Molecules for organic electronics: intermolecular interactions vs properties

Size: px
Start display at page:

Download "Molecules for organic electronics: intermolecular interactions vs properties"

Transcription

1 Molecules for organic electronics: intermolecular interactions vs properties Chiara Bertarelli Dipartimento di Chimica, Materiali e Ing. Chimica G. Natta Politecnico di Milano chiara.bertarelli@polimi.it website: tel

2 Basic ingredients of molecules for organic electronics keleton Alkyl chains Functional groups X COOH OMe CN

3 Intermolecular interactions keleton Offset stacking p stacking X T-stacking Aromatic-aromatic interaction (aromatic stacking, pi stacking): A noncovalent attractive force between two aromatic rings. Alignment of positive electrostatic potential on one ring with negative electrostatic potential on another ring forms: an offset stack, or a T-shaped stack. Also called pi stacking but this label is misleading because it implies that stacking might occur in any structure with pi electrons.

4 Intermolecular interactions: p stacking keleton X p stacking Electrical anisotropy tacked base pairs cause aromatic-aromatic interactions in DNA

5 Intermolecular interactions: p stacking keleton X p stacking Electrical anisotropy Generally speaking, pi-stacking offers a preferential path for the carriers, thus increasing mobility. Acenes, and in particular pentacene and derivatives, have been extensively studied in organic transistors. Acenes

6 porphyrins

7 Intermolecular interactions: p stacking TTF NC NC CN CN TCNQ

8 Intermolecular interactions: Van der Waals Alkyl chains Van der Waals Weak secondary bond trong effect in intermolecular packing hort range interaction chematic illustrations for (a) the packing structure of PQT (P2) and PBTTT (P3) with dodecyl side chain with uniform side chain interdigitation and (b) proposed packing structure for P30 with disordered side chains. Reprinted with permission from ref 52. Copyright 2009 American Chemical ociety.

9 Intermolecular interactions: Van der Waals Alkyl chains Van der Waals Weak secondary bond trong effect in intermolecular packing hort range interaction Example #1: amphiphiles HO O stearic acid Polar head Apolar tail

10 Intermolecular interactions: Van der Waals Alkyl chains Van der Waals Weak secondary bond trong effect in intermolecular packing hort range interaction Example #2: AMs (self-assembled monolayers) A self-assembled monolayer (AM) is an organized molecular assembly formed spontaneously by the adsorption (absorption) of a surfactant onto a solid surface. The major driving forces governing AM formation are the relative strength of the: -ubstrate-surfactant (head group) interaction, -urfactant-surfactant interaction -urfactant solvent interaction

11 AMs (self-assembled monolayers): alkanethiols onto gold Upon immersion of a clean gold surface into a dilute solution (typically 1mM) of an alkanethiol derivative, the thiol molecules are chemisorbed via the formation of dative gold-sulfur bonds. - Gold has specific interaction with sulfur - Long-chain alkanethiols form densely packed, crystalline or liquid-crystalline monolayers due to strong molecular interactions (van der Waals forces) between long carbon chains. H

12 Mixed AMs (self-assembled monolayers): alkanethiols onto gold using two or more alkanethiols, mixed monolayers can be formed. the composition of the mixed AMs differs from the composition of the solution and depends on the tendency of each surfactant to form densely packed films bulky tail groups or functionalized with strong polar groups can prevent their insertion in AM growth, as they disturb the Van der Waals interaction

13 #3: Alkyl chains onto well-packed aromatic moieties: liquid crystals Liquid crystals are examples of self-assembling structures, as a result of intermolecular interactions: ECONDARY TRUCTURE These structures are characterized by a some degree of long-range molecular order. The particular intermolecular interactions define the specific secondary structure, that is the liquid crystal phase. Liquid crystals are fluid, so they form continuous structures without interfaces. Liquid crystal phases differ from a liquid phase due to the peculiar anisotropy R= long alkyl (or perfluorinated alkyl) chain

14 Adding a strong polar group: large dipole moment n = F O F F O O F C 3 H 7 econdary structure Tertiary structure

15 Intermolecular interactions Functional groups COOH OMe CN Hydrogen bonding Dipole-dipole interaction

16 Intermolecular interactions Functional groups COOH OMe CN Hydrogen bonding Dipole-dipole interaction A noncovalent (van der Waals) attractive force caused by alignment of bond dipoles with opposite charges.

17 Intermolecular interactions Functional groups COOH OMe Hydrogen bonding A non covalent attractive force caused by electrostatic attraction of a hydrogen atom with a lone pair of another atom. The hydrogen bond donor must have a sufficiently large d+ charge caused by bonding to a highly electronegative element (O, N, or F). The hydrogen bond acceptor must have a lone pair, and sufficiently high electron density. CN water

18 upramolecular organization J.-M. Lehn, Chem. Eur. J. 2007, 13,

19 From solid state to solution: solubility solubilization: the structural units (ions or molecules) gets separated energy has to be provided to overcome the interionic or intermolecular forces energy required to break the bonds between particles is recovered by formation of new bonds between solute and solvents molecules the variation of entropy due to solubilization is positive (as disorder increases)

20 From solid state to solution: solubility energy required to break the bonds between particles is recovered by formation of new bonds between solute and solvents molecules the variation of entropy due to solubilization is positive (as disorder increases)

21 From solid state to solution: solubility Main statement: similar likes similar ubstance: methane d + d H H + C H d + d + H d - olubility in water: zero olubility in CCl 4 : high NaCl olubility in water: high olubility in CCl 4 : zero

22 From solid state to solution: solubility d + d + H d - H O olubility of alcohols into water Alcohol CH 3 OH CH 3 OH CH 3 OH CH 3 OH CH 3 OH CH 3 OH CH 3 OH solubility g/100g H 2 O CH 3 OH 0.05

23 olubility: amphiphiles if molecules are large enough and bear an apolar moiety and a polar group, this double nature influences solubilization, thus showing an amphiphilic behaviour pherical micelle Crosssection Rod micelle close-up odio laurato

24 olubility: amphiphiles aggregates are thus formed (es. micelle) whose shape is determined by the specific structure of the amphiphile, on its concentration and on temperature micelles are on the basis of cleaning

25 olubility: the conjugated systems solubility is usually a basic requirement to process materials into thin films by means of easy-handling solution techniques (spin coating, casting). At the solid state, conjugated systems and specifically oligo- /poly-aromatic systems are characterized by interactions p-p the longer the oligomer, the poorer the solubility T 2T 3T 4T 5T 6T

26 olubility: the conjugated systems the use of polar solvents having relatively high dielectric constant, but with no acid proton, can favour solubilization of conjugated systems aromatic solvents can contribute to solubilization as they can interact trough the p electronic cloud (entropy is relevant) O O C H 3 C CH H N CH 3 3 CH 3 (CH 3 ) 2 N O P N(CH 3 ) 2 N(CH 3 ) 2 dimetilsolfossido (DMO) N,N-dimetilformamide (DMF) esametilfosforotriammide (HMPT) CH 3 Cl Cl toluene o-diclorobenzene in case of planar systems and with very effective p stacking mixture of different solvent can help in solubilizing. trong acids plus aprotic solvents with high dielectric constant are typical examples

27 olubility of the conjugated systems: The effect of alkyl chains Alkyl chains are characterized by high conformational freedom their electronic effect on conjugation is very weak (weak donor) Usually they force a distortion of inter ring bonds (ateric hindrance) if they are placed in a regular way, crystallinity is favoured

28 olubility of the conjugated systems: The effect of alkyl chains R R R R R R CORONENE EABENZOCORONENE EABENZOCORONENE R=C12H25 C60 R R R C114 C132 C222 R R CORONENE: OLUBLE IN ACETONE, TOLUENE, CLOROFORM C78 R R R C60 R=C12H25 HEXABENZOCORONENE: ALMOT INOLUBLE UBTITUTED HEXABENZOCORONENE: OLUBLE IN CLOROFORM C60,78,114,132,222: INOLUBLE UBTITUTED C60 : OLUBLE IN CLOROFORM

29 solvatochromism solvatochromic and/or thermochromic phenomena are commonly occurring in conjugated systems these phenomena are often related to the formation of aggregates (p-stacking) which occurs in presence of bad solvents or in mixtures of good and bad solvents techniques: light scattering, circular dichroism, UV-vis absorption spectra, photoluminescence, microfiltration, etc.

30 solvatochromism polymer OMe * n * regioregularity: % M n : solvents Bad solvent: MeOH M. Lanzi, P. Costa-Bizzarri, C. Della Casa, ynth Metals, 89 (1997) 181

31 solvatochromism Yellow-orange dioxane Red-purple toluene MeOH MeOH polar solvent site of solvatation: end group Non-solvent effect: relatively high less polar solvent site of solvatation: backbone Non-solvent effect: weak (at low molar concentration) M. Lanzi, P. Costa-Bizzarri, C. Della Casa, ynth Metals, 89 (1997) 181

32 solvatochromism/thermochromism OH polymer * n * regioregularity: 75% M n : solvents solubility Bad solvent: MeOH F. Bertinelli, P. Costa-Bizzarri, C. Della Casa, M. Lanzi, ynth Metals, 122 (2001) 267

33 solvatochromism MeOH F. Bertinelli, P. Costa-Bizzarri, C. Della Casa, M. Lanzi, ynth Metals, 122 (2001) 267

34 thermochromism giallo-arancio rosso-viola 18 C -62 C

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2 Chemistry Notes v Polarity Experiment Ø Things involved Polarity Solubility Dispersion Ø Polarity Shaving cream has soap steric acid Water is polar Food coloring is polar/ionic because dissolved Like dissolves

More information

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17)

16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit. Lecture 2 (9/11/17) 16 years ago TODAY (9/11) at 8:46, the first tower was hit at 9:03, the second tower was hit By Anthony Quintano - https://www.flickr.com/photos/quintanomedia/15071865580, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=38538291

More information

Solutions and Non-Covalent Binding Forces

Solutions and Non-Covalent Binding Forces Chapter 3 Solutions and Non-Covalent Binding Forces 3.1 Solvent and solution properties Molecules stick together using the following forces: dipole-dipole, dipole-induced dipole, hydrogen bond, van der

More information

CHEM J-9 June 2012

CHEM J-9 June 2012 CEM1901 2012-J-9 June 2012 Explain, with the aid of a diagram labelling all the key components, how sodium stearate (C 17 35 CNa) can stabilise long-chain non-polar hydrocarbons ( grease ) in water. Marks

More information

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1

H O H. Chapter 3: Outline-2. Chapter 3: Outline-1 Chapter 3: utline-1 Molecular Nature of Water Noncovalent Bonding Ionic interactions van der Waals Forces Thermal Properties of Water Solvent Properties of Water ydrogen Bonds ydrophilic, hydrophobic,

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 01 Questions Patrick: An Introduction to Medicinal Chemistry 5e 01) Which of the following molecules is a phospholipid? a. i b. ii c. iii d. iv 02) Which of the following statements is false regarding the

More information

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry)

Paper No. 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) Subject Chemistry Paper No and Title Paper 1: ORGANIC - I (Nature of Bonding Module No and Title Module Tag CHE_P1_M10 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Non-Covalent Interactions

More information

Aqueous solutions. Solubility of different compounds in water

Aqueous solutions. Solubility of different compounds in water Aqueous solutions Solubility of different compounds in water The dissolution of molecules into water (in any solvent actually) causes a volume change of the solution; the size of this volume change is

More information

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS

2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2. WATER : THE SOLVENT FOR BIOCHEMICAL REACTIONS 2.1 Water and Polarity Both geometry and properties of molecule determine polarity Electronegativity - The tendency of an atom to attract electrons to itself

More information

Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles,

Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles, Step 1: Solute particles must separate from each other. Since energy must be absorbed to overcome the forces of attraction between solute particles, this process is endothermic. Step 2: Solvent particles

More information

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles Module17: Intermolecular Force between Surfaces and Particles Lecture 23: Intermolecular Force between Surfaces and Particles 1 We now try to understand the nature of spontaneous instability in a confined

More information

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015, Course,Informa5on, BIOC%530% GraduateAlevel,discussion,of,the,structure,,func5on,,and,chemistry,of,proteins,and, nucleic,acids,,control,of,enzyma5c,reac5ons.,please,see,the,course,syllabus,and,

More information

Organic Chemistry. Introduction to Organic Molecules and Functional Groups

Organic Chemistry. Introduction to Organic Molecules and Functional Groups For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Introduction to Organic Molecules and Functional Groups by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science

More information

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Bio-elements Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Most of the chemical components of living organisms

More information

Intermolecular forces Liquids and Solids

Intermolecular forces Liquids and Solids Intermolecular forces Liquids and Solids Chapter objectives Understand the three intermolecular forces in pure liquid in relation to molecular structure/polarity Understand the physical properties of liquids

More information

DEFINITION. The electrostatic force of attraction between oppositely charged ions

DEFINITION. The electrostatic force of attraction between oppositely charged ions DEFINITION The electrostatic force of attraction between oppositely charged ions Usually occurs when a metal bonds with a non-metal Ions are formed by complete electron transfer from the metal atoms to

More information

Downloaded from

Downloaded from I.I.T.Foundation - XI Chemistry MCQ #4 Time: 45 min Student's Name: Roll No.: Full Marks: 90 Chemical Bonding I. MCQ - Choose Appropriate Alternative 1. The energy required to break a chemical bond to

More information

2.2.2 Bonding and Structure

2.2.2 Bonding and Structure 2.2.2 Bonding and Structure Ionic Bonding Definition: Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form

More information

Solids, Liquids and Gases

Solids, Liquids and Gases WHY? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

IB Topics 4 & 14 Multiple Choice Practice

IB Topics 4 & 14 Multiple Choice Practice IB Topics 4 & 14 Multiple Choice Practice 1. Which compound has the shortest C N bond? CH 3NH 2 (CH 3) 3CNH 2 CH 3CN CH 3CHNH 2. Which of the following series shows increasing hydrogen bonding with water?

More information

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES

DIFFERENT TYPES OF INTEMOLECULAR FORCES INTERMOLECULAR FORCES DIFFERENT TYPES OF INTEMOLECULAR FORCES Do all the exercises in your studyguide COMPARISON OF THE THREE PHASES OF MATTER. Matter is anything that occupy space and has mass. There are three states of matter:

More information

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration: PTEI STUTUE ydrolysis of proteins with aqueous acid or base yields a mixture of free amino acids. Each type of protein yields a characteristic mixture of the ~ 20 amino acids. AMI AIDS Zwitterion (dipolar

More information

Intermolecular forces

Intermolecular forces Intermolecular forces World of Chemistry, 2000 Updated: August 29, 2013 The attractions of molecules to each other are known as intermolecular forces to distinguish them from intramolecular forces, such

More information

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria

Other Cells. Hormones. Viruses. Toxins. Cell. Bacteria Other Cells Hormones Viruses Toxins Cell Bacteria ΔH < 0 reaction is exothermic, tells us nothing about the spontaneity of the reaction Δ H > 0 reaction is endothermic, tells us nothing about the spontaneity

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules? Polar Bonds and Polar Molecules Chapter 10 Liquids, Solids, and Phase Changes Draw Lewis Structures for CCl 4 and CH 3 Cl. What s the same? What s different? 1 Polar Covalent Bonds and Dipole Moments Bonds

More information

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction

Biophysics II. Hydrophobic Bio-molecules. Key points to be covered. Molecular Interactions in Bio-molecular Structures - van der Waals Interaction Biophysics II Key points to be covered By A/Prof. Xiang Yang Liu Biophysics & Micro/nanostructures Lab Department of Physics, NUS 1. van der Waals Interaction 2. Hydrogen bond 3. Hydrophilic vs hydrophobic

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

PROPERTIES OF SOLIDS SCH4U1

PROPERTIES OF SOLIDS SCH4U1 PROPERTIES OF SOLIDS SCH4U1 Intra vs. Intermolecular Bonds The properties of a substance are influenced by the force of attraction within and between the molecules. Intra vs. Intermolecular Bonds Intramolecular

More information

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY !! www.clutchprep.com CONCEPT: HYBRID ORBITAL THEORY The Aufbau Principle states that electrons fill orbitals in order of increasing energy. If carbon has only two unfilled orbitals, why does it like to

More information

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral

The dative covalent bond acts like an ordinary covalent bond when thinking about shape so in NH 4. the shape is tetrahedral 1.3 Bonding Definition Ionic bonding is the electrostatic force of attraction between oppositely charged ions formed by electron transfer. Metal atoms lose electrons to form ve ions. Non-metal atoms gain

More information

Carbon Compounds. Chemical Bonding Part 2

Carbon Compounds. Chemical Bonding Part 2 Carbon Compounds Chemical Bonding Part 2 Introduction to Functional Groups: Alkanes! Alkanes Compounds that contain only carbons and hydrogens, with no double or triple bonds.! Alkyl Groups A part of a

More information

Chapter-2 (Page 22-37) Physical and Chemical Properties of Water

Chapter-2 (Page 22-37) Physical and Chemical Properties of Water Chapter-2 (Page 22-37) Physical and Chemical Properties of Water Introduction About 70% of the mass of the human body is water. Water is central to biochemistry for the following reasons: 1- Biological

More information

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated.

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated. For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0039 Price: $4 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help with online classes. Chapter 11

More information

Water, water everywhere,; not a drop to drink. Consumption resulting from how environment inhabited Deforestation disrupts water cycle

Water, water everywhere,; not a drop to drink. Consumption resulting from how environment inhabited Deforestation disrupts water cycle Chapter 3 Water: The Matrix of Life Overview n n n Water, water everywhere,; not a drop to drink Only 3% of world s water is fresh How has this happened Consumption resulting from how environment inhabited

More information

Self Assembled Monolayers

Self Assembled Monolayers Nanotechnology for engineers Winter semester 2004-2005 Nanotechnology for Engineers : J. Brugger (LMIS-1) & P. Hoffmann (IOA) Outlook Introduction (gas phase solution) Large molecules SAMs Small molecules

More information

Chapter 8. Substitution reactions of Alkyl Halides

Chapter 8. Substitution reactions of Alkyl Halides Chapter 8. Substitution reactions of Alkyl Halides There are two types of possible reaction in organic compounds in which sp 3 carbon is bonded to an electronegative atom or group (ex, halides) 1. Substitution

More information

CHAPTER 5. FORMATION OF SAMs CONRTOLLED BY STERIC EFFECTS. The steric effect is an important subject in chemistry. It arises from the fact that

CHAPTER 5. FORMATION OF SAMs CONRTOLLED BY STERIC EFFECTS. The steric effect is an important subject in chemistry. It arises from the fact that CHAPTER 5 FRMATIN F SAMs CNRTLLED BY STERIC EFFECTS 5.1 Motivation The steric effect is an important subject in chemistry. It arises from the fact that each atom within a molecule occupies a certain volume

More information

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute

Solvent Scales. ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Solvent Scales ε α β α: solvent's ability to act as a hydrogen bond-donor to a solute Water 78 1.17 0.47 DMS 47 0.00 0.76 DM 37 0.00 0.76 Methanol 33 0.93 0.66 MPA 29 0.00 1.05 Acetone 21 0.08 0.43 Methylene

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Lec.1 Chemistry Of Water

Lec.1 Chemistry Of Water Lec.1 Chemistry Of Water Biochemistry & Medicine Biochemistry can be defined as the science concerned with the chemical basis of life. Biochemistry can be described as the science concerned with the chemical

More information

Water: The Solvent for Biochemical Reactions

Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions 11 SUMMARY Section 2.1 Section 2.2 Section 2.3 Section 2.4 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive

More information

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan

Saba Al Fayoumi. Tamer Barakat. Dr. Mamoun Ahram + Dr. Diala Abu-Hassan 1 Saba Al Fayoumi Tamer Barakat Dr. Mamoun Ahram + Dr. Diala Abu-Hassan What is BIOCHEMISTRY??? Biochemistry = understanding life Chemical reactions are what makes an organism (An organism is simply atoms

More information

Chemistry Review: Atoms

Chemistry Review: Atoms Chemistry Review: Atoms Atoms are made up : nucleus containing protons and neutrons orbitals containing electrons (2, 8, 8,...). Valence electrons outermost electrons Chemistry Review: Atoms All atoms

More information

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104.

Chapter 2 - Water 9/8/2014. Water exists as a H-bonded network with an average of 4 H-bonds per molecule in ice and 3.4 in liquid. 104. Chapter 2 - Water Water exists as a -bonded network with an average of 4 -bonds per molecule in ice and 3.4 in liquid. 104.5 o -bond: An electrostatic attraction between polarized molecules containing

More information

Chemical Bonding Basic Concepts

Chemical Bonding Basic Concepts Chemical Bonding Basic Concepts Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. Group e - configuration # of valence

More information

Apparent molar volume of sodium chloride in mixed solvent at different temperatures

Apparent molar volume of sodium chloride in mixed solvent at different temperatures Ultra Chemistry Vol. 8(2), 205-210 (2012). Apparent molar volume of sodium chloride in mixed solvent at different temperatures C.K. RATH 1, N.C. ROUT 2, S.P. DAS 3 and P.K. MISHRA 4 1 Department of Chemistry,

More information

Downloaded from

Downloaded from 1 Class XI Chemistry Ch 13: Hydrocarbons TOP Concepts: 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

There are two types of bonding that exist between particles interparticle and intraparticle bonding. There are two types of bonding that exist between particles interparticle and intraparticle bonding. Intraparticle bonding describes the forces that exist within a particle such as a molecule or ionic

More information

Anirban Som

Anirban Som Anirban Som 01-11-14 Introduction Supramolecular chemistry generates complex structures over a range of length scales. Structures such as DNA origami, supramolecular polymers etc. are formed via multiple

More information

Chapter 2 Water: The Solvent for Biochemical Reactions

Chapter 2 Water: The Solvent for Biochemical Reactions Chapter 2 Water: The Solvent for Biochemical Reactions SUMMARY Section 2.1 Water is a polar molecule, with a partial negative charge on the oxygen and partial positive charges on the hydrogens. There are

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-10: Haloalkanes and Haloarenes

CBSE Class-12 Chemistry Quick Revision Notes Chapter-10: Haloalkanes and Haloarenes CBSE Class-12 Chemistry Quick Revision Notes Chapter-10: Haloalkanes and Haloarenes Nature of C-X bond in alkyl halides: X is more electronegative than carbon. So, the C-X bond is polarized with C having

More information

Self-Assembled Monolayers

Self-Assembled Monolayers CHE499 : A Nanotechnology Course in Chemical & Materials Engineering Spring 2006 Self-Assembled Monolayers By Drs. Lloyd Lee, Winny Dong 5GD6ER Self-Assembled Monolayers (SAMs) History Nuzzo, R. G.; Allara,

More information

Water. 2.1 Weak Interactions in Aqueous Sy stems Ionization of Water, Weak Acids, and Weak Bases 58

Water. 2.1 Weak Interactions in Aqueous Sy stems Ionization of Water, Weak Acids, and Weak Bases 58 Home http://www.macmillanhighered.com/launchpad/lehninger6e... 1 of 1 1/6/2016 3:07 PM 2 Printed Page 47 Water 2.1 Weak Interactions in Aqueous Sy stems 47 2.2 Ionization of Water, Weak Acids, and Weak

More information

Lecture 1 Solubility and Distribution Phenomena

Lecture 1 Solubility and Distribution Phenomena Physical Pharmacy Lecture 1 Solubility and Distribution Phenomena Assistant Lecturer in Pharmaceutics Overview Solubility Phenomena Introduction Solute-Solvent Interactions Solubility of gas in liquid

More information

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances

No Brain Too Small CHEMISTRY AS91390 Demonstrate understanding of thermochemical principles and the properties of particles and substances COLLATED QUESTIONS Attractive forces between atoms, ions, and molecules. These will include ionic bonds, covalent bonds, and intermolecular attractions due to temporary dipoles and permanent dipoles (including

More information

Chapter 6 Chemistry of Water; Chemistry in Water

Chapter 6 Chemistry of Water; Chemistry in Water Chapter 6 Chemistry of Water; Chemistry in Water Water is one of the most remarkable and important of all chemical species. We, and all living things, are mostly water about 80% of our brain; 65% of our

More information

Chimica Farmaceutica

Chimica Farmaceutica Chimica Farmaceutica Drug Targets Why should chemicals, some of which have remarkably simple structures, have such an important effect «in such a complicated and large structure as a human being? The answer

More information

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena.

Physical Pharmacy PHR 211. Lecture 1. Solubility and distribution phenomena. Physical Pharmacy PHR 211 Lecture 1 Solubility and distribution phenomena. Course coordinator Magda ELMassik, PhD Assoc. Prof. of Pharmaceutics 1 Objectives of the lecture After completion of thislecture,

More information

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure.

Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Temperature - the temperature above which the liquid state of a substance no longer exists regardless of the pressure. Critical Pressure - the vapor pressure at the critical temperature. Properties

More information

SCH 4U Unit Test Forces and Molecular Properties. 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom:

SCH 4U Unit Test Forces and Molecular Properties. 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom: CH 4U Unit Test Forces and Molecular Properties Name: 1. Fill in each table as done on the assignment. Including the oxidation state of the central atom: P 4 3- total # of e - pairs σ bonding pairs lone

More information

Atoms & Their Interactions

Atoms & Their Interactions Lecture 2 Atoms & Their Interactions Si: the heart of electronic materials Intel, 300mm Si wafer, 200 μm thick and 48-core CPU ( cloud computing on a chip ) Twin Creeks Technologies, San Jose, Si wafer,

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: CO 2, N 2, H 2 0, CH 4 O C 2.58Ǻ

More information

Valence Electrons, Bonds and Chemical Reactions 05 October 2006

Valence Electrons, Bonds and Chemical Reactions 05 October 2006 Valence Electrons, Bonds and Chemical Reactions 05 October 2006 Principles of Valence Electrons and Bonds Ionic Bonds Metallic Bonds Covalent Bonds Intermolecular Forces Common Chemical Reactions Atoms

More information

Chemistry 343- Spring 2008

Chemistry 343- Spring 2008 Chemistry 343- Spring 2008 27 Chapter 2- Representative Carbon Compounds: Functional Groups, Intermolecular Forces and IR Spectroscopy A. ydrocarbons: Compounds composed of only C and Four Basic Types:

More information

1 TOP Concepts: Class XI Chemistry Ch 13: Hydrocarbons 1. Alkanes: General formula: C n H 2n+2 2. Preparation of alkanes: 3. Kolbe s electrolytic method: Alkali metal salts of carboxylic acids undergo

More information

Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties

Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties Chapter 2: Three-Dimensional Geometry, Intermolecular Interactions, and Physical Properties LEARNING OBJECTIVES Apply VSEPR theory to understand organic structure and geometry. Multiple Choice: 1, 3 17,

More information

Chapter 11. Intermolecular forces. Chapter 11 1

Chapter 11. Intermolecular forces. Chapter 11 1 Chapter 11 Intermolecular Attractions and the Properties of Liquids and Solids 1 2 Intermolecular forces Forces of attraction between molecules Directly dependent on the distance between the molecules

More information

Chapter Intermolecular attractions

Chapter Intermolecular attractions Chapter 11 11.2 Intermolecular attractions Intermolecular Attractions and the Properties of Liquids and Solids Intermolecular forces control the physical properties of the substance. Intramolecular forces

More information

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name

SL Score. HL Score ! /30 ! /48. Practice Exam: Paper 1 Topic 4: Bonding. Name Name Practice Exam: Paper 1 Topic 4: Bonding SL SL Score! /30 HL Score! /48 1. What is the correct Lewis structure for hypochlorous acid, a compound containing chlorine, hydrogen and oxygen? A. B. C. D.

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 2 - Bonding and Structure Flashcards What are ions? What are ions? Charged particles that is formed when an atom loses or gains electrons What is the charge of the ion when

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces H covalent bond (stronger) Cl H Cl intermolecular attraction (weaker) The attractions between molecules are not nearly as strong as the covalent bonds that hold atoms together. They

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CHAPTER 4 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A substance is a brittle crystal that conducts electricity in molten liquid state

More information

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12

liquids_solids_15dec2017_1st.notebook Liquids and solids Chapters 11 and 12 liquids_solids_15dec2017_1st.notebook December 15, 2017 Liquids and solids Chapters 11 and 12 Intermolecular forces Intermolecular: forces between molecules Intramolecular: within molecules (i.e. covalent)

More information

Atoms can form stable units called molecules by sharing electrons.

Atoms can form stable units called molecules by sharing electrons. Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule) e.g. ionic, covalent. Forces that cause the aggregation

More information

Honors Chemistry Dr. Kevin D. Moore

Honors Chemistry Dr. Kevin D. Moore Honors Chemistry Dr. Kevin D. Moore Key Properties: Solid is less dense than liquid Water reaches maximum density at 4 C Very high specific heat Dissolves many substances Normal Boiling Point: 100 C Normal

More information

Some properties of water

Some properties of water Some properties of water Hydrogen bond network Solvation under the microscope 1 Water solutions Oil and water does not mix at equilibrium essentially due to entropy Substances that does not mix with water

More information

Intermolecular Forces & Condensed Phases

Intermolecular Forces & Condensed Phases Intermolecular Forces & Condensed Phases CHEM 107 T. Hughbanks READING We will discuss some of Chapter 5 that we skipped earlier (Van der Waals equation, pp. 145-8), but this is just a segue into intermolecular

More information

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS

Water and solutions. Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Water and solutions Prof. Ramune Morkuniene, Biochemistry Dept., LUHS Characteristics of water molecule Hydrophylic, hydrophobic and amphipatic compounds Types of real solutions Electrolytes and non- electrolytes

More information

Intermolecular Forces and Physical Properties

Intermolecular Forces and Physical Properties Intermolecular Forces and Physical Properties Attractive Forces Particles are attracted to each other by electrostatic forces. The strength of the attractive forces depends on the kind(s) of particles.

More information

Intermolecular and Intramolecular Forces. Introduction

Intermolecular and Intramolecular Forces. Introduction Intermolecular and Intramolecular Forces Introduction Atoms can form stable units called molecules by sharing electrons. The formation of molecules is the result of intramolecular bonding (within the molecule)

More information

ATOMIC BONDING Atomic Bonding

ATOMIC BONDING Atomic Bonding ATOMIC BONDING Atomic Bonding Primary Bonds Secondary Bonds Ionic Covalent Metallic van der Waals 1. IONIC BONDING q 11 Na & 17 Cl These two ions are attracted to eachother by the electrostatic force developed

More information

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2:

The change in free energy on transferring an ion from a medium of low dielectric constantε1 to one of high dielectric constant ε2: The Born Energy of an Ion The free energy density of an electric field E arising from a charge is ½(ε 0 ε E 2 ) per unit volume Integrating the energy density of an ion over all of space = Born energy:

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date:

MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date: MC Molecular Structures, Dipole Moments, Geometry, IMF Name: Date: 2008 22. Which of the following is a nonpolar molecule that contains polar bonds? (A) F 2 (B) CHF 3 (C) CO 2 (D) HCl (E) NH 3 28. Which

More information

Polarity main concepts

Polarity main concepts POLARITY Polarity main concepts A polar molecule has opposite charged ends (+ & -) The polarity of a bond is the result of a difference in electronegativity between the two bonded atoms A molecule can

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

Chapter 8. Chemical Bonding: Basic Concepts

Chapter 8. Chemical Bonding: Basic Concepts Chapter 8. Chemical Bonding: Basic Concepts Chemical bond: is an attractive force that holds 2 atoms together and forms as a result of interactions between electrons found in combining atoms We rarely

More information

Week 8 Intermolecular Forces

Week 8 Intermolecular Forces NO CALCULATORS MAY BE USED FOR THESE QUESTIONS Questions 1-3 refer to the following list. (A) Cu (B) PH 3 (C) C (D) SO 2 (E) O 2 1. Contains instantaneous dipole moments. 2. Forms covalent network solids.

More information

Name Chemistry Pre-AP. Notes: Solutions

Name Chemistry Pre-AP. Notes: Solutions Name Chemistry Pre-AP Notes: Solutions Period I. Intermolecular Forces (IMFs) A. Attractions Between Molecules Attractions between molecules are called and are very important in determining the properties

More information

Intermolecular Forces. Chapter 16 Liquids and Solids. Intermolecular Forces. Intermolecular Forces. Intermolecular Forces. Intermolecular Forces

Intermolecular Forces. Chapter 16 Liquids and Solids. Intermolecular Forces. Intermolecular Forces. Intermolecular Forces. Intermolecular Forces Big Idea: Systems that form macromolecules (ionic, metallic, and covalent network) have the strongest interactions between formula units. Systems that cannot form macro molecules still contain intermolecular

More information

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas.

Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. CHEMICAL BONDING Atoms have the ability to do two things in order to become isoelectronic with a Noble Gas. 1.Electrons can be from one atom to another forming. Positive ions (cations) are formed when

More information

Fundamentals of Distribution Separations (III)

Fundamentals of Distribution Separations (III) Fundamentals of Distribution Separations (III) (01/16/15) K = exp -Δμ 0 ext i - Δμ i RT distribution coefficient C i = exp -Δμ 0 RT - - Δμ i = ΔH i TΔS i 0 0 0 solubility q A---B A + B 0 0 0 ΔH i = ΔH

More information

Molecular interactions. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry

Molecular interactions. Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Molecular interactions Levente Novák István Bányai Zoltán Nagy Department of Physical Chemistry Characterization of colloidal systems Degree of dispersion (=size) Morphology (shape and internal structure)

More information

Lecture 15. Polar vs Non-Polar Substances. Professor Hicks Inorganic Chemistry II (CHE151)

Lecture 15. Polar vs Non-Polar Substances. Professor Hicks Inorganic Chemistry II (CHE151) Lecture 15 Professor icks Inorganic hemistry II (E151) Polar vs on-polar Substances Ionic compounds Molecules with significant dipole moments (from polar bonds) Molecules with little or no dipole moment,

More information

Lecture 2. The framework to build materials and understand properties

Lecture 2. The framework to build materials and understand properties Lecture 2 The framework to build materials and understand properties 1 Trees are made into a solid materials/structures in an environment that consists of small molecules: C 2, N 2, H 2 0, CH 4 C 2.58Ǻ?

More information