Modeling for Control of HCCI Engines

Size: px
Start display at page:

Download "Modeling for Control of HCCI Engines"

Transcription

1 Modeling for Control of HCCI Engines Gregory M. Shaver J.Christian Gerdes Matthew Roelle P.A. Caton C.F. Edwards Stanford University Dept. of Mechanical Engineering D D L ynamic esign aboratory

2 Outline What is HCCI? Experimental test-bed at Stanford Motivation for modeling and control Proposed model Conclusion Future work Stanford University Modeling for Control of HCCI Engines - 2 Dynamic Design Lab

3 What is HCCI? Homogeneous Charge Compression Ignition: combustion due to uniform auto-ignition using compression alone. Main Benefit: Low post-combustion temperature reduced NOx emissions. Requires: A sufficient level of inducted gas internal energy Approaches to increasing inducted gas internal energy: Pre-heating the intake Pre-compressing the intake Throttling exhaust/intake promotes hot exhaust gas re-circulation Stanford University Modeling for Control of HCCI Engines - 3 Dynamic Design Lab

4 Another Approach: Variable Valve Actuation (VVA) with VVA: Exhaust reinduction achieved using late EVC Load variation achieved by late IVO coupled with late EVC Benefits: No pumping penalty More control over presence of reactant/exhaust products in cylinder at any time Challenges: Currently no VVA systems on production vehicle R&D: ongoing by many cylinder volume valve opeing V BDC V TBC 0 IVO EVC IVC intake exhaust EVO crank angle [deg.] Stanford University Modeling for Control of HCCI Engines - 4 Dynamic Design Lab

5 Emissions characteristics of HCCI with VVA ηth (HCCI) Nitric Oxide (ppm dry) ηth (SI) NO (SI) Indicated Efficiency (%) NO (HCCI) net IMEP (bar) Experimental results from Stanford single-cylinder research engine Stanford University Modeling for Control of HCCI Engines - 5 Dynamic Design Lab

6 Experimental Testbed Single cylinder research engine Fuels: Propane Hydrogen Gasoline Comp. Ratio: 13:1 (adjustable) Engine rpm: 1800 Stanford University Modeling for Control of HCCI Engines - 6 Dynamic Design Lab

7 Motivation for Modeling and Control Challenge: Combustion Phasing No direct combustion initiator (like spark for SI or fuel injection for Diesel combustion) Combustion phasing depends on: Concentrations of reactants and re-inducted products Initial temperature of reactants and products Initial Concentrations/temperature directly controlled with VVA system Stanford University Modeling for Control of HCCI Engines - 7 Dynamic Design Lab

8 Modeling Approach Assumptions Homogeneous mixture Uniform combustion Complete combustion to major products States volume, V temperature, T concentrations: [X C3 H 8 ], [X O2 ], [X CO2 ], [X N2 ], [X H2 O], [X CO ] mass of products in exhaust manifold: m e internal energy of products in exhaust manifold: u e Stanford University Modeling for Control of HCCI Engines - 8 Dynamic Design Lab

9 Modeling Approach Volume Rate Equations Valve Flow Equations Concentration Rate Equations Temperature Rate Equations Exhaust Manifold Modeling: Mass Flows and Internal Energy Combustion Chemistry Modeling Temperature threshold approach Integrated Arrhenius rate threshold approach Stanford University Modeling for Control of HCCI Engines - 9 Dynamic Design Lab

10 Volume Rate Equations where: V = V c + πb2 4 (l a acosθ l 2 a 2 sin 2 θ) V = π 4 B2 a θsinθ(1 cosθ + a (L 2 a 2 sin 2 θ) ) θ = ω ω - the rotational speed of the crankshaft a - is half of the stroke length L - connecting rod length B - bore diameter V c - clearance volume Stanford University Modeling for Control of HCCI Engines - 10 Dynamic Design Lab

11 Valve Flow Modeling for un-choked flow (p T /p o > [2/(γ + 1)] γ/(γ 1) ): ṁ = C DA R p o RTo ( pt for choked flow (p T /p o [2/(γ + 1)] γ/(γ 1) ): p o ) [ [ 1/γ 2γ 1 γ 1 ṁ = C DA R p o RTo γ [ 2 γ + 1 ( pt p o ] (γ+1)/2(γ 1) ) (γ 1)/γ ]] where: A R - effective open area for the valve p o - upstream stagnation pressure INTAKE VALVE. m 1. m 2 EXHAUST VALVE INTAKE VALVE. m 3 EXHAUST VALVE T o - downstream stagnation temperature p T - downstream stagnation pressure Stanford University Modeling for Control of HCCI Engines - 11 Dynamic Design Lab

12 Temperature Rate Equation The first law of thermodynamics for an open system is: d(mu) dt = Q c W + ṁ 1 h 1 + ṁ 2 h 2 ṁ 3 h 3 u - internal energy Q c - heat transfer rate using the definition of enthalpy, h = u + pv: d(mh) dt W = p V - piston work h - enthalpy of species = ṁpv/m + ṗv + m 1 h 1 + m 2 h 2 m 3 h 3 with: Q c = h c A c (T c T wall ) Assuming ideal gas and specific heats as functions of temperature, can re-write equation as a temperature rate expression Stanford University Modeling for Control of HCCI Engines - 12 Dynamic Design Lab

13 Concentration Rate Equations [X i ] = d ( ) Ni N = i dt V V V N i V 2 w i = w rxn,i + w valves,i = w i V N i V 2 where: w rxn,i - combustion reaction rate for species i w valves,i - volumetric flow rate of species i through the valves N i - number of moles of species i in the cylinder w valves,i = w 1,i + w 2,i + w 3,i = (Y 1,i m 1 + Y 2,i m 2 Y 3,i m 3 )/(V MW i ) where: Y 1,i - mass fraction of species i in the intake (constant) Y 2,i - mass fraction of species i in the exhaust (constant) Y 3,i = [X i]mw i [Xi ]MW i - mass fraction of species i in the cylinder Stanford University Modeling for Control of HCCI Engines - 13 Dynamic Design Lab

14 Exhaust Manifold Modeling (Mass Flow) Exhaust Manifold Mass Flow Diagram:. m e,residual m ce m e,max (a) (b) (c). m ec m e,evc m e,evc -m e,residual ω EVO-EVC (d) (e) (f) (a) residual mass from previous exhaust cycle, θ = EV O (b) increase in mass due to cylinder exhaust, EV O < θ < 720 (c) maximum amount of exhaust manifold mass, θ = 720 (d) decrease in mass due to reinduction, 0 < θ < EV C (e) post-reinduction mass, θ = EV C (f) decrease in mass to residual value, EV C < θ < EV O Stanford University Modeling for Control of HCCI Engines - 14 Dynamic Design Lab

15 Exhaust Manifold Modeling (Internal Energy) An internal energy rate equation can be formulated from the first law, as: where: u e = 1 m e γ [ṁce (h c h e ) + ha (T ambient T e ) ] Q e = h e A e (T e T ambient ) So the condition of the product gases in the exhaust manifold is characterized w/ two states: the mass: m e the internal energy: u e Stanford University Modeling for Control of HCCI Engines - 15 Dynamic Design Lab

16 Combustion Chemistry Modeling: Temperature Threshold Approach The rate of reaction of propane is approximated as a function of crank angle and volume following the crossing of a temperature threshold: w C3 H 8 = [ ] ((θ θinit ) θ) [C 3 H 8 ] i V i θexp 2σ 2 V σ 2π T T th 0 T < T th where: θ init - crank angle when T = T th V i - crank angle when T = T th [C 3 H 8 ] i - propane concentration when T = T th σ - crank angle standard deviation θ - mean crank angle Stanford University Modeling for Control of HCCI Engines - 16 Dynamic Design Lab

17 Combustion Chemistry Modeling: Temperature Threshold Approach (cont.) The complete combustion of a stoichiometric propane/air mixture to major products is assumed, such that the global reaction equations is: C 3 H 8 + 5O N 2 3CO 2 + 4H 2 O N 2 By inspection of the global reaction equation: w O2 = 5w C3 H 8 w N2 = 0 w CO2 = 3w C3 H 8 w H2 O = 4w C3 H 8 Stanford University Modeling for Control of HCCI Engines - 17 Dynamic Design Lab

18 Combustion Chemistry Modeling: Temperature Threshold Approach (cont. 2) Model Results: experiment temp. threshold experiment temp. threshold Pressure (bar) Pressure (bar) Crankshaft ATC Crankshaft ATC 25deg., 165 Combustion phasing not captured REASON: Combustion phasing depends on temperature AND concentrations 45deg., 185 Stanford University Modeling for Control of HCCI Engines - 18 Dynamic Design Lab

19 Combustion Chemistry Modeling: Integrated Arrhenius Rate Approach The rate of reaction of propane is approximated as being a function of crank angle and volume following the crossing of an integrated Arrhenius rate: w C3 H 8 = [ ] ((θ θ [C 3 H 8 ] i V i θexp init ) θ) 2σ 2 V σ 2π 0 RR RRth RR < RRth where: RR = θ IV O Aexp(E a /(RT ))[C 3 H 8 ] a [O 2 ] b dθ This equation gives insight into combustion phasing with VVA IVO: residence time for mixing (start of integration) IVO + EVC: initial reactant concentrations, [C 3 H 8 ] init [O 2 ] init, and mixture temperature, T init. Stanford University Modeling for Control of HCCI Engines - 19 Dynamic Design Lab

20 Combustion Chemistry Modeling: Integrated Arrhenius Rate Approach (cont.) The complete combustion of a stoichiometric propane/air mixture to major products is assumed, such that the global reaction equations is: C 3 H 8 + 5O N 2 3CO 2 + 4H 2 O N 2 By inspection of the global reaction equation: w O2 = 5w C3 H 8 w N2 = 0 w CO2 = 3w C3 H 8 w H2 O = 4w C3 H 8 Stanford University Modeling for Control of HCCI Engines - 20 Dynamic Design Lab

21 Combustion Chemistry Modeling: Integrated Arrhenius Rate Approach (cont. 2) Model Results: experiment Integrated Arrhenius rate threshold experiment Integrated Arrhenius rate threshold Pressure (bar) Pressure (bar) Crankshaft ATC 25deg., 165 Combustion phasing captured Pressures well predicted Crankshaft ATC 45deg., 185 Stanford University Modeling for Control of HCCI Engines - 21 Dynamic Design Lab

22 Cycle-to-Cycle Coupling Cycle-to-Cycle coupling through the re-inducted exhaust gas is clearly evident: Cylinder Pressure [kpa] Simulated HCCI Combustion Over a Valve Profile Transition Valve Profiles A B IVO 40 EVC 165 IVO 70 EVC 185 Steady State (A) Cycle 1 Cycle 2 Cycle 3 Cycle Crank Angle Degrees Model allows prediction of these dynamics Stanford University Modeling for Control of HCCI Engines - 22 Dynamic Design Lab

23 Conclusion Combustion Model Uniform complete combustion to major products Simplified chemistry models developed Temperature threshold approach propane reaction evolves as fcn. of crank angle following temp. threshold crossing Does not capture combustion phasing Integrated Arrhenius Rate threshold approach propane reaction evolves as fcn. of crank angle following int. threshold crossing Captures combustion phasing Discrepancy along pressure peak Independent control of phasing and load seem feasible: with variation of IVO/EVC, should be able to vary inducted reactant charge (related to load) and phasing (Int. Arr. Model suggests this) Stanford University Modeling for Control of HCCI Engines - 23 Dynamic Design Lab

Modeling for Control of HCCI Engines

Modeling for Control of HCCI Engines Modeling for Control of HCCI Engines Gregory M. Shaver J.Christian Gerdes Parag Jain Design Division Stanford, California 9435-421 Email: shaver@stanford.edu Design Division Stanford, California 9435-421

More information

MODELING CYCLE-TO-CYCLE COUPLING IN HCCI ENGINES UTILIZING VARIABLE VALVE ACTUATION. Gregory M. Shaver, Matthew Roelle and J.

MODELING CYCLE-TO-CYCLE COUPLING IN HCCI ENGINES UTILIZING VARIABLE VALVE ACTUATION. Gregory M. Shaver, Matthew Roelle and J. MODELING CYCLE-TO-CYCLE COUPLING IN HCCI ENGINES UTILIZING VARIABLE ACTUATION Gregory M Shaver, Matthew Roelle and J Christian Gerdes Department of Mechanical Engineering, Stanford University, Stanford,

More information

IMECE CYCLE-TO-CYCLE CONTROL OF HCCI ENGINES

IMECE CYCLE-TO-CYCLE CONTROL OF HCCI ENGINES Proceedings of IMECE 3 23 ASME International Mechanical Engineering Congress and Exposition November 5-2, 23, Washington, D.C. USA IMECE23-4966 CYCLE-TO-CYCLE CONTROL OF HCCI ENGINES Gregory M. Shaver

More information

Fuel and Air Flow in the Cylinder

Fuel and Air Flow in the Cylinder Chapter 6 Fuel and Air Flow in the Cylinder 6.1) A four cylinder four stroke 3.0 L port-injected spark ignition engine is running at 00 rpm on a stoichiometric mix of octane and standard air at 100 kpa

More information

A MULTI-ZONE REACTION-BASED DIESEL COMBUSTION MODEL FOR MODEL-BASED CONTROL

A MULTI-ZONE REACTION-BASED DIESEL COMBUSTION MODEL FOR MODEL-BASED CONTROL Proceedings of the ASME 217 Dynamic Systems and Control Conference DSCC217 October 11-13, 217, Tysons, Virginia, USA DSCC217-574 A MULTI-ZONE REACTION-BASED DIESEL COMBUSTION MODEL FOR MODEL-BASED CONTROL

More information

Fuel, Air, and Combustion Thermodynamics

Fuel, Air, and Combustion Thermodynamics Chapter 3 Fuel, Air, and Combustion Thermodynamics 3.1) What is the molecular weight, enthalpy (kj/kg), and entropy (kj/kg K) of a gas mixture at P = 1000 kpa and T = 500 K, if the mixture contains the

More information

I.C. Engine Cycles. Thermodynamic Analysis

I.C. Engine Cycles. Thermodynamic Analysis I.C. Engine Cycles Thermodynamic Analysis AIR STANDARD CYCLES Air as a perfect gas All processes ideal and reversible Mass same throughout Constant Specific Heat. OTTO CYCLE OTTO CYCLE Efficiency is

More information

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle

Lecture 40: Air standard cycle, internal combustion engines, Otto cycle ME 200 Thermodynamics I Spring 206 Lecture 40: Air standard cycle, internal combustion engines, Otto cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

CONTRACTION AND SUM OF SQUARES ANALYSIS OF HCCI ENGINES

CONTRACTION AND SUM OF SQUARES ANALYSIS OF HCCI ENGINES CONTRACTION AND SUM OF SQUARES ANALYSIS OF HCCI ENGINES Gregory M Shaver, Aleksandar Kojić, J Christian Gerdes, Jean-Pierre Hathout and Jasim Ahmed Dept of Mech Engr, Stanford University, Stanford, CA

More information

Charge Mixing Model and Robust Tracking Control for Mechatronic Engines

Charge Mixing Model and Robust Tracking Control for Mechatronic Engines Charge Mixing Model and Robust Tracking Control for Mechatronic Engines A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Yongsoon Yoon IN PARTIAL FULFILLMENT

More information

Problem 1 (Willans Approximation)

Problem 1 (Willans Approximation) 5-0567-00 Engine Systems (HS 205) Exercise 3 Topic: Lectures 3+4 Raffi Hedinger (hraffael@ethz.ch), Norbert Zsiga (nzsiga@ethz.ch); October 9, 205 Problem (Willans Approximation) A useful simplification

More information

A first investigation on using a species reaction mechanism for flame propagation and soot emissions in CFD of SI engines

A first investigation on using a species reaction mechanism for flame propagation and soot emissions in CFD of SI engines A first investigation on using a 1000+ species reaction mechanism for flame propagation and soot emissions in CFD of SI engines F.A. Tap *, D. Goryntsev, C. Meijer, A. Starikov Dacolt International BV

More information

OVERVIEW. Air-Standard Power Cycles (open cycle)

OVERVIEW. Air-Standard Power Cycles (open cycle) OVERVIEW OWER CYCLE The Rankine Cycle thermal efficiency effects of pressure and temperature Reheat cycle Regenerative cycle Losses and Cogeneration Air-Standard ower Cycles (open cycle) The Brayton cycle

More information

Experimental Evaluation of Predictive Combustion Phasing Control in an HCCI Engine using Fast Thermal Management and VVA

Experimental Evaluation of Predictive Combustion Phasing Control in an HCCI Engine using Fast Thermal Management and VVA 8th IEEE International Conference on Control Applications Part of 29 IEEE Multi-conference on Systems and Control Saint Petersburg, Russia, July 8-, 29 Experimental Evaluation of Predictive Combustion

More information

Laws of Thermodynamics

Laws of Thermodynamics Laws of Thermodynamics The Three Laws of Thermodynamics - The first lawof thermodynamics, also called conservation of energy. We can use this knowledge to determine the amount of energy in a system, the

More information

II.4.2 Development of Low-Irreversibility Engines

II.4.2 Development of Low-Irreversibility Engines II.4.2 Development of Low-Irreversibility Engines Investigators C.F. Edwards, Associate Professor, Mechanical Engineering; K.-Y. Teh, S.L. Miller, P.A. Caton, Graduate Researchers Introduction In the most

More information

Computer Simulation of an Internal Combustion Engine

Computer Simulation of an Internal Combustion Engine Faculdade de Engenharia da Universidade do Porto and University of Maryland, Baltimore County Master in Mechanical Engineering Thermal Energy Project Computer Simulation of an Internal Combustion Engine

More information

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer Thermodynamics Investigation of the energy transfer by heat and work and how natural systems behave (Q) Heat transfer of energy due to temp differences. (W) Work transfer of energy through mechanical means.

More information

Exercise 8 - Turbocompressors

Exercise 8 - Turbocompressors Exercise 8 - Turbocompressors A turbocompressor TC) or turbocharger is a mechanical device used in internal combustion engines to enhance their power output. The basic idea of a TC is to force additional

More information

9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin

9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin Chapter 9 GAS POWER CYCLES 9.1 Basic considerations in power cycle analysis. Thermal efficiency of a power cycle : th = Wnet/Qin Gas-power cycles vs. vapor-power cycles: T p 1 p 2 p 3 Vapor cycle Gas cycle

More information

Lire la première partie de la thèse

Lire la première partie de la thèse Lire la première partie de la thèse Chapter 3 Dual-CM engine validation In this chapter, the dual-cm, developed in chapter 2, is validated against two types of results : experimental data from engine test-bench

More information

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution Temperature ~ Average KE of each particle Particles have different speeds Gas Particles are in constant RANDOM motion Average KE of each particle is: 3/2 kt Pressure is due to momentum transfer Speed Distribution

More information

Heat Engine Cycles. Chapter 2

Heat Engine Cycles. Chapter 2 Chapter 2 Heat Engine Cycles 2.1) An engine cylinder contains 7 10 5 kg of fuel with a heat of combustion, q c, of 45,000 kj/kg. The volume V 1 at top dead center is 0.15 10 3 m 3, and the volume V 2 at

More information

Current progress in DARS model development for CFD

Current progress in DARS model development for CFD Current progress in DARS model development for CFD Harry Lehtiniemi STAR Global Conference 2012 Netherlands 20 March 2012 Application areas Automotive DICI SI PPC Fuel industry Conventional fuels Natural

More information

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux 2004-01-2996 New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux Junseok Chang, Orgun Güralp, Zoran Filipi, and Dennis Assanis University of Michigan

More information

Fuel Cell System Model: Auxiliary Components

Fuel Cell System Model: Auxiliary Components 2 Fuel Cell System Model: Auxiliary Components Models developed specifically for control studies have certain characteristics. Important characteristics such as dynamic (transient) effects are included

More information

Introduction to Adaptive Volumetric Efficiency

Introduction to Adaptive Volumetric Efficiency Abstract Development of advanced engine control systems for the modern four-stroke gasoline and diesel internal combustion engines (ICE) are being driven by: Demand for maximum fuel economy and thermal

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 4 1 Sensible heat effects are characterized by temperature changes Experimental measurements provide heat effects of chemical reactions, phase

More information

Mathematical Investigation and Modeling of Pressure and Temperature Variation Inside a Si Engine

Mathematical Investigation and Modeling of Pressure and Temperature Variation Inside a Si Engine International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Mathematical Investigation and Modeling of Pressure and Temperature Variation

More information

Boundary. Surroundings

Boundary. Surroundings Thermodynamics Thermodynamics describes the physics of matter using the concept of the thermodynamic system, a region of the universe that is under study. All quantities, such as pressure or mechanical

More information

Inertia Forces in Reciprocating. Parts. 514 l Theory of Machines

Inertia Forces in Reciprocating. Parts. 514 l Theory of Machines 514 l Theory of Machines 15 Features 1. Introduction.. Resultant Effect of a System of Forces Acting on a Rigid Body. 3. D-Alembert s Principle. 4. Velocity and Acceleration of the Reciprocating Parts

More information

10 th International Physics Olympiad 1977, Hradec Králové, Czechoslovakia

10 th International Physics Olympiad 1977, Hradec Králové, Czechoslovakia 10 th International Physics Olympiad 1977, Hradec Králové, Czechoslovakia Problem 1 The compression ratio of a four-stroke internal combustion engine is ε = 95 The engine draws in air and gaseous fuel

More information

Lecture 44: Review Thermodynamics I

Lecture 44: Review Thermodynamics I ME 00 Thermodynamics I Lecture 44: Review Thermodynamics I Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R. China Email : liyo@sjtu.edu.cn

More information

Temperature distribution and heat flow across the combustion chamber wall.

Temperature distribution and heat flow across the combustion chamber wall. ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΣΤΟΝ ΚΥΛΙΝΔΡΟ (J.B. Heywood: Internal Combustion Engine Fundamentals McGraw Hill 1988) Temperature distribution and heat flow across the combustion chamber wall. Throughout each engine

More information

Exploration of Homogeneous Charge Compression. Ignition in a 100 cc 2-Stroke Motorcycle Engine

Exploration of Homogeneous Charge Compression. Ignition in a 100 cc 2-Stroke Motorcycle Engine Exploration of Homogeneous Charge Compression Ignition in a 100 cc 2-Stroke Motorcycle Engine by Yi-Hann Chen B.S. (National Chung-Hsing University, Taiwan) 2001 A thesis submitted in partial satisfaction

More information

Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing

Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing Control of Charge Dilution in Turbocharged Diesel Engines via Exhaust Valve Timing Hakan Yilmaz Anna Stefanopoulou Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 In this

More information

Simulation of Suction Process of Gasohol Fuelled S. I. Engine Using Computer Program

Simulation of Suction Process of Gasohol Fuelled S. I. Engine Using Computer Program Simulation of Suction Process of Gasohol Fuelled S. I. Engine Using Computer Program MAHENDRAKUMAR MAISURIA, DIPAKKUMAR GOHIL & Dr. SALIM CHANNIWALA Department of Mechanical Engineering S. V. National

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

Teaching schedule *15 18

Teaching schedule *15 18 Teaching schedule Session *15 18 19 21 22 24 Topics 5. Gas power cycles Basic considerations in the analysis of power cycle; Carnot cycle; Air standard cycle; Reciprocating engines; Otto cycle; Diesel

More information

Air Path Estimation on Diesel HCCI Engine

Air Path Estimation on Diesel HCCI Engine 26--85 Air Path Estimation on Diesel HCCI Engine J. Chauvin, N. Petit, P. Rouchon École des Mines de Paris G. Corde IFP C. Vigild Ford Forschungszentrum Aachen GmbH Copyright c 26 Society of Automotive

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Unit 5: Chemical Equations and Reactions & Stoichiometry Chemistry Chapter 9: Stoichiometry 9.1: Calculating Quantities in Reactions Avogadro s Number: - a group of (6.0 10 ) molecules = 1 mole Stoichiometry:

More information

Solutions Manual Internal Combustion Engines: Applied Thermosciences

Solutions Manual Internal Combustion Engines: Applied Thermosciences Solutions Manual Internal Combustion Engines: Applied Thermosciences Professor Allan T. Kirkpatrick Mechanical Engineering Department Colorado State University Fort Collins, CO January 23, 2017 2 Chapter

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

CONTROL AND ROBUSTNESS ANALYSIS OF HOMOGENEOUS CHARGE COMPRESSION IGNITION USING EXHAUST RECOMPRESSION

CONTROL AND ROBUSTNESS ANALYSIS OF HOMOGENEOUS CHARGE COMPRESSION IGNITION USING EXHAUST RECOMPRESSION CONTROL AND ROBUSTNESS ANALYSIS OF HOMOGENEOUS CHARGE COMPRESSION IGNITION USING EXHAUST RECOMPRESSION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING AND THE COMMITTEE ON GRADUATE

More information

Comparative Study of Kinetic Mechanisms for Natural Gas Combustion in an Internal Combustion Engine

Comparative Study of Kinetic Mechanisms for Natural Gas Combustion in an Internal Combustion Engine Comparative Study of Kinetic Mechanisms for Natural Gas Combustion in an Internal Combustion Engine MUHAMMAD MANSHA*, ANWAR RASHEED SALEEMI**, AND JAMAL GUL* RECEIVED ON 06.09.2008 ACCEPTED ON 04.03.2009

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Cyclic Variability and Dynamical Instabilities in Autoignition Engines with High Residuals

Cyclic Variability and Dynamical Instabilities in Autoignition Engines with High Residuals IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1 Cyclic Variability and Dynamical Instabilities in Autoignition Engines with High Residuals Erik Hellström, Member, IEEE, Anna G. Stefanopoulou, Fellow,

More information

Chapter 6. Using Entropy

Chapter 6. Using Entropy Chapter 6 Using Entropy Learning Outcomes Demonstrate understanding of key concepts related to entropy and the second law... including entropy transfer, entropy production, and the increase in entropy

More information

HEV Optimization. Ganesh Balasubramanian Grad. Berrin Daran Grad. Sambasivan Subramanian Grad. Cetin Yilmaz Grad.

HEV Optimization. Ganesh Balasubramanian Grad. Berrin Daran Grad. Sambasivan Subramanian Grad. Cetin Yilmaz Grad. HEV Optimization By Ganesh Balasubramanian Grad. Berrin Daran Grad. Sambasivan Subramanian Grad. Cetin Yilmaz Grad. ME 555 01-5 Winter 2001 Final Report Abstract The design project is the optimization

More information

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name:

ME 2322 Thermodynamics I PRE-LECTURE Lesson 23 Complete the items below Name: Lesson 23 1. (10 pt) Write the equation for the thermal efficiency of a Carnot heat engine below: 1 L H 2. (10 pt) Can the thermal efficiency of an actual engine ever exceed that of an equivalent Carnot

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Adaptive idling control scheme and its experimental validation for gasoline engines

Adaptive idling control scheme and its experimental validation for gasoline engines . RESEARCH PAPER. SCIENCE CHINA Information Sciences February 2017, Vol. 60 022203:1 022203:10 doi: 10.1007/s11432-016-0296-3 Adaptive idling control scheme and its experimental validation for gasoline

More information

Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion

Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion 29 International Multidimensional Engine Modeling Users Group Meeting Detroit, MI, 19 April 29 Abstract Effects of Hydrogen Addition on NOx Emissions in Hydrogen-Assisted Diesel Combustion H. Zhang, G.K.

More information

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 24.

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture - 24. Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 24 Gas Power Cycle I Good morning. Last class we discussed about what is meant

More information

Rocket Thermodynamics

Rocket Thermodynamics Rocket Thermodynamics PROFESSOR CHRIS CHATWIN LECTURE FOR SATELLITE AND SPACE SYSTEMS MSC UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 25 TH APRIL 2017 Thermodynamics of Chemical Rockets ΣForce

More information

Numerical simulation study of turbulent combustion phenomena -INTEGRATE Advanced Study Group (ASG)

Numerical simulation study of turbulent combustion phenomena -INTEGRATE Advanced Study Group (ASG) Numerical simulation study of turbulent combustion phenomena -INTEGRATE Advanced Study Group (ASG) Rixin Yu Division of fluid Mechanics Department of Energy Science LTH 1 Introduction Some combustion related

More information

Fundamentals of Combustion

Fundamentals of Combustion Fundamentals of Combustion Lec 3: Chemical Thermodynamics Dr. Zayed Al-Hamamre Content Process Heat Transfer 1-3 Process Heat Transfer 1-4 Process Heat Transfer 1-5 Theoretical and Excess Air Combustion

More information

The Otto Cycle. Presented by: Jason Rako, Mike Nee and Ralph Spolander

The Otto Cycle. Presented by: Jason Rako, Mike Nee and Ralph Spolander The Otto Cycle Presented by: Jason Rako, Mike Nee and Ralph Spolander Our Agenda A brief history of Nicolaus Otto The Otto Engine The Otto Cycle Explained Formulas to Calculate an Otto Cycle Critical Error

More information

SIMULATION OF COMBUSTION

SIMULATION OF COMBUSTION SIMULATION OF COMBUSTION OUTLINE SPARK IGNITION MODEL COMBUSTION MODEL KNOCK MODEL ANALYSIS OF CYCLE BY CYCLE VARIABILITY OUTLINE SPARK IGNITION MODEL COMBUSTION MODEL KNOCK MODEL ANALYSIS OF CYCLE BY

More information

APPENDIX 1 SPECIFICATION OF THE TEST ENGINE

APPENDIX 1 SPECIFICATION OF THE TEST ENGINE 143 APPENDIX 1 SPECIFICATION OF THE TEST ENGINE Make and model : Kirloskar, AV-1 make General Details : Four stroke, Compression ignition, Constant Speed, vertical, water cooled, direct injection. Number

More information

INTERNAL COMBUSTION ENGINE (SKMV 3413)

INTERNAL COMBUSTION ENGINE (SKMV 3413) INTERNAL COMBUSTION ENGINE (SKMV 3413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my THERMOCHEMISTRY IC engine

More information

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES

Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Chapter 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS AND VARIOUS THERMODYMIC PROCESSES Thermodynamics is that branch of science which deals with energy transfer A system may be closed, open or isolated system

More information

Let a system undergo changes from a state 1 to state 2.

Let a system undergo changes from a state 1 to state 2. ME 410 Day 11 Topics First Law of Thermodynamics Applied to Combustion Constant olume Combustion Constant ressure Combustion Enthalpy of Formation Heating alues of Fuels 1. The First Law of Thermodynamics

More information

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS

THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS 2nd AIAA Aerospace Sciences Paper 2-33 Meeting and Exhibit January -8, 2, Reno, NV THERMODYNAMIC ANALYSIS OF COMBUSTION PROCESSES FOR PROPULSION SYSTEMS E. Wintenberger and J. E. Shepherd Graduate Aeronautical

More information

Exercise 7 - Fluiddynamic Systems

Exercise 7 - Fluiddynamic Systems Exercise 7 - Fluiddynamic Systems 7.1 Valves The flow of fluids between reservoirs is determined by valves, whose inputs are the pressure up- and downstream, denoted by p in and p out respectively. Here,

More information

Irreversibility analysis of a downsized gasoline engine

Irreversibility analysis of a downsized gasoline engine Loughborough University Institutional Repository Irreversibility analysis of a downsized gasoline engine This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A

R13. II B. Tech I Semester Regular Examinations, Jan THERMODYNAMICS (Com. to ME, AE, AME) PART- A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer

More information

Internal Combustion Engines I: Fundamentals and Performance Metrics

Internal Combustion Engines I: Fundamentals and Performance Metrics Internal Combustion Engines I: Fundamentals and Performance Metrics Prof. Rolf D. Reitz, Engine Research Center, University of Wisconsin-Madison 08 Princeton-Combustion Institute Summer School on Combustion

More information

Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines

Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines Mohand Said Lounici, Khaled Loubar, Mourad Balistrou, Mohand Tazerout To cite

More information

Thermochemistry X.S. Bai Thermochemistry

Thermochemistry X.S. Bai Thermochemistry Lecture 2 Thermochemistry Design a power plant X.S. Bai Thermochemistry When we study a combustion device, what do we want to know? heat generated power production combustion efficiency combustion control

More information

Cambridge Centre for Computational Chemical Engineering

Cambridge Centre for Computational Chemical Engineering Cambridge Centre for Computational Chemical Engineering University of Cambridge Department of Chemical Engineering Preprint ISSN 1473 4273 A New Computational Model for Simulating Direct Injection HCCI

More information

Elements of Mechanical Engineering

Elements of Mechanical Engineering 2011 Elements of Mechanical Engineering AMRAT PATEL Asst. Professor 1/17/2011 Smt Shantaben Haribhai Gajera Charitable Trust, Surat LAXMI INSTITUTE OF TECHNOLOGY, SARIGAM BE I, Sem I (Section: A, B & C)

More information

Transported PDF Calculations of Combustion in Compression- Ignition Engines

Transported PDF Calculations of Combustion in Compression- Ignition Engines International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress Detroit, MI 15 April 2013 Transported PDF Calculations of Combustion in Compression- Ignition Engines V. Raj Mohan

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 34 Outline 1 Lecture 7: Recall on Thermodynamics

More information

Estimation of the In-Cylinder Air/Fuel Ratio of an Internal Combustion Engine by the Use of Pressure Sensors

Estimation of the In-Cylinder Air/Fuel Ratio of an Internal Combustion Engine by the Use of Pressure Sensors Estimation of the In-Cylinder Air/Fuel Ratio of an Internal Combustion Engine by the Use of Pressure Sensors Tunestål, Per Published: 2001-01-01 Link to publication Citation for published version (APA):

More information

Development of Low-Irreversibility Engines

Development of Low-Irreversibility Engines Development of Low-Irreversibility Engines Investigators C.F., Associate Professor, Mechanical Engineering; K.-Y. Teh, S.L. Miller, Graduate Researchers. Introduction An engine is a device that converts

More information

COMPARISON OF THE EXTENDED KALMAN FILTER AND THE UNSCENTED KALMAN FILTER FOR PARAMETER ESTIMATION IN COMBUSTION ENGINES

COMPARISON OF THE EXTENDED KALMAN FILTER AND THE UNSCENTED KALMAN FILTER FOR PARAMETER ESTIMATION IN COMBUSTION ENGINES COMPARISON OF THE EXTENDED KALMAN FILTER AND THE UNSCENTED KALMAN FILTER FOR PARAMETER ESTIMATION IN COMBUSTION ENGINES Christoph Kallenberger and Haris Hamedović Corporate Research and Development Advance

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Entropy in Macroscopic Systems

Entropy in Macroscopic Systems Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1 Review Entropy in Macroscopic Systems

More information

SIMULTANEOUS INCREASING OF THERMAL CONVERSION EFFICIENCY AND BMEP WHILE REDUCING EMISSIONS

SIMULTANEOUS INCREASING OF THERMAL CONVERSION EFFICIENCY AND BMEP WHILE REDUCING EMISSIONS AVL AST 2012 23 24 Oct 2012 Heidelberg SIMULTANEOUS INCREASING OF THERMAL CONVERSION EFFICIENCY AND BMEP WHILE REDUCING EMISSIONS Victor GHEORGHIU* Department of Mechanical Engineering, Hamburg University

More information

Model Based Control of Throttle, EGR and Wastegate

Model Based Control of Throttle, EGR and Wastegate Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 7 Model Based Control of Throttle, EGR and Wastegate A System Analysis of the Gas Flows in

More information

MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE TIMING ACTUATORS

MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE TIMING ACTUATORS MOTION PLANNING CONTROL OF THE AIRPATH OF AN S.I. ENGINE WITH VALVE TIMING ACTUATORS T. Leroy, J. Chauvin N. Petit G. Corde Institut Français du Pétrole, 1 et 4 Avenue de Bois Préau, 92852 Rueil Malmaison,

More information

DISSERTATION. Ahmed Abad Al-Durra, B.S.E.C.E., M.S.E.C.E. Graduate Program in Electrical and Computer Engineering. The Ohio State University

DISSERTATION. Ahmed Abad Al-Durra, B.S.E.C.E., M.S.E.C.E. Graduate Program in Electrical and Computer Engineering. The Ohio State University MODEL-BASED ESTIMATION FOR IN-CYLINDER PRESSURE OF ADVANCED COMBUSTION ENGINES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School

More information

Oak Ridge National Laboratory

Oak Ridge National Laboratory Copyright 2001 Society of Automotive Engineers, Inc. Oak Ridge National Laboratory We investigate lean-fueling cyclic dispersion in spark ignition engines in terms of experimental nonlinear mapping functions

More information

AAE COMBUSTION AND THERMOCHEMISTRY

AAE COMBUSTION AND THERMOCHEMISTRY 5. COMBUSTIO AD THERMOCHEMISTRY Ch5 1 Overview Definition & mathematical determination of chemical equilibrium, Definition/determination of adiabatic flame temperature, Prediction of composition and temperature

More information

NOTE: Only CHANGE in internal energy matters

NOTE: Only CHANGE in internal energy matters The First Law of Thermodynamics The First Law of Thermodynamics is a special case of the Law of Conservation of Energy It takes into account changes in internal energy and energy transfers by heat and

More information

Modeling of Direct Gas Injection in Internal Combustion Engines

Modeling of Direct Gas Injection in Internal Combustion Engines Modeling of Direct Gas Injection in Internal Combustion Engines A. Y. Deshmukh 1, C. Giefer 1, M. Khosravi 2, H. Pitsch 1 1 Institute for Combustion Technology, RWTH Aachen University 2 Ford Research and

More information

DARS Digital Analysis of Reactive Systems

DARS Digital Analysis of Reactive Systems DARS Digital Analysis of Reactive Systems Introduction DARS is a complex chemical reaction analysis system, developed by DigAnaRS. Our latest version, DARS V2.0, was released in September 2008 and new

More information

The need for something else: Entropy

The need for something else: Entropy Lecture 27 Goals: Ch. 18 ualitatively understand 2 nd Law of Thermodynamics Ch. 19 Understand the relationship between work and heat in a cycling process Follow the physics of basic heat engines and refrigerators.

More information

N L N G : C O M B U S T I O N

N L N G : C O M B U S T I O N N L N G : C O M B U S T I O N G R A N T I N G R A M 6 T H D E C E M B E R 2 0 1 7 This short lecture provides an introduction into the basic principles of combustion and some of the background to the use

More information

Set 1. a. 100 kj/kg b. 110 kj/kg c. 140 kj/kg d. 150 kj/kg

Set 1. a. 100 kj/kg b. 110 kj/kg c. 140 kj/kg d. 150 kj/kg Set 1 1. Two blocks which are at different states are brought into contact with each other and allowed to reach a final state of thermal equilibrium. The final temperature attained is specified by the

More information

THERMODYNAMIC LOSSES IN A GAS SPRING: COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS

THERMODYNAMIC LOSSES IN A GAS SPRING: COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS THERMODYNAMIC LOSSES IN A GAS SPRING: COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS Sapin P. 1,, Taleb A. 1, Barfuss C. 1, White A.J. 2, Fabris D. 1,3 and Markides C.N. 1 Author for correspondence E-mail:

More information

Study of CNG Combustion Under Internal Combustion Engines Conditions Part I: Using Quasi-Dimensional Modelling

Study of CNG Combustion Under Internal Combustion Engines Conditions Part I: Using Quasi-Dimensional Modelling Pertanika J. Sci. & Technol. 7 (2): 269 289 (2009) ISSN: 028-7680 Universiti Putra Malaysia Press Study of CNG Combustion Under Internal Combustion Engines Conditions Part I: Using Quasi-Dimensional Modelling

More information

AUTOMOTIVE EXHAUST AFTERTREATMENT

AUTOMOTIVE EXHAUST AFTERTREATMENT AUTOMOTIVE EXHAUST AFTERTREATMENT CATALYST FUNDAMENTLS Catalyst in its simplest term is a material that increase the rate (molecules converted by unit time) of a chemical reaction while itself not undergoing

More information

Control-oriented modeling, validation, and analysis of a natural gas engine architecture

Control-oriented modeling, validation, and analysis of a natural gas engine architecture Purdue University Purdue e-pubs Open Access Theses Theses and Dissertations 8-2016 Control-oriented modeling, validation, and analysis of a natural gas engine architecture Chaitanya Panuganti Purdue University

More information

DISCIPLINA MIEEA 2018

DISCIPLINA MIEEA 2018 DISCIPLINA MIEEA 2018 Technologies of combustion Combustion definition Combustion is essentially burning, fuels react with oxygen to release energy 4 Combustion use in the world No Combustion Combustion

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2018, UC Berkeley Midterm 2 March 22, 2018 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show all

More information

RECIPROCATING ENGINES

RECIPROCATING ENGINES RECIPROCATING ENGINES Franck Nicolleau To cite this version: Franck Nicolleau. RECIPROCATING ENGINES. Master. RECIPROCATING ENGINES, Sheffield, United Kingdom. 2010, pp.189. HAL Id: cel-01548212

More information

A G-equation Combustion Model Incorporating Detailed Chemical Kinetics for PFI/DI SI Engine Simulations

A G-equation Combustion Model Incorporating Detailed Chemical Kinetics for PFI/DI SI Engine Simulations Sixteenth International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress, April 2, 2006, Detroit, Michigan A G-equation Combustion Model Incorporating Detailed Chemical Kinetics

More information