Annulenes, Benzo-, Hetero-, Homo-Derivatives, and their Valence Isomers

Size: px
Start display at page:

Download "Annulenes, Benzo-, Hetero-, Homo-Derivatives, and their Valence Isomers"

Transcription

1 Annulenes, Benzo-, Hetero-, Homo-Derivatives, and their Valence Isomers Volume I Authors Alexandru T. Balaban Professor Department of Organic Chemistry The Polytechnic Bucharest, Romania Mircea Banciu Associate Professor Department of Organic Chemistry The Polytechnic Bucharest, Romania Vasile Ciorba First Economic Secretary West Europe Direction Foreign Trade Ministry Bucharest, Romania CRC Press, Inc. Boca Raton, Florida

2 TABLE OF CONTENTS Chapter 1 Introduction 1 References 2 Chapter 2 Aromaticity of Mono- and Polycyclic Systems 5 I. The History of the Aromatic Sextet from Kekule to Hückel 5 A. Kekule's Benzene Formula 5 B. The Aromatic Sextet 8 II. Kekule Structure Count 13 A. Corrected (Algebraic) Structure Count 13 III. Aromaticity Criteria 14 IV. Resonance Energy of Aromatics 17 V. Aromaticity of Polycyclic Bridged Systems 20 VI. Condensed Benzenoid Polycyclic Hydrocarbons 23 A. Structure, Isomerism, Coding, and Nomenclature 23 B. Radicals, Diradicals, and Related Systems Devoid of Kekule Structures 24 C. Number and Parity of Kekule Structures 25 D. Local Aromaticity 27 E. Relationships Between Structure and Properties Including Carcinogenicity 28 F. Conclusions 29 References 30 Chapter 3 Graph Theory as a Key Tool for the Definition and Enumeration of Valence Isomers 35 I. Graph-Theoretical Preliminaries 35 II. Interplay Between Graph Theory and Chemistry 37 III. Chemistry as a Breeding Ground for Graph Theory 38 IV. Definition of Valence Isomers 39 V. Finding all Possible Valence Isomers of Annulenes (CH) n and of Homoannulenes 40 VI. Pölya's Theorem and Valence Isomers of Heteroannulenes 46

3 VII. Finding Benzoderivatives of Valence Isomers of [n]annulenes 54 VIII. Finding all Possible Isomers of Benzenoid Polycyclic Condensed Hydrocarbons 61 References 63 Chapter 4 Annulenes 67 I. Introduction 67 II. Cyclobutadiene (CBD) 69 A. Substituted Derivatives of Cyclobutadiene 73 B. Metallic Complexes of CBD 77 III. [6]Annulene or Benzene 80 IV. [8]Annulene or Cyclooctatetraene (COT) 80 A. Substituted COT Derivatives 81 V. [10]Annulene or Cyclodecapentaene 87 VI. Larger [n]annuienes (n 5= 12) 90 A. Synthesis via Oxidative Coupling of Terminal Acetylenes 90 B. Photoirradiation of Polycyclic Valence Tautomers 91 C. [12] Annulene 92 D. [14]Annulene 92 E. [16]Annulene 93 F. [18]Annulene 94 G. [20]Annulene 97 H. [22]Annulene 97 I. [24]Annulene 97 J. [30]Annulene 97 K. Conclusions for Macrocyclic Annulenes 97 VII. General Conclusions for Annulenes 98 VIII. Dehydroannulenes 99 A. Introduction 99 B. Syntheses 100 C. 12-Membered Rings 103 D. 14-Membered Rings 103 E. 16-Membered Rings 105 F. 18-Membered Rings 106 G. 20-Membered Rings 107 H. 22-Membered Rings 107 I. 24-Membered Rings 108 J. 26-Membered Rings 108 K. 28-Membered Rings 109 L. 30-Membered Rings 109 M. Conclusions 109

4 IX. Systems Related to Annulenes 110 A. Aromatic and Antiaromatic Singly Charged Ions 110 B. Multiply Charged Ions 113 X. Annuleno-Annulenes 115 XI. Annulenes with Zero-Atom Bridges 117 References 122 Chapter 5 Bridged Annulenes 131 I. Introduction 131 II. Carbon-Bridged [10]Annulenes 131 A. Syntheses ,6-Methano[ 10] Annulene ,5-Methano[ 10]Annulene (Homoazulene) Derivatives of 7b//-Cyclopent/c,<i7Indene The Pyranene Problem 135 B. Structure and Physical Characterization ,6-Methano[ 10] Annulene 136 a. Results of Calculations 136 b. UV Spectrum 138 c. Photoelectron Spectrum 138 d. MCD Studies 138 e. NMR Spectra 139 f. X-Ray Analysis 139 g. Electron Diffraction 139 h. ESR Spectra 140 i. Dipole Moments 140 j. Valence Tautomerism ,5-Methano[ 10]Annulene (Homoazulene) Derivatives of 7b//-Cyclopent/c,?/Indene 141 C. Chemical Properties ,6-Methano[ 10]Annulene Reactions and Derivatives 141 a. Thermal Behavior 141 b. Diene Syntheses 141 c. Aromatic Substitutions 142 d. Derivatives 143 e. Metal Complexes 145 f. Derivatives with Functionalized Bridge 145 g. Formation of Benzocyclopropene and Related Compounds from 1,6-Methano[ 10] Annulene ,5-Methano[ 10]Annulene (Homoazulene) Derivatives of 7b//-Cyclopent/c,<i/Indene 149 D. Conclusions 150 III. Carbon-Bridged [12]Annulenes 150 A. Syntheses 150

5 1. Bicyclic-Bridged [ 12]Annulenes 150 a. 1,7-Methano[ 12]Annulene (146) 150 b. l,6-methano[ 12]Annulene (153) Tricyclic-Bridged [12]Annulenes Tetracyclic-Bridged [12]Annulenes 152 a. Pyracylene (161) and Derivatives 152 b. Derivatives of Dibenzo//«/,g/z/Pentalene 153 c. Derivatives of lh-cyclopent/7?,c/acenaphthene 153 d. Derivatives of Dicyclopent/«/,//yAzuIene 153 B. Structure and Physical Characterization Bicyclic-Bridged [12]Annulenes 154 a. l,7-methano[ 12]Annulene (146) 154 b. l,6-methano[ 12]Annulene (153) Tetracyclic-Bridged [12]Annulenes 155 a. Results of Calculations 155 b. Experimental Results 156 c. Conclusions 157 IV. Carbon-Bridged [14]Annulenes 157 A. Introduction 157 B. Syntheses Tricyclic-Bridged [14]Annulenes and Derivatives (Vogel's Type) 159 a. Syrc-l,6:8,13-Bismefhano[14]Annulene (188) 159 b. Anti-l,6:8,13-Bismethano[ 14]Annulene (189) 160 c. 5>n-l,6-Ethano-8,13-Methano[ 14]Annulene (190) 160 d. 15,16-Dioxo-Syz-1,6:8,13-Bismethano[ 14] Annulene (191) 160 e. 15,16-Dioxo-Anf/-1,6:8,13-Bismethano[ 14] Annulene (192) 160 f. S>n-l,6:7,12-Bisrnefhano[14]Annulene (193) Tetracyclic-Bridged [14]Annulenes and Derivatives (Vogel's Type) 161 a. 1,6:8,13-Ethanediylidene[ 14]Annulene (194) 161 b. 15,16-Methylene-1,6:8,13-Ethanediylidene[ 14] Annulene (195) 162 c. l,6:8,13-propanediylidene[14]annulene (196) 162 d. l,6:8,13-butanediylidene[14]annulene (197) 162 e. 15,16-Dialkyl-15,16-Dihydropyrenes (Boekelheide's Annulenes) and Isomers 163 f. l,3,6,8-rra«^15,16-hexamefhyldihydropyrene (265) 164 g. 7Van.s-15,16-Diethyldihydropyrene (268) 164 h. Trans-15,16-Di-n-Propyldihydropyrene (271) 164 i. Isomers of 15,16-Dimethyl-15,16-Dihydropyrene 166 j. Pyrene and Isomers 166 C. Structure and Physical Characterization Tricyclic-Bridged [14]Annulenes and Derivatives 172 a. tyn-l,6:8,13-bismethano[14]annulene (188) 172 b. A«f/-l,6:8,13-Bismethano[14]Annulene (189) 172 c. ty«-l,6-ethano-8,13-methano[ 14] Annulene (190) 172 d. 15,16-Dioxo-,S;y«- and 15,16-Dioxo-A«r/-l,6:8,13- Bismethano[ 14]Annulenes (191 and 192) 178

6 e. Syn-l,6:7,12-Bismethano[14]Annulene (193) Tetracyclic-Bridged [14]Annulenes and Derivatives 179 a. 1,6:8,13-Ethanediylidene[ 14]Annulene (194) 179 b. 15,16-Methylene-1,6:8,13-Ethanediylidene[ 14] Annulene (195) 179 c. l,6:8,13-propanediylidene[14]annulene 196) 179 d. 1,6:8,13-Butanediylidene[ 14]Annulene (197) 179 e. 15,16-Dialkyl-15,16-Dihydropyrenes (Boekelheide's Type Annulenes) 180 f. Pyrene and Isomers 182 D. Chemical Properties Vogel's Bridged [ 14]Annulenes ,16-Dialkyl-15,16-Dihydropyrenes (Boekelheide's Annulenes) 185 a. Aromatic Substitutions 185 b. Valence Tautomerism and Related Reactions 186 c. Pyrene and Isomers 189 E. Conclusions 190 Carbon-Bridged [16]Annulenes 192 A. Tricyclic-Bridged [16]Annulenes 192 B. Tetracyclic-Bridged [16]Annulenes Ethane-Bridged Systems Ethene-Bridged Systems Syntheses Structure and Physicochemical Characterization 194 C. Conclusions 195 Carbon-Bridged [18]- and [22]Annulenes 195 A. Syntheses Bridged [18]Annulenes 195 a. Syn,Syn-\,6:8,17:10,15-Trismethano[ 18] Annulene (394) 195 b. Tetracyclic Ethene-Bridged [18]Annulenes 196 c. Pentacyclic [18]Annulenes 196 d. Hexa- and Heptacyclic [18]Annulenes Bridged [22]Annulenes 198 B. Structure and Physical Characterization 198 C. Chemical Properties 199 D. Conclusions 200 Heteroatom-Containing Bridged Annulenes 202 A. Heteroatom-Bridged Annulenes Heteroatom-Bridged [10]Annulenes 202 a. Syntheses 202 b. Structure and Properties Heteroatom-Bridged [ 14]Annulenes 204 a. Syntheses 204 b. Structure and Properties 205 B. Bridged Heteroannulenes Syntheses 207

7 2. Structure and Physical Characterization Chemical Properties 211 C. Conclusions 213 VIII. Bridged Annulene Ions 214 A. Cations of l,6-methano[10]annulenes 214 B. Bridged 1 OTT-Annulene Ions 215 C. Bridged 12TT-Annulene Ions Bicyclic Systems Tricyclic Systems 216 D. Bridged 14TT-Annulene Ions Bicyclic Systems Tricyclic Systems 219 E. Bridged 16TT-Annulene Ions 220 F. Bridged 1 8TT-Annulene Ions 224 G. Bridged 20ir-Annulene Ions 225 H. Miscellaneous 226 I. Conclusions 226 References 227 Addenda 237 Index 241

CHEMICAL GRAPH THEORY

CHEMICAL GRAPH THEORY CHEMICAL GRAPH THEORY SECOND EDITION Nenad Trinajstic, Ph.D. Professor of Chemistry The Rugjer Boskovic Institute Zagreb The Republic of Croatia CRC Press Boca Raton Ann Arbor London Tokyo TABLE OF CONTENTS

More information

12/27/2010. Chapter 14 Aromatic Compounds

12/27/2010. Chapter 14 Aromatic Compounds Nomenclature of Benzene Derivatives Benzene is the parent name for some monosubstituted benzenes; the substituent name is added as a prefix Chapter 14 Aromatic Compounds For other monosubstituted benzenes,

More information

ORGANIC - CLUTCH CH AROMATICITY.

ORGANIC - CLUTCH CH AROMATICITY. !! www.clutchprep.com CONCEPT: AROMATICTY INTRODUCTION Aromatic compounds display an unusual stability for their high level of electron density. Their high level of unsaturation should make them extremely

More information

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes

Benzene a remarkable compound. Chapter 14 Aromatic Compounds. Some proposed structures for C 6 H 6. Dimethyl substituted benzenes are called xylenes Benzene a remarkable compound Chapter 14 Aromatic Compounds Discovered by Faraday 1825 Formula C 6 H 6 Highly unsaturated, but remarkably stable Whole new class of benzene derivatives called aromatic compounds

More information

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. 2010, Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 16 Aromatic Compounds 2010, Prentice Hall Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized

More information

Chapter 16 Aromatic Compounds. Discovery of Benzene

Chapter 16 Aromatic Compounds. Discovery of Benzene Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C: ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Chapter 16. Aromatic Compounds

Chapter 16. Aromatic Compounds Chapter 16 Aromatic Compounds Discovery of Benzene Isolated in 1825 by Michael Faraday who determined C:H ratio to be 1:1. Synthesized in 1834 by Eilhard Mitscherlich who determined molecular formula to

More information

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386)

Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Chemistry 242 Organic Chemistry II Spring Term 2012 Dr. Williams (309 Zurn, ex 2386) Web Page: http://math.mercyhurst.edu/~jwilliams/ jwilliams@mercyhurst.edu (or just visit Department web site and look

More information

Benzene and aromaticity

Benzene and aromaticity aromaticity The word "benzene" derives historically from "gum benzoin", sometimes called "benjamin" (i.e., benzoin resin), an aromatic resin known to European pharmacists and perfumers since the 15th century

More information

Organic Chemistry. Second Edition. Chapter 18 Aromatic Compounds. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 18 Aromatic Compounds. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 18 Aromatic Compounds Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 18.1 Introduction to Aromatic Compounds

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Exam 3 Chem 3045x Friday, December 5, 1997

Exam 3 Chem 3045x Friday, December 5, 1997 Exam 3 Chem 3045x Friday, December 5, 1997 Instructions: This is a closed book examination. You may not use any notes, books or external materials during the course of the examination. Please print your

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras

Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras Pericyclic Reactions and Organic Photochemistry S. Sankararaman Department of Chemistry Indian Institute of Technology, Madras Module No. #01 Lecture No. #05 Introduction Pericyclic Reactions Electrocyclic

More information

EASTERN ARIZONA COLLEGE General Organic Chemistry I

EASTERN ARIZONA COLLEGE General Organic Chemistry I EASTERN ARIZONA COLLEGE General Organic Chemistry I Course Design 2015-2016 Course Information Division Science Course Number CHM 235 (SUN# CHM 2235) Title General Organic Chemistry I Credits 4 Developed

More information

Benzene and its Isomers

Benzene and its Isomers Gopalpur Nagendrappa Benzene and its Isomers How many Structures can we raw for C 6? Gopalpur Nagendrappa Gopalpur Nagendrappa teaches organic chemistry at Bangalore University. His work includes organic

More information

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important:

Aside on Chapter 22, Organic Chemistry. Why is organic chemistry important: Aside on Chapter 22, Organic Chemistry Why is organic chemistry important: 1) Materials 2) Energy (oil & coal) 3) Human health a) diagnosis b) treatment (drugs) 4) A drug development logic progression

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Aromatic Compounds I

Aromatic Compounds I 2302272 Org Chem II Part I Lecture 1 Aromatic Compounds I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 16 in Organic Chemistry, 8 th Edition, L.

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Keynotes in Organic Chemistry

Keynotes in Organic Chemistry Keynotes in Organic Chemistry Second Edition ANDREW F. PARSONS Department of Chemistry, University of York, UK Wiley Contents Preface xi 1 Structure and bonding 1 1.1 Ionic versus covalent bonds 1 1.2

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

1. How do you account for the formation of ethane during chlorination of methane?

1. How do you account for the formation of ethane during chlorination of methane? 1. How do you account for the formation of ethane during chlorination of methane? The formation of ethane is due to the side reaction in termination step by the combination of two CH 3 free radicals. 2.

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS

CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS CHEM 112 Name: (Last) (First). Section No.: VISUALIZING ORGANIC REACTIONS THROUGH USE OF MOLECULAR MODELS 1) HYDROCARBONS: a. Saturated Hydrocarbons: Construct a model for propane, C 3 H 8, using black

More information

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School

Topic 10 Organic Chemistry. Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School Topic 10 Organic Chemistry Ms. Kiely IB Chemistry (SL) Coral Gables Senior High School -Alkanes: have low reactivity and undergo free radical substitution. -Alkenes: are more reactive than alkanes, since

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

18.1 Intro to Aromatic Compounds

18.1 Intro to Aromatic Compounds 18.1 Intro to Aromatic Compounds AROMATIC compounds or ARENES include benzene and benzene derivatives. Aromatic compounds are quite common. Many aromatic compounds were originally isolated from fragrant

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Discreteness of π conjugation of 1,6-methano[10]annulene by troponoid fusion at the 3,4- positions

Discreteness of π conjugation of 1,6-methano[10]annulene by troponoid fusion at the 3,4- positions Discreteness of π conjugation of 1,6-methano[10]annulene by troponoid fusion at the 3,- positions Yanmei Zhang, a Shigeyasu Kuroda, *,a Reina hta, a Ryuta Miyatake, a Yoshikazu Horino, a and Mitsunori

More information

12.1 AROMATIC COMPOUNDS

12.1 AROMATIC COMPOUNDS 12 Arenes and Aromaticity estradiol 12.1 AROMATIC COMPOUNDS O O O O C 3 C 3 O O safrole (oil of sassafras) O methyl salicylate (oil of wintergreen) O vanillin (vanilla) C 3 N C 3 C 3 CC 2 ibuprofen C C

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM200 ORGANIC CHEMISTRY I 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019

Loudon Chapter 15 Review: Dienes and Aromaticity Jacquie Richardson, CU Boulder Last updated 1/28/2019 This chapter looks at the behavior of carbon-carbon double bonds when several of them are in the same molecule. There are several possible ways they can be grouped. Conjugated dienes have a continuous

More information

Benzene and Aromaticity

Benzene and Aromaticity Benzene and Aromaticity Why this Chapter? Reactivity of substituted aromatic compounds is tied to their structure Aromatic compounds provide a sensitive probe for studying relationship between structure

More information

Class XI Chapter 13 Hydrocarbons Chemistry

Class XI Chapter 13 Hydrocarbons Chemistry Question 13.1: How do you account for the formation of ethane during chlorination of methane? Chlorination of methane proceeds via a free radical chain mechanism. The whole reaction takes place in the

More information

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year CHEMISTRY Paper - I : General Chemistry. Time : 03 Hours Maximum Marks : 80

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year CHEMISTRY Paper - I : General Chemistry. Time : 03 Hours Maximum Marks : 80 M.Sc. (Previous) DEGREE EXAMINATION, MAY - 2015 First Year CHEMISTRY Paper - I : General Chemistry (DCHE 01) Time : 03 Hours Maximum Marks : 80 Part-A (4 x 8 = 32) Answer Any Four questions 1) What are

More information

CHEM Review for test 1 (ch12-15). F17. Stafford

CHEM Review for test 1 (ch12-15). F17. Stafford CHEM Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What range of wavelengths corresponds to the infrared region of the electromagnetic spectrum? a. 200-400

More information

16.4 Cyclobutadiene. .. H c)

16.4 Cyclobutadiene. .. H c) 16.4 CYCLOBUTADIEE 649 arranged about zero energy, it is necessary for one degenerate pair, 4 nb and 5 nb, to be located at zero energy. MOs at zero energy are termed nonbonding.) If the total number of

More information

Required Materials For complete material(s) information, refer to

Required Materials For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson Revised Fall 2017 Implemented Spring 2018 COURSE OUTLINE Organic Chemistry 1 Course Description CH 240. Organic

More information

Heterocyclic Chemistry

Heterocyclic Chemistry Heterocyclic Chemistry Third Edition Thomas L. Gilchrist University of Liverpool 1 Longman Contents Preface to the third edition Preface to the second edition Preface to the first edition Acknowledgements

More information

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons Chemistry 11 Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons 2 1. Unsaturated hydrocarbons So far, we have studied the hydrocarbons in which atoms are connected exclusively by

More information

CHEM 344 Molecular Modeling

CHEM 344 Molecular Modeling CHEM 344 Molecular Modeling The Use of Computational Chemistry to Support Experimental Organic Chemistry Day 1 all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.

More information

Objective 3. Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor.

Objective 3. Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor. Objective 3 Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor. Structure Should Fit Experimental Data The chemical formula of benzene is

More information

C. Correct! The abbreviation Ar stands for an aromatic ring, sometimes called an aryl ring.

C. Correct! The abbreviation Ar stands for an aromatic ring, sometimes called an aryl ring. Organic Chemistry - Problem Drill 05: Drawing Organic Structures No. 1 of 10 1. What does the abbreviation Ar stand for? (A) Acetyl group (B) Benzyl group (C) Aromatic or Aryl group (D) Benzoyl group (E)

More information

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements is incorrect about benzene? 1) A) All of the carbon

More information

Contents. Preface to the Second Edition. Acknowledgments

Contents. Preface to the Second Edition. Acknowledgments Contents Preface to the Second Edition Preface Acknowledgments xi xiii xv 1. How Science Deals with Complex Problems 1 1.1 Introduction: Levels in Science... 2 1.2 What Are Molecules Made of?... 4 1.3

More information

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr.

DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES Dr Ali El-Agamey. Organic Chemistry, 7 th Edition L. G. Wade, Jr. DAMIETTA UNIVERSITY CHEM-103: BASIC ORGANIC CHEMISTRY LECTURES 11-12 Dr Ali El-Agamey Organic Chemistry, 7 th Edition L. G. Wade, Jr. Amines 2010, Prentice Hall Reactions N,N-Disubstituted amides 2 o amine

More information

Technical Note. Introduction

Technical Note. Introduction Technical Note Characterization of Eleven 2,5-Dimethoxy-N-(2-methoxybenzyl)- phenethylamine (NBOMe) Derivatives and Differentiation from their 3- and 4- Methoxybenzyl Analogues - Part II Patrick A. Hays*,

More information

Chapter 15: Reactions of Substituted Benzenes

Chapter 15: Reactions of Substituted Benzenes Learning Objectives: Chapter 15: Reactions of Substituted Benzenes 1. Be able to recognize and utilize the oxidative and reductive reactions involving the substituents on benzene. 2. Recognize whether

More information

Chapter 13 Alkenes and Alkynes & Aromatic Compounds

Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter 13 Alkenes and Alkynes & Aromatic Compounds Chapter Outline 13.1 Alkenes and Alkynes 13.2 Nomenclature of Alkenes and Alkynes 13.3 Cis Trans Isomers 13.4 Alkenes in Food and Medicine 13.6 Reactions

More information

Aromatic character and aromaticity

Aromatic character and aromaticity Aromatic character and aromaticity Cambridge Chemistry Textbook Series GENERAL EDITORS E. A. V. Ebsworth, Ph.D. Professor of Inorganic Chemistry, University of Edinburgh P. J. Padley, Ph.D. Lecturer in

More information

Paper 12: Organic Spectroscopy

Paper 12: Organic Spectroscopy Subject hemistry Paper No and Title Module No and Title Module Tag Paper 12: Organic Spectroscopy 34: ombined problem on UV, IR, 1 H NMR, 13 NMR and Mass- Part 6 HE_P12_M34 TABLE OF ONTENTS 1. Learning

More information

Montgomery County Community College CHE 261 Organic Chemistry I

Montgomery County Community College CHE 261 Organic Chemistry I Montgomery County Community College CHE 261 Organic Chemistry I 4-3-3 COURSE DESCRIPTION: This course covers the nomenclature, structure, properties and reactions of many important classes of organic compounds.

More information

Solution problem 22: Non-Benzoid Aromatic Sytems

Solution problem 22: Non-Benzoid Aromatic Sytems Solution problem 22: on-enzoid Aromatic Sytems 22.1 & 22.2 Each double bond and each heteroatom (, ) with lone pairs donates 2 π- electrons as well as a negative charge. oron or a positive charge does

More information

CHAPTER OUTLINE. I. Elemental Carbon II. Crude Oil : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation

CHAPTER OUTLINE. I. Elemental Carbon II. Crude Oil : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation Carbon Chapter 12 CHAPTER UTLINE 9.2 I. Elemental Carbon II. Crude il : the Basic Resource III. Hydrocarbons IV. Separating Hydrocarbons by Fractional Distillation V. Processing Hydrocarbons VI. Typical

More information

Chemistry department of pharmaceutical faculty II course 3 th semester LESSON 1

Chemistry department of pharmaceutical faculty II course 3 th semester LESSON 1 Chemistry department of pharmaceutical faculty II course 3 th semester LESSON 1 Benzene and AromaticityIn the early days of organic chemistry, the word aromatic was used to describe such fragrant substances

More information

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year Chemistry Paper - I : GENERAL CHEMISTRY. Time : 03 Hours Maximum Marks : 80

M.Sc. (Previous) DEGREE EXAMINATION, MAY First Year Chemistry Paper - I : GENERAL CHEMISTRY. Time : 03 Hours Maximum Marks : 80 Paper - I : GENERAL CHEMISTRY (DCHE 01) NR Part - A (4 8 = 32) 1) Explain the allowed transitions between rotational energy levels in Microwave spectroscopy. 2) Discuss the types of molecular spectroscopy.

More information

California State Polytechnic University, Pomona

California State Polytechnic University, Pomona alifornia State Polytechnic University, Pomona 2-1 Dr. Laurie S. Starkey, rganic hemistry M 314, Wade hapter 2: Structure and Physical Properties of rganic Molecules hapter utline 1) rbitals and Bonding

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity

The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity The Silacyclobutene Ring: An Indicator of Triplet State Baird-Aromaticity Rabia Ayub, 1,2 Kjell Jorner, 1,2 and Henrik Ottosson 1,2 * 1 Department of Chemistry - BMC, Uppsala University, Box 576, 751 23

More information

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots.

CHEM 263 Notes Oct 1, Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. EM 263 otes ct 1, 2013 onjugated Dienes and olour ontinued Beta-carotene (depicted below) is responsible for the orange-red colour in carrots. In the below example, astaxanthin, a blue-green pigment in

More information

Organic Nomenclature

Organic Nomenclature University of Puget Sound Department of Chemistry Chem 111 Spring, 2010 Organic Nomenclature LEARNING GOALS AND ASSESSMENTS 1. Be familiar with the structure and nomenclature of organic compounds. a. Identify

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

NMR SPECTROSCOPY IN ORGANIC CHEMISTRY

NMR SPECTROSCOPY IN ORGANIC CHEMISTRY NMR SPECTROSCOPY IN ORGANIC CHEMISTRY PHYSICAL METHODS IN ORGANIC CHEMISTRY B. I. lonin and B. A. Ershov NMR Spectroscopy in Organic Chemistry, 1970 v. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov Dipole

More information

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 32: Polynuclear metal carbonyls and their structure

11, Inorganic Chemistry III (Metal π-complexes and Metal Clusters) Module 32: Polynuclear metal carbonyls and their structure 1 Subject Paper No and Title Module No and Title Module Tag Chemistry 11, Inorganic Chemistry III (Metal π-complexes and Module 32: Polynuclear metal carbonyls and their structure CHE_P11_M32 2 TABLE OF

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser

Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Chemistry 2030 Survey of Organic Chemistry Fall Semester 2017 Dr. Rainer Glaser Examination #1 Bonding, Alkanes, Alkenes & Alkynes Thursday, September 14, 2017, 8:25 9:15 am Name: Answer Key Question 1.

More information

I. Multiple Choice Questions (Type-I)

I. Multiple Choice Questions (Type-I) Unit 13 HYDROCARBONS I. Multiple Choice Questions (Type-I) 1. Arrange the following in decreasing order of their boiling points. (A) n butane (B) 2 methylbutane (C) n-pentane (D) 2,2 dimethylpropane A

More information

Chemistry 1110 Exam 4 Study Guide

Chemistry 1110 Exam 4 Study Guide Chapter 10 Chemistry 1110 Exam 4 Study Guide 10.1 Know that unstable nuclei can undergo radioactive decay. Identify alpha particles, beta particles, and/or gamma rays based on physical properties such

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

molecules ISSN by MDPI

molecules ISSN by MDPI Molecules 2000, 5, 004-00 molecules ISSN 420-3049 2000 by MDPI http://www.mdpi.org Flash Vacuum Pyrolysis of 2,5-Diphenyloxazole Mircea D. Banciu *, Daniela Istrati, Dan Mihaiescu and Constantin Draghici

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

A CHEMIST'S GUIDE TO VALENCE BOND THEORY

A CHEMIST'S GUIDE TO VALENCE BOND THEORY A CHEMIST'S GUIDE TO VALENCE BOND THEORY Sason Shaik The Hebrew University Jerusalem, Israel Philippe C. Hiberty Universite de Paris-Sud Orsay, France BICENTENNIAL 3ICCNTENNIAL WILEY-INTERSCIENCE A JOHN

More information

Lecture 10. More Aromatics. February 15, Chemistry 328N

Lecture 10. More Aromatics. February 15, Chemistry 328N Lecture 10 More Aromatics February 15, 2018 ückel's Rule for Aromaticity To be Aromatic a compound must : 1. be Cyclic 2. have one P orbital on each atom in the ring 3. be planar or nearly so to give orbital

More information

COURSE OUTLINE Last Revised and Approved: 12/10/2010 CHEM ORGANIC CHEMISTRY I Units Total Total Hrs Lab

COURSE OUTLINE Last Revised and Approved: 12/10/2010 CHEM ORGANIC CHEMISTRY I Units Total Total Hrs Lab CHEM 210 - ORGANIC CHEMISTRY I Units Lecture Total Hrs Lecture 3.00 Units Lab 2.00 Units Total 5.00 49.50 Total Hrs Lab 99.00 Total Course Hrs 148.50 COURSE DESCRIPTION This course is the first semester

More information

Graphenes Aromatic Giants

Graphenes Aromatic Giants Ivan Gutman and Boris Furtula Graphenes Aromatic Giants Ivan Gutman and Boris Furtula Ivan Gutman is Professor of Physical Chemistry at the Faculty of Science, Kragujevac, Serbia. Among his interests are

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce. Revised by: Sean Birke October, 2013 JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised by: Sean Birke October, 2013 Ms. Linda Abernathy, Math, Science & Business Division Chair

More information

Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4

Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4 Course Outline For: Organic Chemistry I (CHM 270) Credits: 5 Contact Hours: Lecture: 3 Lab: 4 NOTE on Laboratory: Both Lecture and Laboratory must be taken simultaneously; separate grades will not be given

More information

Part Define s-p overlapping. [When s orbital of an atom overlaps with p orbital of another atoms]

Part Define s-p overlapping. [When s orbital of an atom overlaps with p orbital of another atoms] Program Name B.Sc. (Chemistry) B.Sc. - Part I Paper Code CH- 02 (Organic chemistry) Section A (Very Short Answer Questions 2 Each Question Carries 2 Marks Part -1 1. Define s-p overlapping. [When s orbital

More information

2. A triple Diels-Alder reaction followed by a triple retro Diels Alder reaction give this interesting product:

2. A triple Diels-Alder reaction followed by a triple retro Diels Alder reaction give this interesting product: Lecture 8 October 6, 2011 Last time we talked a lot about highly reactive dienes, especially those developed by the group of Sam Danishefsky. One more example of an interesting diene is isobenzofuran:

More information

Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009

Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Why are the Azulene and Naphthalene

More information

Cape Cod Community College

Cape Cod Community College Cape Cod Community College Departmental Syllabus Prepared by the Department of Natural Sciences & Applied Technology Date of Departmental Approval: February 3, 2014 Date Approved by Curriculum and Programs:

More information

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida

ORGANIC CHEMISTRY. Wiley STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ROBERT G. JOHNSON JON ANTILLA ELEVENTH EDITION. University of South Florida STUDY GUIDE AND SOLUTIONS MANUAL TO ACCOMPANY ORGANIC CHEMISTRY ELEVENTH EDITION T. W. GRAHAM SOLOMONS University of South Florida CRAIG B. FRYHLE Pacific Lutheran University SCOTT A. SNYDER Columbia University

More information

ORGANIC CHEMISTRY II for 2 nd year Pharmacy students

ORGANIC CHEMISTRY II for 2 nd year Pharmacy students Tishk International University Faculty of Pharmacy ORGANIC CHEMISTRY II for 2 nd year Pharmacy students By Prof. Dr. Faiq H.S. Hussain 2018 2019 Academic Year 1.0 Alkenes and their derivatives 1.1 Nomenclature

More information

Chapter 18: Aromatic Compounds

Chapter 18: Aromatic Compounds hapter 18: Aromatic ompounds [Sections: 18.1, 18.3-18.5, 18.8] The Structure of Benzene skeletal condensed 1800's sausage 3 2 2 3 3 3 3 Friedrich August Kekule 1829-1896 Kekule's Dream 6 6 Kekule wakes

More information

Organic Chemistry is the chemistry of compounds containing.

Organic Chemistry is the chemistry of compounds containing. Chapter 21 Lecture Notes Organic Chemistry Intro Organic Chemistry is the chemistry of compounds containing. The Bonding of Carbon Because carbon has four valence electrons, it can form covalent bonds.

More information

2. Which one of the following structures represents a different compound from the other three?

2. Which one of the following structures represents a different compound from the other three? 1. Provide a Newman projection of the most stable conformation of 2-methylpentane, (CH 3 ) 2 CHCH 2 CH 2 CH 3, looking along the C2-C3 bond 2. Which one of the following structures represents a different

More information

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS

ORGANIC - BROWN 8E CH DIENES, CONJUGATED SYSTEMS, AND PERICYCLIC REACTIONS !! www.clutchprep.com CONCEPT: INTRODUCTION TO CONJUGATION Conjugation exists when three or more atoms with the ability to resonate are adjacent to each other (overlapping). Conjugation provides an electron

More information

1. Which of the following reactions would have the smallest energy of activation?.

1. Which of the following reactions would have the smallest energy of activation?. Name: Date: 1. Which of the following reactions would have the smallest energy of activation?. A) +. +. B) + +. C) +.. + D) +.. + E) +.. + 2. Which of the following reactions would have the smallest energy

More information

Chapter 22. Organic and Biological Molecules

Chapter 22. Organic and Biological Molecules Chapter 22 Organic and Biological Molecules The Bonding of Carbon Organic chemistry is the chemistry of compounds containing carbon. Because carbon can form single, double, and triple bonds, the following

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87

DAV CENTENARY PUBLIC SCHOOL, PASCHIM ENCLAVE, NEW DELHI - 87 HYDROCARBONS 1. Why do alkenes prefer to undergo electrophilic addition reaction while arenes prefer electrophilic substitution reactions? Explain. 2. Alkynes on reduction with sodium in liquid ammonia

More information

Aromatic Substitution Chemistry (Part of Chapter 2 and Chapter 11)

Aromatic Substitution Chemistry (Part of Chapter 2 and Chapter 11) Aromatic Substitution hemistry (Part of hapter 2 and hapter 11) Aliphatic ompounds: Aromatic ompounds: pentane 2-pentene 2-pentyne Aromatic compounds have closed loops of electrons that give rise to an

More information

AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter 22 - Organic and Biological Molecules AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

More information

Columbia University 92CORG14.DOC CHEM S3443D Summer 1992 Professor Grace B. Borowitz Exam No. 4 July 2, 1992

Columbia University 92CORG14.DOC CHEM S3443D Summer 1992 Professor Grace B. Borowitz Exam No. 4 July 2, 1992 olumbia University 92RG14.D EM S3443D Summer 1992 Professor Grace B. Borowitz Exam No. 4 July 2, 1992 Name: Grade: Please use a non-red pen. Answer questions in the provided space. If you write any answers

More information

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine

ORGANIC CHEMISTRY. Fifth Edition. Stanley H. Pine ORGANIC CHEMISTRY Fifth Edition Stanley H. Pine Professor of Chemistry California State University, Los Angeles McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London

More information

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic

Aromatic Compounds. A number of these compounds had a distinct odor. Hence these compounds were called aromatic Aromatic Compounds Early in the history of organic chemistry (late 18 th, early 19 th century) chemists discovered a class of compounds which were unusually stable A number of these compounds had a distinct

More information