2H3O2 and K C2H3O2 b) H2SO3 and NaHSO3 c) H3PO4 and NaH2PO4 d) HNO3 and KNO3 e) NH4Cl and NH3 PRACTICE 2: Which of the following combinations can result in the formation of a buffer? a) HF and HI b) HC2H3O2 and NH3 c) CH3CH2NH2 and CH3CH2NH3 + d) NaCl and NaOH Page 2

3 CONCEPT: CREATING A BUFFER There are 3 ways to form a buffer: 1) Mixing a acid and its base. 2) Mixing a acid and a base. 3) Mixing a acid and a base. Page 3

4 PRACTICE: CREATING A BUFFER EXAMPLE: Which of the following combinations can result in the formation of a buffer? a) 0.01 moles HClO (hypochlorous acid) and 0.05 moles of NaOH. b) 0.01 moles HClO (hypochlorous acid) and 0.05 moles of HCl. c) 0.01 moles HClO (hypochlorous acid) and 0.05 moles of NH3. d) 0.01 moles HClO (hypochlorous acid) and moles of NaOH PRACTICE 1: Which of the following combinations can result in the formation of a buffer? a) 50 ml of 0.10 M HF with 50 ml of 0.10 M NaOH. b) 50 ml of 0.10 M HNO2 with 25 ml of 0.10 M Ca(OH)2. c) 50 ml of 0.10 M CH3CO2H with 60 ml of 0.10 M NaOH. d) 50 ml of 0.10 M HF with 30 ml of 0.10 M NaOH. PRACTICE 2: A buffer solution is comprised of 50.0 ml of a M HC2H3O2 and 60.0 ml of a M NaC2H3O2. Which of the following actions would completely destroy the buffer? a) Adding mol HC2H3O2 b) Adding mol Ca(C2H3O2)2 c) Adding mol NaOH d) Adding mol HCl e) Adding mol HCl Page 4

5 CONCEPT: CALCULATING THE ph OF BUFFERS We learned that whenever we had a(n) acid or base we were supposed to use our favorite friend the Chart in order to calculate the ph or poh. Now, whenever we have a buffer solution we can skip it and use the Equation. Buffer Equation: (conjugate base) ph = pka + log (weak acid) EXAMPLE 1: What is the ph of a solution consisting of 2.75 M sodium phenolate (C6H5ONa) and 3.0 M phenol (C6H5OH). The Ka of phenol is 1.0 x PRACTICE: Calculate the ph of a solution formed by mixing 200 ml of a M C2H5NH2 solution with 350 ml of a M C2H5NH3 + solution. (Kb of C2H5NH2 is 5.6 x 10-4 ). Page 5

6 PRACTICE: CALCULATING THE ph OF BUFFERS (PART 1) EXAMPLE 1: What is the buffer component concentration ratio, Pr, of a buffer that has a ph of (The Ka of HPr is H Pr 1.30 x 10-5 ). EXAMPLE 2: Over what ph range will an oxalic acid (H2C2O4) / sodium oxalate (NaHC2O4) solution work most effectively? The acid dissociation constant of oxalic acid is 6.0 x a) b) c) d) PRACTICE: Determine how many grams of sodium acetate, NaCH3CO2 (MW: g/mol), you would mix into enough M acetic acid CH3CO2H (MW: g/mol) to prepare 3.2 L of a buffer with a ph of The Ka is 1.8 x Page 6

7 PRACTICE: CALCULATING THE ph OF BUFFERS (PART 2) EXAMPLE: Which weak acid-conjugate base combination would be ideal to form a buffer with a ph of a) Cyanic acid and Potassium cynate (Ka = 4.9 x ) b) Benzoic acid and Lithium benzoate (Ka = 6.3 x 10-5 ) c) Acetic acid and Sodium acetate (Ka = 1.7 x 10-5 ) d) Ammonium chloride and Ammonia (Ka = 5.56 x ) e) Formic acid and Cesium formate (Ka = 1.7 x 10-4 ) PRACTICE: A buffer solution is made by combining a weak acid with its conjugate salt. What will happen to the ph if the solution is diluted to one-fourth of its original concentration? a) The ph will increase. b) The ph will decrease. c) The ph will remain constant. d) The solution will become more neutral. Page 7

8 CONCEPT: ph TITRATION CURVES The shape of a ph titration curve makes it possible to identify the equivalence point, the point at which of acid and base are mixed together. At the equivalence point, the ph of a strong acid and strong base is 7. At the equivalence point, the ph of a strong acid and weak base is 7. At the equivalence point, the ph of a weak acid and strong base is 7. Page 8

9 PRACTICE: ph TITRATION CURVES (CALCULATIONS 1) EXAMPLE: The following questions refer to the titration curve given below. a) The titration curve shows the titration of a strong acid a weak acid a strong base a weak base with a strong base with a strong base with a strong acid with a strong acid b) Which point on the titration curve represents a region where a buffer solution has formed? point A point B point C point D c) Which point on the titration curve represents the equivalence point? point A point B point C point D d) Which of the following would be the best indicator to use in the titration? erythrosin B methyl red bromthymol blue o-cresonphthalein pka = 2.9 pka = 5.4 pka = 6.8 pka = 9.0 Page 9

10 PRACTICE: ph TITRATION CURVES (CALCULATIONS 2) EXAMPLE 1: The acid form of an indicator is red and its anion is blue. The Ka value for this indicator is What will be the approximate ph range over which this indicator changes color? a) 3-5 b) 4-6 c) 5-7 d) 8-10 e) 9-11 PRACTICE : What will be the color of the indicator in the above question in a solution that has a ph of 6? EXAMPLE 2: Consider the titration of ml of M H2SO4 with M NaOH at the equivalence point. How many many milliters of M NaOH are required to reach the equivalence point? Page 10

11 PRACTICE: ph TITRATION CURVES (CALCULATIONS 3) EXAMPLE: Consider the titration of 40.0 ml of M HCl with M Ca(NH2)2. a) How many milliliters of M Ca(NH2)2 are required to reach the equivalence point? b) What is the ph of this solution? PRACTICE: Consider the titration of 60.0 ml of M a H3PO3 solution with M potassium hydroxide, KOH solution. How many milliliters of base would be required to reach each of its equivalence points? Page 11

12 CONCEPT: WEAK ACID & STRONG BASE TITRATIONS In the past, we reacted WEAK Acids or WEAK Bases with and used a(n) Chart. Remember in this case the units in this chart are in. Now we will react WEAK Acids with bases. When you react a WEAK species with a species you have to use a(n) Chart. In this case the units must be in. HNO 2 NaOH Weak Acid Strong Base Before Equivalence Point Initial Change Final HNO 2 NaOH NaNO 2 Weak Acid Strong Base Conjugate Base moles H 2 O and will be present at the end. Use the Henderson Hasselbalch Equation. Conjugate Base ph = pka + log Weak Acid After Equivalence Point HNO 2 NaOH NaNO 2 Weak Acid Strong Base Conjugate Base Initial moles Change H 2 O will be present at the end. moles left [SB] = poh = log[sb] ph =14 poh Total Liters Final At Equivalence Point HNO 2 NaOH NaNO 2 Weak Acid Strong Base Conjugate Base Initial moles Change H 2 O Only will be present at the end. Use an ICE Chart to find ph. [CB] = moles left Total Liters K b = x2 [CB] Final Page 12

13 PRACTICE: WEAK ACID & STRONG BASE TITRATIONS CALCULATIONS 1 EXAMPLE: Consider the titration of 75.0 ml of M H3C3O3 (Ka = 4.1 X 10-3 ) with 12.0 ml of M KOH. Calculate the ph. PRACTICE: In order to create a buffer, g of sodium cyanide is mixed with ml of M hydrocyanic acid, HCN. What is the ph of the buffer solution after the addition of ml of M NaH? Page 13

14 PRACTICE: WEAK ACID & STRONG BASE TITRATIONS CALCULATIONS 2 EXAMPLE: Consider the titration of 75.0 ml of 0.60 M HNO2 with M NaOH at the equivalence point. What would be the ph of the solution at the equivalence point? The Ka of HNO2 is 4.6 x Page 14

15 CONCEPT: WEAK BASE & STRONG ACID TITRATIONS Now we will react WEAK Bases with STRONG Acids. Remember when you react a WEAK species with a species you have to use a(n) Chart. Again, in this case the units must be in. NH 3 HBr Before Equivalence Point NH 3 HBr NH + 4 Br Conjugate Base Strong Acid Weak Acid Initial moles Change Final and will be present at the end. Use the Henderson Hasselbalch Equation. Conjugate Base ph = pka + log Weak Acid After Equivalence Point NH 3 HBr NH + 4 Br Conjugate Base Strong Acid Weak Acid Initial moles Change will be present at the end. [SA] = moles left Total Liters ph = log[sa] Final At Equivalence Point NH 3 HBr NH + 4 Br Conjugate Base Strong Acid Weak Acid Only will be present at the end. Use an ICE Chart to find ph. Initial Change moles [WA] = moles left Total Liters K a = x2 [CB] Final Page 15

16 PRACTICE: WEAK BASE & STRONG ACID TITRATIONS CALCULATIONS EXAMPLE: A buffer contains ml of 0.25 M propanoic acid, CH3CH2COOH, with ml of 0.42 M sodium propanoate, CH3CH2COONa. Find the ph after the addition of ml of 0.56 M HCl. The Ka of CH3CH2COOH is 1.3 x PRACTICE: Calculate the ph of the solution that results from the mixing of 75.0 ml of M NaC2H3O2 and 75.0 ml of M HC2H3O2 with moles of HBr. Ka of HC2H3O2 is 1.8 x Page 16

17 CONCEPT: STRONG ACID & BASE TITRATIONS Whenever we had a STRONG ACID or STRONG BASE we use an ICE CHART. Now, whenever you titrate a STRONG ACID with STRONG BASE you use an ICF CHART. EXAMPLE: Calculate the ph of the solution resulting from the titration of 75.0 ml of M HBrO4 with 55.0 ml of M NaNH2. PRACTICE: Calculate the ph of the solution resulting from the mixing of ml of M HNO3 with 75.0 ml of M Ba(OH)2. Page 17

18 CONCEPT: DIPROTIC & POLYPROTIC BUFFERS A diprotic or polyprotic buffer can be approached in a way similar to monoprotic buffers. The key difference is that multiple pka values will be involved. For Monoprotic Buffers HClO + NaClO (aq) Weak oxyacid Conjugate base (conjugate base) ph = pka + log (weak acid) (Has 1 less Hydrogen) For Diprotic Buffers H 2 A HA A 2 ph = ph = For Polyprotic Buffers H 3 A H 2 A HA 2 A 3 ph = ph = ph = Page 18

19 PRACTICE: DIPROTIC & POLYPROTIC BUFFERS CALCULATIONS 1 EXAMPLE 1: Calculate the ph of 100 ml of a 0.25 M H2CO3 when 70.0 ml of 0.25 M NaOH are added. Ka1 = 4.3 x 10-7 and Ka2 = 5.6 x EXAMPLE 2: Calculate the ph of 75.0 ml of a 0.10 M of phosphorous acid, H3PO3, when 80.0 ml of 0.15 M NaOH are added. Ka1 = 5.0 x 10-2, Ka2 = 2.0 x Page 19

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA

CHEMISTRY - BURDGE-ATOMS FIRST 3E CH.17 - ACID-BASE EQUILIBRIA AND SOLUBILITY EQUILIBRIA !! www.clutchprep.com CONCEPT: CLASSIFICATION AND IDENTIFICATION OF BUFFERS Solutions which contain a acid and its base are called buffer solutions because they resist drastic changes in ph. They resist

More information

1032_2nd Exam_ (A)

1032_2nd Exam_ (A) 1032_2nd Exam_1040422 (A) MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Give the equation for a saturated solution in comparing Q with Ksp. A)

More information

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs. 18.1 Introduction to Acids and Bases 1. Name the following compounds as acids: a. H2SO4 d. HClO4 b. H2SO3 e. HCN c. H2S 2. Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas

More information

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a.

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a. Chapter 17 Answers Practice Examples 1a. + [HO ] 0.018M, 1b. 0 drops [HF] = 0.8 M. [H O + ] = 0.10 M, HF = 0.97 M. a. + HO 1.10 M, CHO = 0.150 M. b. 15g NaCHO a. The hydronium ion and the acetate ion react

More information

AP Chemistry: Acids & Bases Notes

AP Chemistry: Acids & Bases Notes AP Chemistry: Acids & Bases Notes Objectives Definition of Acids-Bases Acid Strength Base Strength ph-poh Scale Calculating ph of Strong Acids-Bases Calculating ph of Weak Acids-Bases Calculating Ka from

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

AP Study Questions

AP Study Questions Name: Class: Date: AP 17.1-17.2 Study Questions True/False Indicate whether the statement is true or false. 1. The extent of ionization of a weak electrolyte is increased by adding to the solution a strong

More information

Ch 16 and 17 Practice Problems

Ch 16 and 17 Practice Problems Ch 16 and 17 Practice Problems The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

General Chemistry II CHM 1046 E Exam 2

General Chemistry II CHM 1046 E Exam 2 General Chemistry II CHM 1046 E Exam 2 Dr. Shanbhag Name: 1. The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) H= -92.2 kj Which of

More information

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA.

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM.

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM. !! www.clutchprep.com CONCEPT: ACID IDENTIFICATION The most common feature of an acid is that many possess an H + ion called the. When it comes to acids there are 2 MAJOR TYPES that exist: are acids where

More information

Buffer Effectiveness, Titrations & ph curves. Section

Buffer Effectiveness, Titrations & ph curves. Section Buffer Effectiveness, Titrations & ph curves Section 16.3-16.4 Buffer effectiveness Buffer effectiveness refers to the ability of a buffer to resist ph change Effective buffers only neutralize small to

More information

ANALYTICAL CHEMISTRY - CLUTCH 1E CH.8 - MONOPROTIC ACID-BASE EQUILIBRIA.

ANALYTICAL CHEMISTRY - CLUTCH 1E CH.8 - MONOPROTIC ACID-BASE EQUILIBRIA. !! www.clutchprep.com CONCEPT: ARRHENIUS ACIDS AND BASES The most general definition for acids and bases was developed by Svante Arrhenius near the end of the 19 th century. According to him, the cation

More information

MC Practice Test unit G Acid/Base Name Per

MC Practice Test unit G Acid/Base Name Per MC Practice Test unit G Acid/Base Name Per This is practice Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO NOT USE A CALCULATOR.

More information

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2. !! www.clutchprep.com CONCEPT: ph and poh To deal with incredibly small concentration values of [H + ] and [OH - ] we can use the ph scale. Under normal conditions, the ph scale operates within the range

More information

ACIDS, BASES, AND SALTS

ACIDS, BASES, AND SALTS ACIDS, BASES, AND SALTS Chapter Quiz Choose the best answer and write its letter on the line. 1. A solution in which the hydroxide-ion concentration is 1 10 2 is a. acidic. c. neutral. b. basic. d. none

More information

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES

Duncan. UNIT 14 - Acids & Bases. COMMON ACIDS NOTES lactic acetic phosphoric NAMING ACIDS NOTES COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) 1. hydro- - HF 2. root of

More information

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or Chapter 16 - Acid-Base Equilibria Arrhenius Definition produce hydrogen ions in aqueous solution. produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of base. NH

More information

Unit 7, Lesson 08: The ph of Salt Solutions, Answers

Unit 7, Lesson 08: The ph of Salt Solutions, Answers 1. Complete the following chart: Unit 7, Lesson 08: The ph of Salt Solutions, Answers on NH 4 PO 3 3- Parent Acid or Base s the parent strong or weak? Will this ion hydrolyze? f the ion will hydrolyze

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

2. Calculate the ph of a buffer solution composed of 0.12 M benzoic acid and 0.20 M sodium benzoate.!

2. Calculate the ph of a buffer solution composed of 0.12 M benzoic acid and 0.20 M sodium benzoate.! AP Chem worksheet:buffers, The common ion effect Page 1 1. Calculate the ph of a buffer solution that is 0.060 M formic acid and 0.030 M potassium formate. (3.44) 2. Calculate the ph of a buffer solution

More information

Titration of a Weak Acid with a Strong Base

Titration of a Weak Acid with a Strong Base Titration of a Weak Acid with a Strong Base Weak Acid w/ Strong Base Overall: INITIAL ph: Weak acids do not fully dissociate we need to do an ICE table to determine initial ph. We expect it to be weakly

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic acetic phosphoric citric malic PROPERTIES OF ACIDS 1. 1. PROPERTIES OF BASES 2. 2. 3. 3. 4. 4. 5. 5. NAMING ACIDS NOTES Binary acids (H + one element) Practice: 1. hydro- - HF

More information

SCH4U Chapter 8 review

SCH4U Chapter 8 review Name: Class: Date: SCH4U Chapter 8 review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement does not describe a characteristic of acidic

More information

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x

Problem 1 C 6 H 5 [ COOH C 6 H[H 5 COO + ] - + H [ I C - x + x + x E x x x Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10 5 )? Write out acid dissociation reaction: C 6 H 5 COOH C 6 H 5 COO H Make an ICE chart since this is a weak

More information

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals.

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals. Acids and Bases Properties of Acids and Bases Acids taste. Lemon juice and, for example, are both aqueous solutions of acids. Acids conduct electricity; they are. Some are strong electrolytes, while others

More information

Really useful information = H + = K w. K b. 1. Calculate the ph of a solution made by pouring 5.0 ml of 0.20 M HCl into 100. ml of water.

Really useful information = H + = K w. K b. 1. Calculate the ph of a solution made by pouring 5.0 ml of 0.20 M HCl into 100. ml of water. Acid Base Equilibrium Putting it all together HA H + + A H + A incomingsa HA +incomingsa Strong Acids HCl HNO3 HBr H2SO4 HI HClO4 HClO3 Really useful information K w H + OH K w M V M V B + H2O OH + HB

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Part 01 - Assignment: Introduction to Acids &Bases

Part 01 - Assignment: Introduction to Acids &Bases Part 01 - Assignment: Introduction to Acids &Bases Classify the following acids are monoprotic, diprotic, or triprotic by writing M, D, or T, respectively. 1. HCl 2. HClO4 3. H3As 4. H2SO4 5. H2S 6. H3PO4

More information

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates

Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates Example 15.1 Identifying Brønsted Lowry Acids and Bases and Their Conjugates For Practice 15.1 In each reaction, identify the Brønsted Lowry acid, the Brønsted Lowry base, the conjugate acid, and the conjugate

More information

Name Date Class ACID-BASE THEORIES

Name Date Class ACID-BASE THEORIES 19.1 ACID-BASE THEORIES Section Review Objectives Define the properties of acids and bases Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis Vocabulary

More information

Acid-Base Equilibria. Contents and Concepts. Learning Objectives

Acid-Base Equilibria. Contents and Concepts. Learning Objectives Acid-Base Equilibria Contents and Concepts Solutions of a Weak Acid or Base 1. Acid-Ionization Equilibria. Polyprotic Acids 3. Base-Ionization Equilibria 4. Acid Base Properties of Salt Solutions Solutions

More information

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]=

Exam 2 Sections Covered: 14.6, 14.8, 14.9, 14.10, 14.11, Useful Info to be provided on exam: K K [A ] [HA] [A ] [B] [BH ] [H ]= Chem 101B Study Questions Name: Chapters 14,15,16 Review Tuesday 3/21/2017 Due on Exam Thursday 3/23/2017 (Exam 3 Date) This is a homework assignment. Please show your work for full credit. If you do work

More information

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178

EXAM 2 PRACTICE KEY. Leaders: Deborah Course: CHEM 178 Leaders: Deborah Course: CHEM 178 EXAM 2 PRACTICE KEY Instructor: Bonaccorsi/Vela Date: 3/6/18 Make sure you (also) know: Acid-base definitions Arrhenius Bronsted-Lowry Lewis Autoionization process of

More information

UNIT 14 - Acids & Bases

UNIT 14 - Acids & Bases COMMON ACIDS NOTES lactic sour milk, sore muscles acetic vinegar phosphoric soft drinks citric citrus fruits malic apples PROPERTIES OF ACIDS PROPERTIES OF BASES 1. Taste sour 1. Taste bitter 2. react

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM

CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM 1. The ph of a 0.10 M solution of NH3 containing 0.10 M NH 4 Cl is 9.20. What is the [H3O + ]? a) 1.6 x 10-5 b) 1.0 x 10-1 c) 6.3 x 10-10 d) 1.7 x 10-10 e) 2.0 x

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus Unit 9: Acids and Bases Notes Introduction and Review 1. Define Acid: 2. Name the following acids: HCl H2SO4 H2SO3 H2S 3. Bases usually contain 4. Name the following bases: NaOH Ca(OH)2 Cu(OH)2 NH4OH Properties

More information

Chem1120pretest2Summeri2015

Chem1120pretest2Summeri2015 Chem1120pretest2Summeri2015 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When the system A + B C + D is at equilibrium, a. the forward reaction has

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

Unit 9: Acid and Base Multiple Choice Practice

Unit 9: Acid and Base Multiple Choice Practice Unit 9: Acid and Base Multiple Choice Practice Name June 14, 2017 1. Consider the following acidbase equilibrium: HCO3 H2O H2CO3 OH In the reaction above, the BrönstedLowry acids are: A. H2O and OH B.

More information

AP Study Questions

AP Study Questions ID: A AP 16.4-16.7 Study Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1 What is the ph of an aqueous solution at 25.0 C in which [H + ] is 0.0025

More information

UNIT SEVEN PROBLEM SET CHEMISTRY LEE

UNIT SEVEN PROBLEM SET CHEMISTRY LEE CHEMISTRY LEE NAME DATE BLOCK UNIT SEVEN PROBLEM SET Score: Do not cheat by copying the work of another person, or by allowing another person to copy your answers. Cheating results in a 0% grade for both

More information

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College 16.2 Acids Base Proton Transfer Dr. Fred Omega Garces Chemistry 201 Miramar College Important Notes: K a when H 3 O + is produced, K b when OH is produced 1 Acids Bases; Proton Transfer BrønstedLowry AcidsBases

More information

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Chapters 15 & 16 ACIDS & BASES ph & Titrations PROPERTIES OF ACIDS Chapters 15 & 16 ACIDS & BASES ph & Titrations There are 5 main properties of acids: 1. sour taste 2. change the color of acidbase indicators 3. react with metals to produce H2 gas

More information

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol

Now, the excess strong base will react: HA + OH - A - + H 2 O Start mol End mol Chemistry Spring 016 Exam 3: Chapters 8-10 Name 80 Points Complete problem 1 and four of problems -6. CLEARLY mark the problem you do not want graded. You must show your work to receive credit for problems

More information

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases Acids and Bases 1 UNIT 4: ACIDS & BASES OUTCOMES All important vocabulary is in Italics and bold. Outline the historical development of acid base theories. Include: Arrhenius, BronstedLowry, Lewis. Write

More information

CHE 107 Fall 2016 Exam 3

CHE 107 Fall 2016 Exam 3 CHE 107 Fall 2016 Exam 3 Your Name: Your ID: Question #: 1 [H3O + ] in a typical solution of hand soap is 3.2 10 10 M. The ph of this solution is 1. Report your answer with two decimal places. Do NOT include

More information

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right Problems, Chapter 17 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) In which of these solutions will HNO2 ionize less than it does in pure water? a) 0.10 M NaCl b)

More information

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species?

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species? CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, 2001 M.A. Brook B.E. McCarry A. Perrott 1. (i) What is the conjugate base of each of the following species? (a) H 3 O + (b) NH 4 + (c) HCl

More information

Chemistry 102 Chapter 17 COMMON ION EFFECT

Chemistry 102 Chapter 17 COMMON ION EFFECT COMMON ION EFFECT Common ion effect is the shift in equilibrium caused by the addition of an ion that takes part in the equilibrium. For example, consider the effect of adding HCl to a solution of acetic

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

Please print: + log [A- ] [HA]

Please print: + log [A- ] [HA] Please print: Last name: First name: Chem 1062 Exam 3 Spring 2005 Andy Aspaas, Instructor Thursday, April 7, 2005 Equations: K c = [C]c [D] d [A] a [B] b ph =! log[h 3 O + ] poh =! log[oh! ] ph + poh =

More information

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right

Le Chatlier's principle can be used to decide whether the above equilibrium will be shifted left or right Problems, Chapter 17 (with solutions) NOTE: Unless otherwise stated, assume T = 25. C in all problems) 1) In which of these solutions will HNO2 ionize less than it does in pure water? a) 0.10 M NaCl b)

More information

Chapter 16. Acid-Base Equilibria

Chapter 16. Acid-Base Equilibria Chapter 16 Acid-Base Equilibria Arrhenius Definition Acids produce hydrogen ions in aqueous solution. Bases produce hydroxide ions when dissolved in water. Limits to aqueous solutions. Only one kind of

More information

Topic 9: Acids & Bases

Topic 9: Acids & Bases Topic 9: Acids & Bases Regents Chemistry Mr. Mancuso Electrolytes Substances that conduct electricity when Include Ability to conduct electricity is due to the presence of Dissociation: ~ 1 ~ Acids and

More information

Solutions are aqueous and the temperature is 25 C unless stated otherwise.

Solutions are aqueous and the temperature is 25 C unless stated otherwise. Solutions are aqueous and the temperature is 25 C unless stated otherwise. 1. According to the Arrhenius definition, an acid is a substance that produces ions in aqueous solution. A. H C. OH B. H + D.

More information

Unit Nine Notes N C U9

Unit Nine Notes N C U9 Unit Nine Notes N C U9 I. AcidBase Theories A. Arrhenius Acids and Bases 1. Acids contain hydronium ions (H O ) commonly referred to as hydrogen ions (H ) that dissociate in water a. Different acids release

More information

Acids and Bases Written Response

Acids and Bases Written Response Acids and Bases Written Response January 1999 4. Consider the salt sodium oxalate, Na2C2O4. a) Write the dissociation equation for sodium oxalate. (1 mark) b) A 1.0M solution of sodium oxalate turns pink

More information

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33 Review acid-base theory and titrations. For all titrations, at the equivalence point, the two reactants have completely reacted with

More information

Exam 2 Practice (Chapter 15-17)

Exam 2 Practice (Chapter 15-17) Exam 2 Practice (Chapter 15-17) 28. The equilibrium constant Kp for reaction (1) has a value of 0.112. What is the value of the equilibrium constant for reaction (2)? (1) SO2 (g) + 1/2 O2(g) SO3 (g) Kp

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ).

Questions #4-5 The following two questions refer to the following system: A 1.0L solution contains 0.25M HF and 0.60M NaF (Ka for HF = 7.2 x 10-4 ). Multiple Choice 1) A solution contains 0.250 M HA (K a = 1.0 x 10-6 ) and 0.45 M NaA. What is the ph after 0.10 mole of HCl is added to 1.00L of this solution? a. 3.17 b. 3.23 c. 6.00 d. 10.77 e. 10.83

More information

ACID-BASE EQUILIBRIA. Chapter 16

ACID-BASE EQUILIBRIA. Chapter 16 P a g e 1 Chapter 16 ACID-BASE EQUILIBRIA Nature of Acids and Bases Before we formally define acids and bases, let s examine their properties. Properties of Acids Sour taste Ability to dissolve many metals

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

CHE 107 Summer 2017 Exam 3

CHE 107 Summer 2017 Exam 3 CHE 107 Summer 2017 Exam 3 Question #: 1 What is the ph of a 0.10 M hydrocyanic acid (HCN) solution. Ka = 4.9 10-10. A. 2.56 C. 4.04 B. 3.17 D. 5.15 Question #: 2 Original Windex has a ph = 11.60 and [H

More information

Unit 9: Acids and Bases Chapter 19

Unit 9: Acids and Bases Chapter 19 Unit 9: Acids and Bases Chapter 19 I. Introduction In aqueous solutions, the solvent is. Aqueous solutions contain. In the self-ionization of water, the hydrogen ion (H+) exists in solution as the ion.

More information

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY

ACIDS AND BASES. HCl(g) = hydrogen chloride HCl(aq) = hydrochloric acid HCl(g) H + (aq) + Cl (aq) ARRHENIUS THEORY ACIDS AND BASES A. CHARACTERISTICS OF ACIDS AND BASES 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria I. Multiple Choice (for those with an asterisk, you must show work) These multiple choice (MC) are not "Google-proof", but they were so good

More information

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1

Grade A buffer: is a solution that resists changes in its ph upon small additions of acid or base.sq1 Chapter 15 Lesson Plan Grade 12 402. The presence of a common ion decreases the dissociation. BQ1 Calculate the ph of 0.10M CH 3 COOH. Ka = 1.8 10-5. [H + ] = = ( )( ) = 1.34 10-3 M ph = 2.87 Calculate

More information

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions

Chemistry 12 Provincial Exam Workbook Unit 04: Acid Base Equilibria. Multiple Choice Questions R. Janssen, MSEC Chemistry 1 Provincial Workbook (Unit 0), P. 1 / 69 Chemistry 1 Provincial Exam Workbook Unit 0: Acid Base Equilibria Multiple Choice Questions 1. Calculate the volume of 0.00 M HNO needed

More information

Chapter 14 Acid- Base Equilibria Study Guide

Chapter 14 Acid- Base Equilibria Study Guide Chapter 14 Acid- Base Equilibria Study Guide This chapter will illustrate the chemistry of acid- base reactions and equilibria, and provide you with tools for quantifying the concentrations of acids and

More information

Acids and Bases. Essential Practice for success on the exam!

Acids and Bases. Essential Practice for success on the exam! Acids and Bases AP Chemistry Review 1. If 50 ml of 0.025 M NaOH is mixed with 50 ml of 0.05 M HCl, what is the resulting ph of the mixture closest to? A) 1 B) 2 C) 3 D) 4 E) 5 2. What is the ph of a 0.1

More information

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water.

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water. Guide to Chapter 15. Aqueous Equilibria: Acids and Bases We will spend five lecture days on this chapter. During the first two class meetings we will introduce acids and bases and some of the theories

More information

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens.

Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens. Name: Per: Date: Unit 11 - Acids, Bases and Salts Chemistry Accelerated Chemistry I Define each of the following: 1. Acidic hydrogens 2. Binary acids 3. Oxyacids 4. Carboxylic acid 5. Amines Name the following

More information

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions Chapter 16 Aqueous Ionic Equilibrium 16.1-16.2 Buffer Solutions Why? While a weak acid will partially ionize to produce its conjugate base, it will not produce enough conjugate base to be considered a

More information

CH 15 Summary. Equilibrium is a balance between products and reactants

CH 15 Summary. Equilibrium is a balance between products and reactants CH 15 Summary Equilibrium is a balance between products and reactants Use stoichiometry to determine reactant or product ratios, but NOT reactant to product ratios. Capital K is used to represent the equilibrium

More information

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq)

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq) 1 Chapter 16 exercise Q1. Practice exercise page 671 Write the formula for the conjugate acid of the following, HSO 3, F, PO 4 3 and CO. HSO 3 H H 2 SO 4 F H HF PO 4 3 H HPO 4 2 CO H HCO Q2. Practice exercise

More information

= ) = )

= ) = ) Basics of calculating ph 1. Find the ph of 0.07 M HCl. 2. Find the ph of 0.2 M propanoic acid (K a = 10-4.87 ) 3. Find the ph of 0.4 M (CH 3 ) 3 N (K b = 10-4.20 ) 4. Find the ph of 0.3 M CH 3 COO - Na

More information

k 1 I 2 2 I k -1 k 2 2 HI H I

k 1 I 2 2 I k -1 k 2 2 HI H I Example: Write the overall reaction and the rate law for the reaction that occurs in the following two steps. The second step is the rate determining step. I 2 k 1 k -1 2 I H 2 + 2 I k 2 2 HI Example.

More information

KEY. Practice Problems: Applications of Aqueous Equilibria

KEY. Practice Problems: Applications of Aqueous Equilibria Practice Problems: Applications of Aqueous Equilibria KEY CHEM 1B 1. Ammonia (NH3) is a weak base with a Kb = 1.8 x 1 5. a) Write the balanced chemical equation for the reaction of ammonia with water.

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Solutions of a Weak Acid or Base Acid-Base Equilibria 1 Will the following salts be acidic, basic or neutral in aqueous solution? 1.NH 4 Cl.NaCl.KC H O 4.NaNO A = acidic B = basic C = neutral Solutions of a Weak Acid or Base The simplest

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 Equations M = n/v M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14 [H 3 O + ] = 10^-pH [OH - ] = 10^-pOH [H 3 O + ] [OH

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9) ( F - 32) F = ( 9 / 5)( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

CHE 107 Spring 2017 Exam 3

CHE 107 Spring 2017 Exam 3 CHE 107 Spring 2017 Exam 3 Your Name: Your ID: Question #: 1 What is the ph of a 0.20 M solution of hydrocyanic acid at 25ºC? The Ka of HCN at 25ºC is 4.9 10 10. A. 2.08 B. 5.00 C. 3.89 D. 8.76 Question

More information

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria CHEM 142 Exam 3 Study Guide Chapter 15: AcidBase Equilibria A. Terminologies and Concepts 1. BronstedLowry definitions acids vs. bases; give examples 2. Amphoteric substances define and give examples 3.

More information

AP Chemistry: Acid-Base Chemistry Practice Problems

AP Chemistry: Acid-Base Chemistry Practice Problems Name AP Chemistry: Acid-Base Chemistry Practice Problems Date Due Directions: Write your answers to the following questions in the space provided. For problem solving, show all of your work. Make sure

More information

Completion of acid/base/buffer chemistry. Hanson Activity Clicker quiz 3/11/2013. Chs 7 8 of Zumdahl

Completion of acid/base/buffer chemistry. Hanson Activity Clicker quiz 3/11/2013. Chs 7 8 of Zumdahl Completion of acid/base/buffer chemistry Chs 7 8 of Zumdahl Hanson Activity 16 3 Discuss Key Questions 1 of Activity 16 3, page 301, with your partner for three minutes. The clicker quiz will commence

More information

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six ACID-BASE EQUILIBRIA Chapter 14 Big Idea Six Acid-Base Equilibria Common Ion Effect in Acids and Bases Buffer SoluDons for Controlling ph Buffer Capacity ph-titradon Curves Acid-Base TitraDon Indicators

More information

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with:

CHEMISTRY 102 Fall 2010 Hour Exam III. 1. My answers for this Chemistry 102 exam should be graded with the answer sheet associated with: 1. My answers for this Chemistry 10 exam should be graded with the answer sheet associated with: a) Form A b) Form B c) Form C d) Form D e) Form E Consider the titration of 30.0 ml of 0.30 M HCN by 0.10

More information

Unit #6, Chapter 8 Outline Acids, Bases and ph

Unit #6, Chapter 8 Outline Acids, Bases and ph Lesson Topics Covered 1&2 Review of Acids from Grade 11 Arrhenius acids and bases, definition chemical properties of acids & bases naming acids and bases Unit #6, Chapter 8 Outline Acids, Bases and ph

More information

Unit 10: Acids and Bases

Unit 10: Acids and Bases Unit 10: Acids and Bases PROPERTIES OF ACIDS & BASES Properties of an Acid: a Tastes sour substance which dissociates (ionizes, breaks apart in solution) in water to form hydrogen ions Turns blue litmus

More information

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases.

Acids & Bases. Strong Acids. Weak Acids. Strong Bases. Acetic Acid. Arrhenius Definition: Classic Definition of Acids and Bases. Arrhenius Definition: Classic Definition of Acids and Bases Acid: A substance that increases the hydrogen ion concetration, [H ], (also thought of as hydronium ion, H O ) when dissolved in water. Acids

More information